
Large Market Asymptotics for Differentiated Product

Demand Estimators with Economic Models of Supply

Timothy B. Armstrong∗

Stanford University

February 15, 2012

Abstract

IO economists often estimate demand for differentiated products using data sets

with a small number of large markets. By modeling demand as depending on a small

number of product characteristics, one might hope to obtain increasingly precise es-

timates of demand parameters as the number of products in a single market grows

large. In this paper, I address the question of consistency and asymptotic distributions

of IV estimates of demand in a small number of markets as the number of products

increases in some commonly used demand models under conditions on economic prim-

itives. I show that, under the common assumption of a Bertrand-Nash equilibrium

in prices, product characteristics lose their identifying power as price instruments in

the limit in many of these models, giving inconsistent estimates in these cases. I find

that consistent estimates can still be obtained for many of the cases I consider, but

care must be taken in modeling demand and choosing instruments. For cases where

consistent estimates can be obtained, I provide sufficient conditions for consistency

and asymptotic normality of estimates of parameters and counterfactual outcomes. A

monte carlo study confirms that the asymptotic results provide an accurate description

of the behavior of estimators in market sizes of practical importance.
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1 Introduction

Many empirical studies of markets with differentiated products use data on a relatively small

number of markets, each with many products, to estimate demand elasticities. For example,

in their application to automobile demand, Berry, Levinsohn, and Pakes (1995) use data

on 20 markets, each with about 100 products. For demand models where the number of

parameters grows with the number of product characteristics rather than the number of

products, one might expect a small number of markets with a large number of products to

give good estimates of demand.

In this paper, I examine large market asymptotics for IV estimators for some models

commonly used in the differentiated product demand literature under conditions on economic

primitives. Whether a particular choice of instruments provides consistent estimates in a

particular model depends on its limiting relationship with equilibrium prices, which arises

endogenously from a sequence of pricing games. I show that, in several commonly used

models, the dependence of prices on product characteristic instruments through markups

disappears at a fast enough rate that estimators based on these IVs are inconsistent in a

large market setting, even though these estimators are consistent with a large number of

small markets. In particular, this is the case with the logit and random coefficients logit

models in a large market setting with many firms.

These negative results hold for the random coefficients logit model when a new idiosyn-

cratic logit error is added for each new product without changing the distribution of the other

random coefficients. However, the limiting dependence of prices on product characteristics

can be restored by more careful modeling of the way the distribution of preferences changes

when new products are added. For the nested logit model, I show that the dependence

of markups on product characteristics remains in the limit if products are added into new

nests, which amounts to adding new random coefficients for new nest indicator variables

as the market size grows. In this case, the markup of a given product will depend on the

characteristics of products in the same nest in the limit, but not characteristics of other

products, so care must still be taken in choosing instruments. The findings described above

hold with a large number of small firms. I also examine markets with a small number of large

firms and find that, in this case, the identifying power of product characteristic instruments

depends on having variation in average product quality across, rather than within, firms.

The results in this paper give clear practical guidelines for addressing identification issues

in empirical work that uses these models. First, researchers should be careful to specify a

model and a set of instruments for estimating it such that the supply side model being
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used for policy counterfactuals is consistent with demand being well identified by these

instruments with the data at hand. This paper provides conditions for verifying whether

this is the case, and provides examples of models used in practice where this is the case, and

where it is not. These results can be used as a guide in specifying a demand model and a set

of instruments such that the instruments will have good identifying power under the supply

side model being used for counterfactual analysis. Second, since identification may be weak,

researchers should test for identification, or do inference in a way that is robust to weak

identification or lack of identification. Despite the complicated nonlinear nature of some of

the models considered in this paper, one can test for identification using, for example, the

test proposed by Wright (2003) for nonlinear GMM models.

It is important to emphasize that testing for identification alone without following the first

recommendation does not adequately address the issues that this paper brings up. Suppose

that a researcher tests whether product characteristic instruments identify a demand model

and finds evidence that they strongly identify the model. The researcher then uses a supply

side model to perform policy counterfactuals about, say, prices after a merger. If the supply

side model is such that, because of issues pointed out in this paper, variation in markups

is constrained to be small, the researcher will find that the merger will have little effect on

prices. But this is based on a model that is inconsistent with the finding that the product

characteristic instruments are strongly correlated with prices that the researcher found when

testing for identification. The very fact that the model is well identified means that it must

be misspecified in an economically important way that leads to incorrect conclusions in the

counterfactuals. The same issues will arise if, rather than testing for identification, the

author constructs confidence regions for the policy counterfactual based on tests that are

robust to weak identification or lack of identification. The full model of supply and demand

constrains such tests to have power close to their size unless it is misspecified in a way that

fundamentally biases counterfactual estimates. The results in this paper can be used to

specify a model of demand that will not suffer from these problems. See section 8 for more

on how the results of this paper can be used to guide empirical work.

While the results in this paper show that the identifying power of product characteristic

instruments in large markets is a subtle question, I find that cost shifter instruments have

identifying power in large markets in most of the cases I consider. Since the variation in

markups settles down in the limit, instrumental variables that shift marginal cost account

for a non negligible amount of the variation in prices in the limit, and the sample correlation

between IV estimates and covariates converges to a positive definite matrix under suitable
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conditions on the model primitives.

In addition to deriving asymptotic approximations for estimates of model parameters, I

also derive asymptotic approximations for estimates of counterfactual quantities involving

large markets. Since the counterfactual quantity is a different function of the parameters for

each market size, this does not follow immediately from the delta method and asymptotic

distributions of parameter estimates. To overcome this, I use an additional step in which the

sequence of estimated counterfactuals is approximated by a fixed function of the parameter

estimates.

To examine how well these asymptotic results describe the behavior of these estimators

in market sizes of practical importance, I provide a monte carlo study. I find that the

asymptotic theory developed in this paper is backed up by the results of the monte carlos.

With a large number of small firms, the logit and random coefficients logit models lead to

product characteristic instruments performing poorly in large markets, while cost shifter

instruments give increasingly precise estimates as the number of products increases. With

a small number of large firms, product characteristic instruments do well when some firms

have an overall advantage in terms of product quality, but not when firms draw product

characteristics from the same data generating process. It is worth noting that, while previous

papers have reported monte carlos for these demand models (Berry, 1994; Berry, Linton, and

Pakes, 2004), this paper is, to my knowledge, the first to perform monte carlos in which prices

are formed by computing an equilibrium in a supply side game. While the previous monte

carlos are useful for answering other questions, solving an economic model of supply for

prices is necessary for examining the implications of supply side models for the power of

price instruments.

To my knowledge, the only other authors to examine the behavior of IV estimates of

differentiated product demand models in a small number of large markets are Berry, Linton,

and Pakes (2004). They provide high level conditions for consistency and asymptotic nor-

mality, but leave open the question of which estimators are consistent and asymptotically

normal under which economic models of price setting and conditions on economic primitives.

My results complement their paper by providing asymptotic results under conditions on eco-

nomic primitives, and considering estimation of counterfactual outcomes that change with

the size of the market. I also abstract from sampling error in market shares and simulation

error in computing IV estimates, while Berry, Linton, and Pakes (2004) focus on these issues.

Bajari and Benkard (2005) consider estimation of a class of differentiated product demand

models that includes one of the models I consider using data from a small number of large
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markets, but they propose a different method of estimation.

This paper is also related to the literature on weak instruments (see Stock, Wright, and

Yogo, 2002, for a survey of this literature). That literature uses sequences of underlying

distributions in which the correlation of instruments with endogenous variables shrinks with

the sample size to get asymptotic approximations that better approximate finite sample

distributions. This paper shows that such sequences arise endogenously from equlibrium

prices when asymptotics are taken in the number of products per market in a certain class

of models. To my knowledge, this is the first result in which weak instruments arise endoge-

nously from equilibrium behavior in a sequence of pricing games. The fact that the power

of instruments is tied to demand through equilibrium pricing in a supply side model can be

used to inform decisions about how to model demand.

Despite these parallels with the weak IV literature, it is important to emphasize that,

in the settings considered here that lead to weak instruments, the correlation of IVs with

prices goes to zero even more quickly than in the typical case considered in the weak IV

literature. In the settings considered here that lead to weak identification, the correlation of

the instruments with prices will decrease so quickly that weak instrument robust tests will

have trivial power. This contrasts with the typical case considered in the weak IV literature

in which the correlation goes to zero, but is still large enough relative to the sample size

that the instruments provide some amount of useful exogenous variation, although this case

would likely arise if the results of this paper were extended to allow the sample size and

market size to increase at the same time.

In addition to the literatures on weak instruments and on estimation of discrete choice

models of demand, this paper relates to theoretical results on oligopoly pricing in markets

where demand is characterized by a discrete choice model. Existence of equilibrium in some of

the pricing games I consider follows from arguments in Caplin and Nalebuff (1991) and Vives

(2001) or similar methods. There is also a literature examining how restrictions on demand

elasticities in discrete choice models place restrictions on the possible outcomes of empirical

applications. Bajari and Benkard (2003), Ackerberg and Rysman (2005), and others have

argued that logit type errors lead to a bias toward finding high valuations of new goods.

Bajari and Benkard (2003) also point out that logit errors lead to markups being bounded

away from zero as the number of firms increases under Bertrand competition, making the

logit model a bad choice for modeling markets where goods are homogenous enough that

one expects perfect competition with a large number of products. Some of my findings add

to this body of knowledge. For example, I show that, while markups are bounded away
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from zero in the random coefficients logit model, the dependence of the markup on product

characteristics disappears unless the distribution or number of random coefficients changes

with the number of products. However, the main focus of this paper is on implications for

the consistency of instrumental variables estimators, rather than how the models I consider

restrict the possible outcomes of empirical applications.

The paper is organized as follows. Section 2 describes the class of models being studied.

Section 3 gives a nontechnical discussion of the nature of the results for a special case.

Section 4 presents a simple sufficient condition for asymptotic equivalence of IV estimators

in different models. Section 5 derives the asymptotic behavior of equilibrium prices and IV

estimates in some commonly used demand models by verifying the conditions of section 4.

Section 6 addresses the issue of predicting counterfactual outcomes in large markets using

demand estimates. Section 7 presents the results of a monte carlo study. Section 8 discusses

implications for applied work. Section 9 concludes.

2 The Model

In this section, I describe the class of models and estimators considered in this paper and

define some notation that will be used later. The models and much of the notation follow

Berry (1994).

The researcher observes data from a single market with J products labeled 1 through

J and an outside good labeled 0, and M consumers. Each product j has a price pj and

a vector of other characteristics observed to the researcher, xj ∈ R
K , and an unobserved

variable ξj, which can be interpreted as a combination of unobserved product characteristics

and aggregate preference shocks. In addition, each individual consumer i has consumer

specific unobserved components of demand εij and ζi, which are iid across consumers.

Consumer i’s utility for the jth product is given by uij = u(xj, pj, ξj , εij , ζi) for some

function u. Each consumer buys the product for which utility is the highest, and no con-

sumer buys more than one product. Rather than individual purchasing decisions, we ob-

serve aggregate market shares, including the proportion of consumers who make no purchase

(the share of the outside good). These come from aggregating purchasing decisions over

the εs and ζs of all consumers. As is common in the literature, I simplify the analysis

by assuming that the number of consumers is large enough to ignore sampling variation

in market shares from realizations of the εs and ζs, so that the market share of good j,

sj(x, ξ, p), is equal to the population probability of choosing good j conditional on x, ξ, and
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p: sj(x, ξ, p) = Eε,ζI(uij > uik all k 6= j).

In the models I consider here, utility can be written in the following form for some

parameters (α, β, σ): uij = x′
jβ−αpj+ξj+gi(εij, ζi, xj, pj , σ). Thus, utility can be separated

into a linear part that that does not depend on individual preferences, and a function that

may depend on individual preferences, and the unobserved aggregate demand shock only

enters the first part. This is the case in the models considered in Berry (1994). Following

the literature, I denote the linear part by δj ≡ x′
jβ − αpj + ξj. Since shares only depend on

ξ through δ, we can write them as sj(δ, x, p, σ).

On the producer side, there are F firms labeled 1 through F . Firm f produces the set

of goods Ff ∈ {1, . . . , J}. I use the notation ~pf to denote the vector of prices for products

produced by firm f and similar notation for vectors containing other variables produced by

a given firm. Firm f has cost function Cf (~qf , ~xf , ~ηf ) for a vector of cost shocks ~ηf . I use

the notation MCj to denote the marginal cost of producing good j (the derivative of Cf

with respect to qj). As is common in the literature, I assume a Nash-Bertrand equilibrium

in prices. With Nash-Bertrand competition and an interior best response, the first order

conditions for firm f choosing the price of good j are

∂

∂pj







∑

k∈Ff

pk ·Msk(x, p, ξ)− Cf (~qf , ~xf , ~ηf )







= M ·
∑

k∈Ff

pk
∂

∂pj
sk(x, p, ξ) +M · sj(x, p, ξ)−

∑

k∈Ff

MCk ·M
∂

∂pj
sk(x, p, ξ) = 0

⇔
∑

k∈Ff

(pk −MCk)
∂

∂pj
sk(x, p, ξ) + sj(x, p, ξ) = 0. (1)

For single product firms, this simplifies to

pj = MCj −
sj(x, p, ξ)
d

dpj
sj(x, p, ξ)

. (2)

When new products are added to the demand system, the equilibrium price will change,

so that the equilibrium price and share of good j depend on the size of the market J . That

is, even though x, η, and ξ are sequences, prices and market shares will actually be triangular

arrays, so that a more precise notation for the equilibrium price of good j would be pj,J . To

avoid extra subscripts, I use pj to denote the price of good j when the context is clear, using

pj,J when clarification is needed.
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In all of the models below, I will assume that the marginal cost of producing good j

does not depend on the scale of production and takes a linear form. For the single product

case, this amounts to assuming MCj = x′
jγ+ηj with E(ηj|x) = 0. The linearity assumption

is made only to avoid identification coming purely from functional form. For this, it does

not matter if γ and η have any structural interpretation as long as the linearity holds. If

E(MCj|x) were nonlinear with mean utility assumed linear as above, one could estimate

the model by instrumenting with higher moments of x. The assumption that marginal cost

does not depend on quantity rules out instruments that only affect prices through changes in

marginal cost from changes in production levels. Letting marginal cost depend on quantity

could potentially make asymptotics in J more complicated since this requires thinking about

how large M is relative to J to find the limiting behavior of M · sj. However, the results

here could easily be extended to this case once the limiting behavior of M is decided on.

Finally, in all of the models below, I assume that the vector of unobserved demand shocks

ξ is mean independent of observed product characteristics: E(ξ|x) = 0. This assumption

provides the basis for the instrumental variables estimates considered in this paper. While

there are certainly cases where this assumption is questionable, I focus on asking when

this assumption allows demand to be consistently estimated, rather than asking in which

applications it is likely to hold.

2.1 Estimation

Suppose the share function s(δ, x, p, σ) is invertible in its first argument with inverse δ(s, x, p, σ).

Then we might hope to estimate the model using the equation

δj(s, x, p, σ) = x′
jβ − αpj + ξj. (3)

However, the parameter σ enters into a function with shares, which are endogenous. In

addition, prices may be correlated with the unobserved ξ through at least two channels.

First, ξj enters the markup s(δ, x, p, σ)/ d
dpj

s(δ, x, p, σ). Second, we may think that ξj is

correlated with the unobserved component of marginal cost, ηj, if goods that are more

desirable in unobserved ways are also more expensive to make in unobserved ways.

A solution that is commonly used in the literature is to use characteristics of other prod-

ucts as additional instruments. Since market shares depend on the product characteristics of

all firms and prices depend on the product characteristics of all firms through the Bertrand

markup s(δ, x, p, σ)/ d
dpj

s(δ, x, p, σ), it seems reasonable that moments based on characteris-
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tics of other products might be used to consistently estimate the parameters of the model.

Suppose that we use some vector valued function hj(x−j) as excluded instruments. The

parameter estimates minimize the GMM criterion function

∥

∥

∥

∥

∥

1

J

J
∑

j=1

(δj(s, x, p, σ)− x′
jβ + αpj)zj

∥

∥

∥

∥

∥

WJ

(4)

where zj = (xj, hj(x−j))
′ and WJ is a positive definite weighting matrix. This results in the

following linear IV formula for the estimates of β and α as a function of the estimate σ̂ of σ:

(

β̂

α̂

)

=

([

J
∑

j=1

zj

(

xj −pj

)

]′

WJ

[

J
∑

j=1

zj

(

xj −pj

)

])−1

[

J
∑

j=1

zj

(

xj −pj

)

]′

WJ

J
∑

j=1

zjδj(s, x, p, σ̂).

3 A Preview of the Results

To get a feel for the results in this paper and how they are shown, consider the logit model

with single product firms. Utility is given by

uij = x′
jβ − αpj + ξj + εij ≡ δj + εij

and εij is distributed extreme value independently across i and j. The assumptions on utility

lead to shares

sj(x, p, ξ) =
exp(x′

jβ − αpj + ξj)
∑

k exp(x
′
kβ − αpk + ξk)

which can be inverted to get ξj (normalizing the mean utility of the outside good 0 to zero)

log sj − log s0 = x′
jβ − αpj + ξj. (5)

The derivative of firm j’s share with respect to j’s price is d
dpj

sj(x, p, ξ) = −αsj(x, p, ξ)(1−
sj(x, p, ξ)), which gives the Bertrand pricing formula, Equation (2), as pj = MCj +1/(α(1−
sj)).

If each firm’s market share goes to zero in the limit (this will be the case if, for example,
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prices and product characteristics are bounded), inspection of the markup formula shows

that it will converge to 1/α. This suggests that estimators will have the same asymptotic

distribution when applied to data generated with Bertrand pricing as they would if the data

were generated from a market with constant markups. If this is the case, then estimators

that use product characteristics of other firms as instruments for price will be inconsistent,

since the excluded instruments are only correlated with prices through the markup term.

On the other hand, cost shifters should still provide valid instruments.

In section 4, I provide a way of formally verifying the asymptotic equivalence of IV

estimators in different models of price setting. With this machinery in place, the behavior

of GMM estimates as the number of products grows in a single market can be examined

by showing that they would have the same distribution under a data generating process in

which markups are constant or only depend on a particular set of product characteristics.

I include equivalence results for unidentified models, so that estimators can be shown to

be inconsistent by comparing them to other inconsistent estimators. This provides formal

justification for the argument that, since the logit markups converge to a constant in the

Bertrand model and product characteristics of other firms cannot be used as instruments in

the constant markup model, estimates that use these instruments will not be consistent in

the Bertrand model. According to the results in the next section, this will be true as long

as markups converge at a
√
J rate or faster. I show that this convergence will be at a faster

than
√
J rate in section 5.

The convergence of the markup in the logit model to 1/α also suggests that estimated

counterfactual outcomes involving large markets with logit demand and Bertrand compe-

tition with single product firms will be close to estimates that compute the counterfactual

outcomes under the assumption of a constant markup. If the estimation error is of a greater

order of magnitude than the difference between the two ways of estimating the counterfac-

tual outcome, the two estimates should be roughly the same for the purposes of inference

using asymptotic approximations to sampling distributions. While this is problematic for

most IO applications, not all of the models I consider have a constant markup in the limit.

In section 6, I provide a framework for approximating the sampling distribution of estimates

of counterfactual quantities when the counterfactual market has many products, and show

how the nested logit model with many nests, a model in which markups do not converge

to a constant, fits into this framework. For cases where the counterfactual exercise is still

interesting in the limit, this gives asymptotic approximations that are valid as the size of

the counterfactual market increases.
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4 Equivalence Results for IV Estimators

In this section, I provide sufficient conditions for an IV estimator to have the same asymptotic

distribution under two different models of price setting. Since I need these results to show

that some estimators are inconsistent, they must apply to models that do not satisfy the

rank condition for identification. The following set of assumptions handles this case as well

as the case where the parameters are point identified.

Consider a linear IV model with instruments zj ∈ R
k, regressors xj ∈ R

d, parameter

vector β ∈ R
d, and an unobservable error term ξj ∈ R. Let yj = x′

jβ+ ξj. For the differenti-

ated product demand models considered in this paper, we will verify these assumptions with

δj(x, p, σ) in the place of yj and the vector of prices and covariates ((x′
j, pj)

′ in the notation

of the rest of the paper) playing the role of xj. The IV estimate with weighting matrix WJ

is given by

β̂ ≡
([

J
∑

j=1

zjx
′
j

]′

WJ

[

J
∑

j=1

zjx
′
j

])−1 [
J
∑

j=1

zjx
′
j

]′

WJ

[

J
∑

j=1

zjyj

]

. (6)

Suppose that a central limit theorem applies to the sample means in this formula so that

the following assumptions hold.

Assumption 1. (i)
√
J
(

1
J

∑J
j=1 zjx

′
j −Mzx

)

d→ Zzx for some k × d matrix Mzx, and a

k× d random matrix Zzx. (ii)
1√
J

∑J
j=1 zjξj

d→ Zzξ for a multivariate normal random vector

Zzξ. (iii) WJ
p→ W for some positive definite weighting matrix W .

If these assumptions hold with Mzx a full rank matrix, β̂ will be consistent and asymp-

totically normal. If Mzx is not full rank, β̂ will not be consistent. The following theorem

covers both cases. Part (i) is all that is needed to show that an estimator is inconsistent.

Part (ii) is the standard consistency and asymptotic normality result for IV estimators in

identified models.

Part (iii) derives the asymptotic behavior of possibly inconsistent IV estimates, and can

be skipped by readers who are not interested in the behavior of inconsistent estimators.

For the logit model discussed in the previous section, it is conceivable that using product

characteristics as instruments would give an estimator that is inconsistent, but can be used

to form tests with power against fixed alternatives, as in the weak instrument asymptotics

of, for example, Stock and Wright (2000). This would be the case if markups converged to

a constant at exactly a
√
J rate. According to part (iii) of the following theorem, this will
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not be the case if markups converge at a faster than
√
J rate, which I show to be true in

section 5.

Theorem 1. Under Assumption 1, we have the following.

(i) β̂ is consistent if and only if Mzx is full rank.

(ii) If Mzx is full rank, then β̂ is consistent and
√
J(β̂ − β)

d→ (M ′
zxWMzx)

−1M ′
zxWZzξ.

(iii) Let d2 = rankMzx and d1 = d− d2. Let H be an invertible d× d matrix such that the

first d1 columns of MzxH are zero and split H into its first d1 and last d2 columns as

(H1, H2). Define TJ = H−1(β̂ − β) with T1J the first d1 elements and T2J the last d2

elements. Then

(

T1J√
JT2J

)

d→
(

(

(ZzxH1)
′Q′

W,2WQW,2ZzxH1

)−1
(ZzxH1)

′Q′
W,2WQW,2Zzξ

(

(Ezx′H2)
′Q′

W,1WQW,1Ezx′H2

)−1
(Ezx′H1)

′Q′
W,1WQW,1Zzξ

)

where QW,1 is the W inner product projection matrix for the orthogonal complement of

the column span of ZzxH1 and QW,2 is the W inner product projection matrix for the

orthogonal complement of the column span of Ezx′H2.

Proof. See appendix.

Suppose the conditions of the above theorem are known to hold for a model with a

particular set of regressors, and we are interested in how the model behaves when we replace

the regressors with another set of variables that converge to the regressors in the original

model. If the difference between the two sets of regressors disappears quickly enough, the

conditions will hold with the new regressors and the same asymptotic distributions, so that

IV estimators will have the same asymptotic distribution in both models. This is true even

for partially identified or unidentified models, where the IV estimates are not consistent.

The following corollary states this formally in a way that will be useful for supply and

demand models of differentiated product markets. If, for a particular demand specification,

equilibrium prices from two models of supply are close enough to each other asymptotically,

IV estimates will have the same asymptotic distribution in both models.

Corollary 1. Suppose that xj, zj, ξj, and yj satisfy Assumption 1. Let x∗
j be any variable

such that 1√
J
(
∑

j zjx
′
j −

∑

j zjx
∗
j
′)

p→ 0 and let y∗j = x∗
jβ + ξj. Then x∗

j , zj, ξj, and y∗j

satisfy Assumption 1 with the same Mzx, Zzx, and Zzξ. In particular, this will be true if√
J maxj≤J ‖xj − x∗

j‖
p→ 0 and 1

J

∑

j ‖zj‖ is bounded in probability.
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Proof. The first statement follows from applying Slutsky’s theorem to the quantities that

converge in distribution under the assumptions of Theorem 1. The second statement follows

because

√
J‖EJzx

′ − EJzx
∗′‖ =

√
J‖EJz(x

′ − x∗′)‖ ≤
√
JEJ‖z(x′ − x∗′)‖ ≤

√
JEJ‖z‖‖x′ − x∗′‖

≤
√
J max

j≤J
‖x′

j − x∗
j
′‖EJ‖z‖.

5 Large Market Asymptotics for Some Supply and De-

mand Models

Using the results from the previous section, I now examine the asymptotic behavior of IV

estimates for some common supply and demand models and choices of instruments. I start

with a more rigorous treatment of the logit model with single product firms discussed in

Section 3.

5.1 The Simple Logit

According to the corollary to Theorem 1, the argument in section 3 will go through as long as,

letting p∗j = MCj+1/α, we have
√
J maxj≤J |pj−p∗j |

p→ 0 and 1√
J

∑J
j=1

(

zj(x
′
j, p

∗
j)−Mzx

)

→
Zzx for some matrix Mzx that is not full rank when zj only includes characteristics of other

products.

To get an idea of the speed of convergence, write the difference between the constant 1/α

and the markup as

pj −MCj − 1/α =
1

α

1

1− sj
− 1

α
=

1

α

1− (1− sj)

1− sj
=

1

α

sj
1− sj

If firms have approximately equal market share so that sj converges to zero at a 1/J rate,

this expression will converge to zero at a 1/J rate as well, and the corollary to Theorem 1

will apply. A sufficient condition for this is for product characteristics and marginal costs to

be bounded.

Theorem 2. In the logit model with single product firms and Bertrand competition, suppose

that product characteristics and marginal costs are (almost surely) uniformly bounded. Then
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supj≤J

√
J |pj − MCj − 1/α| a.s.→ 0 and any IV estimator for this model that satisfies the

assumptions of Theorem 1 will satisfy the same assumptions with pj replaced by p∗j = MCj+

1/α.

Proof. See appendix.

Thus, IV estimators for the logit model have the same limiting distribution as the number

of products goes to infinity under Bertrand competition as they do with constant markups.

Since characteristics of other products are typically only correlated with prices through

markups, IV estimators that use these as excluded instruments will be inconsistent. Write

xj = (1, w′
j)

′ and suppose we use some function hj(w−j) of the product characteristics of other

firms as the excluded instrument for p∗j so that the instrument vector is zj = (1, w′
j , hj(w−j))

′.

The sample correlation of the instruments with the regressors is

1

J

J
∑

j=1

zj(x
′
j, p

∗
j) =

1

J

J
∑

j=1







1

wj

hj(w−j)







(

1 w′
j p∗j

)

=
1

J

J
∑

j=1







1

wj

hj(w−j)







(

1 w′
j MCj + 1/α

)

=
1

J

J
∑

j=1







1

wj

hj(w−j)







(

1 w′
j γ0 + w′

jγ1 + 1/α
)

+
1

J

J
∑

j=1







1

wj

hj(w−j)






ηj.

Assuming that a central limit theorem applies to these sample averages with the second

sum converging to its expected value of 0, the assumptions of Theorem 1 will hold with Mzx

equal to the probability limit of the first term, which does not have full rank since the last

column is γ0+1/α times the first column plus the linear combination of the middle columns

given by matrix multiplication with γ1 on the right (this statement holds for the probability

limit as well). This will hold under quite general conditions. For simplicity, I present the

result for the case where product characteristics are iid and hj is a fixed function of finitely

many product characteristics, but a mixing condition on the product characteristics would

work as well.

Theorem 3. In the logit model, suppose that the sequence of product characteristics is

bounded and iid. Let h : RK(L+M) → R
N be a function of the product characteristics such

14



that the elements of h(xj−L, . . . , xj+M)(x′
j, η

′
j , ξ

′
j) have finite variance. Let β̂ be the IV esti-

mator given by (6) with zj = (1, x′
j , h(xj−L, . . . , xj+M)′)′ and WJ any weighting matrix with

WJ
p→ W for a positive definite matrix W . If prices are set by single product firms with

Bertrand competition, β̂ will be inconsistent and will have the same asymptotic distribution

(in the sense of Theorem 1) as if markups were 1/α for all firms.

Proof. The conditions of the theorem imply that central limit theorems apply to the sample

means of the discussion above.

5.2 Nested Logit

The nested logit model generalizes the logit model of the previous section by placing products

into groups and allowing for random coefficients on group dummy variables. The J products

are split into G mutually exclusive groups. The set of products in a given group g ∈
{1, . . . , G} is denoted by Jg ⊆ {1, . . . , J}. The share of product j as a fraction of its group

g is denoted by s̄j/g(x, p, ξ), and the share of group g as a fraction of all products is given

by s̄g(x, p, ξ).

Consumer i’s utility for good j is

uij = x′
jβ − αpj + ξj + ζig + (1− σ)εij ≡ δj + ζig + (1− σ)εij

where ζig is a random coefficient on a dummy variable for group g and εij is still extreme

value. The distribution of ζig depends on σ and is such that ζig + (1 − σ)εij is extreme

value. This leads to the formulas s̄j/g =
exp(δj/(1−σ))

Dg
and s̄g =

D1−σ
g∑

h D1−σ
h

for shares where

Dg =
∑

j∈Jg
exp(δj/(1− σ)). These can be inverted to get

log sj − log s0 = x′
jβ − αpj + σ log s̄j/g + ξj. (7)

As with the logit case, pj will potentially be correlated with ξj through unobserved

components of marginal cost and the Nash-Bertrand markup. In this case, we have another

endogenous variable, log s̄j/g, to worry about as well. The derivative of j’s share with respect

to j’s price is
dsj
dpj

= −α
1−σ

sj(1− σs̄j/g − (1− σ)sj), which gives a markup of 1−σ
α
/(1− σs̄j/g −

(1− σ)sj). As with the logit case, this suggests that elements of x−j will be correlated with

pj through the markup term, so we might hope that moments based on the exogeneity of

product characteristics of other firms would identify the model.

If the number of groups stays constant while J increases, the markup will converge to a
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constant, and the result will be similar to the logit model, so consider letting the number

of groups increase with the number of products per group constant. To get an idea of the

asymptotic behavior of equilibrium prices in this model, note that, if the share of each good

converges to zero,

pj −MCj =
1− σ

α
/(1− σs̄j/g − (1− σ)sj)

J→∞→ 1− σ

α
/(1− σs̄j/g)

=
1− σ

α
/

(

1− σ
exp(δj/(1− σ))

Dg

)

=
1− σ

α

∑

k∈Jg
exp(δk/(1− σ))

[

∑

k∈Jg
exp(δk/(1− σ))

]

− σ exp(δj/(1− σ))
.

Thus, the equilibrium pricing equations for the goods in group g converge to a system of

equations that does not depend on goods in other groups. This suggests that prices for

goods in group g will converge to prices that solve these equations. If this is the case, and

the convergence is at at least a
√
J rate, then Theorem 1 can be applied to show that the

difference between IV estimators in the two models converges in probability to zero. The

following theorem shows that this is true for bounded sequences of product characteristics.

Theorem 4. In the nested logit model described above with |Jg| constant and the number

of groups going to infinity, suppose that, with probability 1, the sequence of marginal costs

is bounded away from zero and the sequences of marginal costs and product characteristics

are bounded as J approaches infinity. Let p∗1, . . . , p
∗
J be the unique solution to the system of

equations

p∗j −MCj =
1− σ

α

∑

k∈Jg
exp((x′

kβ − p∗kα + ξk)/(1− σ))
[

∑

k∈Jg
exp((x′

kβ − p∗kα + ξk)/(1− σ))
]

− σ exp((x′
jβ − p∗jα + ξj)/(1− σ))

(8)

and let

s̄∗j/g =
exp((x′

jβ − p∗jα + ξj)/(1− σ))
∑

k∈Jg
exp((x′

kβ − p∗kα + ξk)/(1− σ))
.

Then, with probability 1, any solution p1, . . . , pJ to the Nash pricing equations satisfies

√
J sup

j≤J
|pj − p∗j | → 0 and

√
J sup

j≤J
|s̄∗j/g − s̄j/g| → 0.

Thus, IV estimators that satisfy the conditions of Theorem 1 will have the same asymptotic
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distribution if pj and s̄j/g are used as they would if they were replaced by p∗j and s̄∗j/g.

Proof. See appendix.

Since product characteristics of goods outside of a given good’s nest do not enter into

Equation 8, product characteristics from other nests will have no identifying power as in-

struments for price or s̄j/g. However, product characteristics from the same nest will have

an effect on equilibrium prices even in the limit, suggesting that they will provide valid

instruments.

It is useful to think of the asymptotic pricing equation (8) as resulting from a Bertrand

pricing game. As noted in the proof of Theorem 4, the asymptotic markups are the same

as those that result from Bertrand competition between firms in group g where firm j has

demand

exp((x′
jβ − αpj + ξj)/(1− σ))

Dσ
g

=
exp((x′

jβ − αpj + ξj)/(1− σ))

Dg

D1−σ
g . (9)

Since the first term takes the form of a logit share, this inverse demand function can be

thought of as coming from a process where D1−σ
g consumers decide to buy one of the products

in group g, and then make decisions between goods in group g according to logit preferences.

Note the similarity to a nested logit model with two nests, one with all products in group g

and one nest with an outside good with mean utility 0. The demand function for this model

is given by

exp((x′
jβ − αpj + ξj)/(1− σ))

Dg

D1−σ
g

1 +D1−σ
g

.

Although the characteristics of products in the same group can be used to form many

moments, in the case where firms are symmetric, some of these moments will be redundant,

and will provide no additional identifying power. For example, with two products per nest

and one observed product characteristic, we have the moment conditions

E
(

log s2j − log s0 − x′
2jβ + αp2j − σ log s̄2j/g

)

x2j−1 = 0

and

E
(

log s2j−1 − log s0 − x′
2j−1β + αp2j−1 − σ log s̄2j−1/g

)

x2j = 0.
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However, if firms 2j and 2j − 1 have the same distribution of x, ξ, and η, and the same

cost functions, these equations will be satisfied by the same set of parameters, so that one of

them is redundant. Thus, we have one moment condition to identify the parameters α and

σ, so the model does not satisfy the order condition for identification.

5.3 Random Coefficients Logit

Now consider a model with a more general structure for random coefficients, as in Berry,

Levinsohn, and Pakes (1995). Consumer i’s utility is given by

uij = x′
jβ − αpj + ξj +

∑

k

xjkζik + εij ≡ δj +
∑

k

xjkζik + εij

where ζik is a random coefficient on product k. This specification assumes that there is no

random coefficient on price. In contrast to the nested logit example, in which we added a

new random coefficient for each nest and increased the number of nests for large J , suppose

the number of random coefficients is fixed.

Shares can be obtained by integrating the logit shares for fixed ζ, which gives, letting Pζ

be the probability measure of the random coefficients,

sj =

∫

σj(δ, ζ) dPζ(ζ)

where

σj(δ, ζ) =
exp(δj +

∑

k xjkζk)
∑

ℓ exp(δℓ +
∑

k xℓkζk)
.

Differentiating under the integral and using the formulas for logit elasticities for fixed ζ gives

dsj
dpj

= −α

∫

σj(δ, ζ)(1− σj(δ, ζ))dPζ(ζ)

so that the Bertrand markup is

∫

σj(δ, ζ) dPζ(ζ)

α
∫

σj(δ, ζ)(1− σj(δ, ζ))dPζ(ζ)
.

Assuming that, for some cJ with
√
JcJ converging to 0, supζ σj(δ, ζ) ≤ c̄J for almost all
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sequences of xj and ξj, we will have

1

α
≤

∫

σj(δ, ζ) dPζ(ζ)

α
∫

σj(δ, ζ)(1− σj(δ, ζ))dPζ(ζ)
≤

∫

σj(δ, ζ) dPζ(ζ)

α
∫

σj(δ, ζ)(1− c̄J))dPζ(ζ)
=

1

α(1− cJ)

so that markups will converge to 1/α at a faster than
√
J rate. A sufficient condition for this

is for ζ to have bounded support and for product characteristics and prices to be bounded.

If the distribution of the vector ζ of random coefficients is not bounded but has thin tails,

a more involved argument is necessary. The following theorem covers the commonly used

case where ζ has a normal distribution. The proof involves applying an argument similar to

the one above after truncating the distribution of ζ at an increasing sequence of points.

Theorem 5. In the random coefficients model with no random coefficient on price, suppose

that product characteristics and prices are bounded with probability one. If the random coef-

ficients ζ are normally distributed, then
√
J maxj≤J |pj −MCj − 1/α| converges to zero as

J goes to infinity.

Proof. See appendix.

In addition to the assumptions used for the logit and nested logit models, Theorem 5

requires the assumption that prices do not increase without bound as products are added.

Although this restriction on equilibrium prices is not derived from conditions on economic

primitives as in the logit and nested logit cases, it is likely to hold for most specifications of

the random coefficients.

Applying the corollary to Theorem 1, this theorem implies that using characteristics of

other products will not provide consistent estimates in this model even if the true σ is known

and used to estimate α and β. This holds under essentially the same conditions as for the

logit model.

5.4 The Vertical Model

In contrast to the above models in which consumers have an idiosyncratic preference term

εij for each item, consider a model in which consumers agree on the ranking of goods, but

differ in their willingness to pay for product quality, as in Bresnahan (1987). Utility of an

individual consumer is given by

uij = x′
jβ − ζippj + ξj ≡ δj − ζippj
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where ζip represents consumer i’s preference for product quality. A small value of ζip means

that consumer i has a high value for the quality of the inside goods relative to the numeraire

good. The outsize good 0 has p0 = 0 and δ0 normalized to 0.

Arrange the goods in order of product quality so that δ1 < . . . < δJ . If all products have

positive market share, this will imply that prices satisfy p1 < . . . < pJ as well. Consumer i

will prefer good j to j − 1 if

δj − ζippj > δj−1 − ζippj−1 ⇔ ∆j ≡
δj − δj−1

pj − pj−1

> ζip.

Combining this with the expression for j + 1, consumer i will prefer j to its neighbors if

∆j > ζip > ∆j+1. In order for all products to have positive market share, this must hold

for some ζip for all j, so we must have ∆1 > . . . > ∆J . If this is the case, consumers who

prefer j to its neighbors will also prefer j to all other products, so, letting F be the cdf of

ζip, market shares will be given by

sj = F (∆j)− F (∆j+1). (10)

If we define ∆0 = ∞ and ∆J+1 = −∞, this will hold for good J and the outside good 0 as

well.

This can be inverted to give

F−1

(

J
∑

k=j

sk

)

(pj − pj−1) = (xj − xj−1)
′β + ξj − ξj−1.

If F is known, this equation can be estimated using OLS. If F is allowed to depend on

an unknown parameter, more instruments will be needed, so it will be useful to study the

identifying power of moment conditions based on characteristics of other products.

Differentiating the formula for shares with respect to pj gives, letting f be the pdf of ζip,

dsj
dpj

= −f(∆j)
∆j

pj − pj−1

− f(∆j+1)
∆j+1

pj+1 − pj
.

This gives markups in an interior Bertrand equilibrium as

pj −MCj =
F (∆j)− F (∆j+1)

f(∆j)
∆j

pj−pj−1
+ f(∆j+1)

∆j+1

pj+1−pj

. (11)
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Suppose that, for some ζ > 0, ζ ≤ ζip for all consumers. That is, willingness to pay

for product quality is bounded from above. In this case, if all products have positive mar-

ket share, we will have ∆j > ζ for all j. Thus, the denominator in Equation 11 will be

bounded from below as J increases, so, if market shares all converge to zero, markups will

converge to zero at the same rate or faster. If firms have approximately equal market shares

asymptotically, they will converge to zero at a 1/J rate, fast enough for Theorem 1 to hold.

One set of primitive conditions under which markups will converge to zero at a fast rate

is the following. In addition to assuming that ζip is bounded from below, suppose that

the density f of the random coefficient is bounded from above by f and from below by f .

Suppose that product characteristics are added in such a way that
√
J maxj≤J δj − δj−1 → 0

and that all products have positive market share in equilibrium. Then

pj −MCj =
F (∆j)− F (∆j+1)

f(∆j)
∆j

pj−pj−1
+ f(∆j+1)

∆j+1

pj+1−pj

≤ f

f

∆j −∆j+1

∆j

pj−pj−1
+

∆j+1

pj+1−pj

≤ f

f
(pj − pj−1).

In order for product j to have positive market share, we must have

ζ <
δj − δj−1

pj − pj−1

⇒ pj − pj−1 <
δj − δj−1

ζ
.

Thus,

√
J max

j≤J
pj −MCj ≤

√
J

f

f · ζ max
j≤J

δj − δj−1 → 0.

5.5 Multi Product Firms

I now consider extending the results for the models considered so far to Bertrand competition

with multi product firms. If the number of products sold by each firm is fixed and the

number of firms grows large, the results are similar the single product case, although, due

to the difficulty of proving existence and uniqueness of equilibrium for these models with

multi product firms, these results place some conditions directly on equilibrium prices. In

particular, these results require prices to be bounded as the number of products increases,

and the nested logit model requires the existence of an equilibrium in a limiting form of the

game in which price is a differentiable function of costs and characteristics.

If the number of firms is held constant and the number of products per firm increases,

the outcome is less clear. Assuming that prices satisfy a mixing condition for a law of large
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numbers, logit markups will converge to a nonrandom value that is constant within each

firm. In addition, the commonly used method of instrumenting with the sample average

of product characteristics from the same firm will fail under this condition if the xs are

iid. These results suggest that, in the case with a small number of large firms, ex ante

asymmetry in the process generating the product characteristics for each firm, rather than

variation in characteristics of the individual products, will be necessary for the limiting

markup to be affected by product characteristics. In the logit model, if each firm draws

product characteristics from a different data generating process then, in the limit, each firm

will charge different markups, but all products owned by the same firm will have the same

markup. Thus, the identity of the firm producing a given product would potentially be a

valid instrument.

First consider keeping the number of products per firm fixed and taking asymptotics in

the number of firms. For the logit model, we have
∂sj
∂pj

= −αsj(1 − sj) and, for k 6= j,
∂sj
∂pk

= αsjsk. Substituting this into the first order conditions for pj (equation 1) and dividing

by −αsj gives

(pj −MCj)(1− sj(x, p, ξ))−
∑

k∈Ff ,k 6=j

(pk −MCk)sk(x, p, ξ)−
1

α
= 0. (12)

Assuming that prices and product characteristics are bounded as J increases, shares will go

to zero at a faster than
√
J rate. In this case, markups will converge to 1/α at a faster than√

J , as in the single product case.

For the nested logit model, it can be checked that, for k 6= j and k and j in the same nest,

∂sk/∂pj =
α

1−σ
sk(σs̄j/g + (1 − σ)sj). For k in some other nest ℓ, we have ∂sk/∂pj = αsksj.

Plugging these into the first order conditions for firm f setting pj gives

0 = − α

1− σ
(pj −MCj)sj(1− σs̄j/g − (1− σ)sj)

+
∑

k∈Ff∩Jg ,k 6=j

(pk −MCk)
α

1− σ
sk(σs̄j/g + (1− σ)sj) +

∑

k∈Ff\Jg

(pk −MCk)αsksj + sj.

Rearranging gives

0 =
1− σ

α
− (pj −MCj)(1− σs̄j/g − (1− σ)sj)

+
∑

k∈Ff∩Jg ,k 6=j

(pk −MCk)
s̄k/g
s̄j/g

(σs̄j/g + (1− σ)sj) +
∑

k∈Ff\Jg

(pk −MCk)(1− σ)sk
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This can be written as, for r̃J a term that converges to zero at faster than a
√
J rate as

long as prices and product characteristics are bounded as J increases,

0 =
1− σ

α
− (pj −MCj)(1− σs̄j/g) +

∑

k∈Ff∩Jg ,k 6=j

(pk −MCk)σs̄k/g + r̃J . (13)

If this system of equations has a unique solution, and the function that takes marginal costs

and product characteristics of nest g and the remainder term to the vector of prices for nest

g that solves this system of equations for nest g has an invertible derivative for marginal

costs and product characteristics in a compact set that contains them by assumption, then

an argument similar to the one used for Theorem 4 will show that prices in the nested logit

game converge uniformly at a faster than
√
J rate to those that solve these equations. As

with the single product firm case, equilibrium prices do not depend on characteristics of

goods in other nests asymptotically. This holds even for products in other nests owned by

the same firm.

In the full random coefficients model with multi product firms, the first order conditions

for product j are

− α(pj −MCj)

∫

σj(δ, ζ)(1− σj(δ, ζ)) dPζ(ζ)

+ α
∑

k∈Fj ,k 6=j

(pk −MCk)

∫

σj(δ, ζ)σk(δ, ζ) dPζ(ζ) + sj = 0.

This can be rearranged to give

(pj −MCj)

∫

σj(δ, ζ)(1− σj(δ, ζ)) dPζ(ζ)
∫

σj(δ, ζ) dPζ(ζ)

=
∑

k∈Fj ,k 6=j

(pk −MCk)

∫

σj(δ, ζ)σk(δ, ζ) dPζ(ζ)
∫

σj(δ, ζ) dPζ(ζ)
+

1

α
.

Under the assumptions of Theorem 5, the left hand side converges to (pj −MCj) at faster

than a
√
J rate. Assuming prices are bounded, the first term on the right hand side is

bounded by a constant times
∫
σj(δ,ζ)σk(δ,ζ) dPζ(ζ)∫

σj(δ,ζ) dPζ(ζ)
. This term goes to zero at the required

rate using the same argument as for
∫
σ2
j (δ,ζ) dPζ(ζ)∫

σj(δ,ζ) dPζ(ζ)
, since, using the notation of the proof of

Theorem 5 in the appendix,
∫

σj(δ, ζ)σk(δ, ζ) dPζ(ζ) ≤ s2J + Pζ(‖ζ‖ > kJ), giving the same

bound on the numerator.
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5.6 Multi Product Firms with Many Products

Now consider fixing the number of firms and letting the number of products per firm grow.

First, consider the logit model. Substituting the expression for shares into equation 12 and

rearranging gives

pj −MCj = (1− sj)
−1





1

α
+

∑

k∈Ff ,k 6=j

(pk −MCk) exp(δk)
∑

ℓ exp(δℓ)



 .

Let rk = exp(δk), mk = (pk −MCk) exp(δk), rf = 1
|Ff |
∑

k∈Ff
rk, and mf = 1

|Ff |
∑

k∈Ff
mk.

Suppose that, for each firm f , a law of large numbers applies to the sample averages rf and

mk so that rf
p→ µrf for some µrf and mf

p→ νrf for some νrf . This will hold if equilibrium

prices satisfy a mixing condition. Suppose that |Ff |/J → πf for some πf for all f . That

is, the proportion of products owned by each firm converges to a constant. Then, if shares

converge to zero,

pj −MCj = (1− sj)
−1





1

α
+

mf − 1
|Ff |mj

∑F
h=1

|Fh|
|Ff |rh





p→ 1

α
+

νrf
∑F

h=1
πh

πf
µrh

.

Thus, markups will converge to a constant that does not vary within a firm.

Convergence to a constant markup might be expected for the logit model since substitu-

tion patterns are determined by the independence of irrelevant alternatives property, so that

all products compete with all other products in a roughly symmetrical way. Since the effect

of any one xk on pj is not that large, the effects of each xk on pj cancel out in the limit if the

xs are not too correlated. This will not be the case in all models. However, certain choices

of instruments will lead to inconsistent estimates under more general conditions. Suppose

that, for each firm f , 1
|Ff |
∑

j∈Ff
xj

p→ µ for the same µ (for example, if each firm’s sequence

of product characteristics are draws of the same stationary process) and 1
|Ff |
∑

j∈Ff
pj

p→ µpf

for some µpf . Again, the law of large numbers for prices will follow if a mixing condition

holds on equilibrium prices.

Suppose that, for good j produced by firm f , we use 1
|Ff |
∑

k∈Ff ,k 6=j xk as the excluded

instrument for price. Suppose that xj contains a constant and write xj = (1, w′
j). The
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sample covariance of the instruments with the covariates is

1

J

F
∑

f=1

∑

j∈Ff







1
|Ff |
∑

k∈Ff ,k 6=j wk

wj

1







(

1 w′
j pj

)

.

The first K − 1 rows are

1

J

F
∑

f=1

∑

j∈Ff

1

|Ff |
∑

k∈Ff

wk

(

1 w′
j pj

)

− 1

J

F
∑

f=1

1

|Ff |
∑

j∈Ff

(

wj wjw
′
j wjpj

)

.

If a law of large numbers applies to rows K through 2K − 1, the second term will converge

in probability to zero. The first term is

F
∑

f=1

|Ff |
J







1

|Ff |
∑

k∈Ff

wk













1

|Ff |
∑

j∈Ff

(

1 w′
j pj

)







.

Under the assumptions above, this will converge in probability to

µ
F
∑

f=1

πf

(

1 µ′ µfp

)

.

The last row of the sample covariance matrix is

F
∑

f=1

|Ff |
J

1

|Ff |
∑

j∈Ff

(

1 w′
j pj

)

p→
F
∑

f=1

πf

(

1 µ′ µfp

)

.

Thus, the sample covariance of the instruments with the regressors converges in probability

to a rank deficient matrix, since the first K − 1 rows are multiples of the last row.

Although these arguments for the case of finitely many firms with an increasing number

of products rely on a mixing condition for prices that is not derived from economic primitives,

they are suggestive of which instruments will be valid for which models in this setting. In

the logit model, markups converge to a value that is constant within a firm. The limiting

markup will differ between firms if the proportion of products owned by each firm or the data

generating process for product characteristics differs between firms. In this case, instrumental

variables must exploit variation in average markups across firms, rather than variation in

markups within a firm. Average product characteristics within a firm, weighted by the
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proportion of products owned by a firm, may provide valid instruments. Since the number

of firms is bounded, firm indicator variables could be used as well. These instruments

rely on variation in markups across firms caused by variation in the number and average

characteristics of products owned by each firm. If firms are roughly symmetric, average

product characteristics will not vary across firms in the limit, so that this instrument will

not have identifying power.

5.7 Discussion

Although simple necessary and sufficient conditions for a demand system to have a limiting

form in which product characteristics have a strategic effect appear to be difficult to obtain,

the examples in this section shed some light on which models lead to product characteristics

affecting markups in the limit. When the number of random coefficients is kept finite while

the number of firms grows, as in the logit and random coefficients logit examples, the id-

iosyncratic error term wipes out all other components of demand, and product characteristics

play no role in the limiting form of competition. When the number of random coefficients

increases as well, as in the nested logit model, it may happen in such a way that, in the

limit, small groups of products cater to different sets of consumers with different coefficients.

If this is the case, observing a large market is like observing a large number of niche markets

for consumers with different values of the random coefficients.

While the nested logit example shows that it is possible to make product characteris-

tics matter in the limit by increasing the number of random coefficients or changing their

distribution, the researcher must be careful to do this without increasing the number of

parameters to be estimated. In the nested logit specification, the random coefficient for each

nest is restricted to have the same distribution, so that, even though the number of random

coefficients increases, the number of parameters stays finite. This way of adding random co-

efficients will be appropriate in some applications, but there will certainly be cases where the

researcher will want want to specify demand in a different way. The demand specifications in

this section should not be thought of as a rigid set of models from which to choose, but rather

as a set of examples that can guide the researcher towards a demand model that is flexible

enough to allow the data to answer a particular question while imposing enough restrictions

that it can be estimated with a small number of large markets. This could mean taking the

nested logit model considered here and adding random coefficients to some continuous vari-

ables to allow for more consumer heterogeneity, or perhaps using a more complicated nesting

structure or allowing some serial correlation between nests. While the results in this paper do
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not apply immediately to such models, the intuition and techniques for deriving asymptotic

distributions from the examples I consider here will be useful in many applications.

In the logit model with a small number of large firms, the power of product characteristic

instruments depends on some firms having a line of products that is, on average, more desir-

able than products of other firms. In this context, the cannibalization effect of characteristics

of a single product on markups of similar products diminishes too quickly to aid identifica-

tion. Rather, product characteristics shift a firm’s markups only if they make that firm’s

products more desireable on average. This lends support to the practice of using averages

of charcteristics of products of the same firm as instruments, proposed by Berry, Levinsohn,

and Pakes (1995). Since there is no exogenous variation driven by product characteristics

within a firm, there is no additional variation that a researcher could take advantage of using

subsets of a firm’s product characteristics.

6 Counterfactuals in Large Markets

In most applications, the parameters of a discrete choice demand system are not of interest

purely for their own sake. Rather, the researcher is interested in equilibrium outcomes under

some policy change. For example, prices after a hypothetical merger are often of interest. If

we think of the counterfactual as happening in a fixed market, the estimated counterfactual

outcome will be a fixed function of the estimated parameters of the original model, so that,

if this function is differentiable, the delta method can be combined with the asymptotic

distributions derived in this paper to give approximations to the finite sample distribution of

the estimated counterfactual quantity. However, the counterfactual quantity often involves

a market of comparable size to the market used for estimation. For example, outcomes

after entry of a new firm or a merger of existing firms in the market used for estimation

are often of interest. In this case, an approximation to the distribution of the estimated

counterfactual outcome that is asymptotically valid when the size of the counterfactual

market is also increasing seems desirable, given that the approximation of the distribution

of the parameters used to compute the counterfactual quantity comes from this asymptotic

exercise.

This is not just a technical issue. If large market approximations to the distributions of the

estimated counterfactual quantities restrict the possible outcomes of counterfactual exercises,

the researcher will want to use this information to choose which demand specifications are

appropriate for answering which questions. Consider, for example, the simple logit model
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with single product firms. As the number of firms increases, the markup approaches a

constant, so that using the “limiting” model with a constant markup to predict the price

change from a merger will always give zero as the answer. This suggests that using this model

with data from a single market for this type of merger analysis is not a good idea even if cost

side instruments are available because, once the market is large enough for asymptotics to

give a good approximation, the model is restricting the predicted price change to be close to

zero. On the other hand, if the researcher thinks that a nested logit specification with many

small nests and the products in the potential merger in the same nest is appropriate, the

answer will depend on the primitives of the model even in the limit, so that estimating this

model is a sensible approach to this question. See Bajari and Benkard (2003) for derivations

of other implications of models with logit style idiosyncratic terms for each new product that

restrict the possible outcomes of welfare analysis and estimation of markups in ways that

are undesirable for many applications.

In the remainder of this section, I propose a framework for addressing these issues.

Suppose we are interested in some counterfactual quantity τJ that, for a given market size

J , is a function of the primitives of the model. The primitives of the model include the

parameters θ ≡ (α, β, σ, γ) and a sequence of covariates and error terms, for which I use the

notation x̃, ξ̃, and η̃, since I allow them to be different from those in the market used to

estimate the original parameters. I label w ≡ (x̃, ξ̃, η̃) for notational convenience, so that

τJ = τJ(θ, w). Here, to avoid extra subscripts, x̃, ξ̃, and η̃ contain the entire sequence of

covariates, so that if a counterfactual outcome in a market with the first J products is of

interest, τJ is defined to be a function of the parameters and the first J elements of w only.

The sequence w could contain variables from the market used for estimation, or it could be

a vector of covariates for a completely different market.

Suppose that, for all θ, τJ(θ, w) converges in probability to some τ∞(θ, w). Typically,

τ∞(θ, w) is a differentiable function of the parameters θ and a finite subset of the elements

of w, so that its asymptotic distribution can be obtained using the delta method. If τJ(θ, w)

converges to τ∞(θ, w) at a faster than
√
J rate with an appropriate condition on uniformity

in θ,
√
J(τJ(θ̂, w) − τJ(θ, w)) will have the same asymptotic distribution as

√
J(τ∞(θ̂, w) −

τ∞(θ, w)), so that this asymptotic distribution can be used as an approximation for inference

for τJ(θ, w). The following theorem gives sufficient conditions for this to hold.

Theorem 6. Suppose that θ̂
p→ θ and, for some ε > 0,

√
J sup‖θ′−θ‖<ε(τJ(θ

′, w)−τ∞(θ′, w))
p→

0 for some τ∞(θ, w) and
√
J(τ∞(θ̂, w)− τ∞(θ, w))

d→ Z for some random variable Z. Then√
J(τJ(θ̂, w)− τJ(θ, w))

d→ Z.
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Proof. It suffices to show that
√
J(τJ(θ, w)−τ∞(θ, w))

p→ 0 and
√
J(τJ(θ̂, w)−τ∞(θ̂, w))

p→ 0.

Then, Slutsky’s theorem will give the result. The first statement follows immediately from

the assumptions of the theorem. The probability that the quantity in the second statement

is greater than some η > 0 is bounded by P (‖θ̂ − θ‖ ≥ ε) + P (
√
J sup‖θ′−θ‖<ε(τJ(θ, w) −

τ∞(θ, w)) > η), and both probabilities converge to zero.

One special case of this theorem that is of interest is when τ∞(θ, w) is a constant that does

not depend on θ or w. This corresponds to cases discussed in the introduction to this section,

such as price changes after mergers in the simple logit, where the limiting counterfactual

outcome does not depend on the data. In this case, Theorem 6 shows that this convergence

happens at a fast enough rate that approximations to sampling distributions based on
√
J

asymptotics will never give a prediction for the counterfactual outcome that depends on the

data, since the limiting distribution for the estimated counterfactual will be degenerate when

scaled up by
√
J . Although higher order approximations may give nondegenerate results,

this suggests focusing empirical work on cases where τ∞(θ, w) depends on θ in an interesting

way.

With a bit of work, the results in section 5 can be used to verify the conditions of

this theorem for many of the models considered in that section. As an example, consider

the nested logit model where the counterfactual outcome of interest is the price of some

good j in a market with J + L single product firms where the market used for estimation

has J products, L is a fixed, possibly negative, integer, and the covariates and errors in

the counterfactual market are given by the first J + L elements of some bounded sequence

(x̃, ξ̃, η̃) for which the number of elements in a nest is bounded and the true marginal cost is

bounded away from zero. This covers entry, exit, and changes in characteristics of existing

products. The multi product case, which covers post merger prices, will follow from similar

arguments, but requires assumptions on the equilibrium of the limiting form of the game.

Formally, I define pj′,J ′(θ′, x′, ξ′, η′) to be the Bertrand equilibrium price for product j′ in

a market with J ′ single product firms each selling a product given by one of the first J ′

elements of (x′, ξ′, η′) when demand is nested logit with parameters given by θ′ (here, x′

and x̃ will be understood to contain the group indicator variables). We are interested in

τJ(θ, x̃, ξ̃, η̃) ≡ pj,J+L(θ, x̃, ξ̃, η̃), which we estimate using τJ(θ̂, x̃, ξ̃, η̃). Let g be the group

containing the product of interest j. Let τ∞(θ′, x′, ξ′, η′) ≡ p∗j(θ
′, x′, ξ′, η′) be defined as the

price of product j in the solution to the asymptotic pricing equations given by equation 8

with primitives given by θ′ and the elements of (x, ξ, η) in group g.

The first assumption of the theorem, that, for some ε,
√
J sup‖θ′−θ‖<ε |pj,J+L(θ

′, x̃, ξ̃, η̃)−
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p∗j(θ
′, x̃, ξ̃, η̃)| p→ 0 follows almost immediately from theorem 4. The only difference is that we

now need the convergence to be uniform in a neighborhood of the true θ. In fact, the proof

of the theorem can be extended so that this is true, which I do in the proof of the theorem

in the appendix. Now, if
√
J(θ̂ − θ)

d→ N(0, A) for some matrix A (this can be verified for

a given set of instruments using theorems 1 and 4), then, by the delta method, the second

assumption of theorem 6, that
√
J(p∗j(θ̂, x̃, ξ̃, η̃) − p∗j(θ, x̃, ξ̃, η̃)) converges in distribution to

some Z, will hold with Z distributed N(0, p∗jθ(θ, x̃, ξ̃, η̃)
′Ap∗jθ(θ, x̃, ξ̃, η̃)) where p

∗
jθ(θ, x̃, ξ̃, η̃) is

the derivative of p∗j(θ, x̃, ξ̃, η̃) with respect to θ if we can show that p∗j is in fact differentiable

with respect to θ. This follows from the implicit function theorem since, as shown in the

proof of theorem 4, the function that takes p∗ and the model primitives to the difference

between the two sides of the pricing equation 8 is differentiable with respect to p∗ with an

invertible derivative matrix.

Thus, estimates of prices in the counterfactual market will be consistent and asymptot-

ically normal as the size of the counterfactual market and the market used for estimation

increase. Given a consistent estimate Â of A, we can estimate the variance of the limiting

normal distribution using p∗jθ(θ̂, x̃, ξ̃, η̃)
′Âp∗jθ(θ̂, x̃, ξ̃, η̃). Consistency of this estimate of the

limiting variance follows from continuity of p∗jθ(θ, x̃, ξ̃, η̃) as a function of theta, which can be

verified by computing this derivative using the implicit function as in the proof of theorem

4. In addition, the above argument shows that the point estimate of the price of good j

in the counterfactual pricing market computed using the asymptotic pricing equation 8 will

be asymptotically equivalent to the estimate computed using the full Bertrand equilibrium.

This may be useful if the full equilibrium is difficult to compute.

As discussed at the beginning of the section, this also has implications for which types

of questions a researcher would want to answer by estimating a nested logit demand system

in a large market. If we are interested in the price of good j when another product is added,

p∗j will only be different from the old price if the new product is in the same nest. Thus,

estimating a nested logit model in a large market may be useful for predicting the price

change of a good that can be modeled as being in the same nest as the new product, but

modeling the new product as entering a different nest will constrain the estimated price

change to be close to zero. Theorem 6 provides a way of formalizing the intuition that,

once the market size is large enough that large market approximations can be used for

estimation, the counterfactual outcome is close enough to its limiting value that one would

not want to estimate the model unless the counterfactual quantity is still interesting in the

“limiting model.” When the assumptions of the theorem hold, using the “limiting model”
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for computing counterfactuals gives the same result as using the model with finite J for the

purposes of first order asymptotics.

7 Monte Carlo

With asymptotic results, there is always the question of whether these results give good

approximations in sample sizes (or, in this case, market sizes) of practical importance. In this

section, I examine this question with a monte carlo study of some of the models considered

in section 5.

7.1 Logit with Symmetric Firms

According to the analysis in section 5, using characteristics of other products as instruments

will give inconsistent estimates in the simple logit model in a single market with a bounded

number of products per firm under general conditions, while cost shifters will provide consis-

tent estimates. If firms draw product characteristics from the same data generating process,

the arguments in section 5.6 suggest that product characteristic instruents will still perform

poorly. Tables 1 and 2 give the results of a monte carlo study of IV estimators in the logit

model with data from a single market with firms drawing product characteristics from the

same data generating process. Table 1 gives the median bias and median absolute deviation

of the IV estimates of the price coefficient −α in this model using characteristics of other

products as instruments. Table 2 gives the median bias and median absolute deviation of the

IV estimates of of the estimated −α using cost shifters as instruments on the same monte

carlo data sets. I report median bias and median absolute deviation rather than bias and

mean squared error since IV estimators may lack moments, and these reported measures of

central tendency toward the true value and dispersion from the true value that can be inter-

preted in a similar way. For the product characteristic instruments, I use average product

characteristics from other products produced by the same firm,
∑

k∈Ff ,k 6=j xk to instrument

for pj in the logit regression (5). Each row of each table reports results for a different market

structure (number of firms and products per firm), but the same parameters α, β, and γ and

the same process generating x, η, and ξ.

The data generating process for the monte carlo data sets is as follows. xj contains a

constant and a uniform (0, 1) random variable. I generate the cost shifter, zj, as another

uniform random variable independent of x. To generate η and ξ, I generate three independent

uniform (0, 1) random variables u1j , u2j , and u3j, and set ξj = u1j + u3j − 1 and ηj =
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u1j + u2j − 1 so that η and ξ are correlated and bounded. xj, ξj, and ηj are independent

across products j. The parameters used to generate this table are α = 1, β = (3, 6)′, and

γ = (2, 1, 1)′, where the last element of γ is the coefficient of the excluded cost instrument.

Note that with these parameter values, the variance of the observed portion of utility x′β

across products and the idiosyncratic component εij across consumers is of the same order

of magnitude (the variance of the extreme value error εij is π2/6, while the nonconstant

element of x′β has a variance of 3). For a small number of monte carlo draws (fewer than

1%), the equation solver did not converge to a solution for equilibrium prices, and these were

discarded. The corresponding rows from each table use the same monte carlo data set of

1000 monte carlo replications.

The monte carlo distributions of the price coefficient estimates reflect the asymptotic

results for this model. The estimates with cost instruments are not very dispersed, and

are centered close to the true value of −1. As one would expect for an estimator that is

consistent as J goes to infinity, the estimates become more precise as more products are

added either by increasing the number of firms or the number of products per firm.

The estimates using product characteristic instruments perform much worse. In addition

to being more dispersed and centered further from the true value than the cost instrument

estimates for fixed sample sizes, these estimates do not become more precise as the number

of products increases. Thus, the inconsistency results of section 5 provide a good description

of the product characteristic IV estimates for the range of market sizes, firm sizes, and

distributions of the model primitives in the monte carlo.

According to the analysis of section 5, product characteristics of other firms have no

identifying power in this model as the number of products goes to infinity and the number

of firms stays fixed because markups converge to a constant. Table 3 illustrates this for the

monte carlo data. The first column gives the average sample variance of prices within a

market, and the second gives the average sample variance of markups within a market. For

a fixed number of products, there tends to be more variation in the markup with a smaller

number of firms, but, as the number of products increases with a fixed number of products

per firm, variation in the markup decreases, and is swamped out by variation in marginal

costs. For the larger market sizes in the monte carlo, variation in markups accounts for

about 1/100th of the variation in prices within a market or less.

32



Products Products per firm Median bias of −α̂ Median absolute deviation of −α̂
20 2 0.50676 0.80569
20 5 0.43779 0.89869
20 10 0.67988 0.89654
60 2 0.33801 0.80091
60 5 0.29468 0.85239
60 10 0.38019 0.84481
100 2 0.32209 0.84566
100 5 0.42134 0.90229
100 10 0.37298 0.84535

Table 1: Monte Carlo Results for−α̂ in Logit Model with Product Characteristic Instruments

Products Products per firm Median bias of −α̂ Median absolute deviation of −α̂
20 2 -0.0042745 0.26522
20 5 -0.0058366 0.30762
20 10 0.033014 0.40284
60 2 -0.0025152 0.12628
60 5 0.0072365 0.14028
60 10 0.0039809 0.14887
100 2 -0.0000040 0.096628
100 5 -0.0083498 0.098462
100 10 0.0096867 0.10476

Table 2: Monte Carlo Results for −α̂ in Logit Model with Cost Instruments

Products Products per
firm

Average sample
variance of prices

Average sample vari-
ance of markups

20 2 0.398 0.022518
20 5 0.54993 0.12252
20 10 1.0105 0.46788
60 2 0.34705 0.0025035
60 5 0.37425 0.013976
60 10 0.44604 0.051802
100 2 0.33904 0.0008845
100 5 0.35364 0.0052182
100 10 0.38597 0.019302

Table 3: Sample Variance of Prices and Markups within a Market
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7.2 Random Coefficients Logit with Symmetric Firms

If the number of products per firm increases with a new extreme value error added for each

product, but no changes in the random coefficients, the results from section 5 for the random

coefficients model are similar to those for the logit model. Product characteristics do not

have identifying power in the limit. Tables 4 and 5 present the results of a monte carlo

study of the random coefficients logit model with data from a single market. Table 4 gives

results with product characteristic instruments and table 5 gives results for cost instruments.

For both tables, I treat the variance of the random coefficients, σ, as known and solve for

the IV estimates of the other parameters with σ fixed at its true value. Since the resulting

IV estimator is the closed form solution to a system of linear equations, this eliminates

potential concerns that negative results may come from a failure to minimize a nonlinear

GMM objective function. Estimators that perform poorly can be expected to do even worse

when σ needs to be estimated as well.

The random coefficients are generated as 10 draws from a normal distribution. For each

monte carlo run, these same 10 draws are used both in solving for equilibrium prices and

generating shares and in inverting the shares to estimate the model. Another way of putting

this is that the random coefficients for each replication come from a discrete distribution

that places equal mass on 10 points, where these these 10 points are drawn from a normal

distribution. I set the variance of the normal distribution from which the mass points for

the random coefficient is drawn from to 9, and generate all other variables according to the

same data generating process as for the logit monte carlo of section 7.1.

The results are similar to those of the logit model presented in section 7.1. Estimates

that use the product characteristic instruments perform poorly, and do not become more

precise as the size of the market increases, while cost shifter instruments do not suffer from

these problems. Here, σ is held fixed so that the price coefficient and the coefficients of

product characteristics are the only parameters that have to be estimated. Estimates that

use product characteristics as instruments will likely perform even worse when σ needs to

be estimated as well.

7.3 Logit with Asymmetric Firms

The results so far use the same data generating process for product characteristics for each

firm. With a large number firms, product characteristic instruments should do poorly re-

gardless of whether the data generating process for product characteristics varies across firms
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Products Products per firm Median bias of −α̂ Median absolute deviation of −α̂
20 2 0.71992 1.6982
20 5 0.53011 1.2564
20 10 0.39139 1.055
60 2 0.69935 1.7864
60 5 0.71713 1.539
60 10 0.63133 1.4198
100 2 0.77397 1.6783
100 5 0.64665 1.6274
100 10 0.73668 1.5371

Table 4: Monte Carlo Results for −α̂ in Random Coefficients Logit Model with Product
Characteristic Instruments

Products Products per firm Median bias of −α̂ Median absolute deviation of −α̂
20 2 0.029988 0.48535
20 5 0.034285 0.45894
20 10 -0.038265 0.50143
60 2 0.011275 0.26557
60 5 0.0080281 0.24548
60 10 0.002217 0.26156
100 2 -0.0099175 0.20699
100 5 0.0012001 0.18459
100 10 -0.0080423 0.18609

Table 5: Monte Carlo Results for −α̂ in Random Coefficients Logit Model with Cost Instru-
ments
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Products Products per firm Median bias of −α̂ Median absolute deviation of −α̂
20 2 0.28316 0.74258
20 5 0.083707 0.43282
20 10 0.26423 0.60083
60 2 0.34542 0.80526
60 5 0.17064 0.5633
60 10 0.011654 0.32352
100 2 0.29983 0.87659
100 5 0.21537 0.72778
100 10 0.086334 0.42442

Table 6: Monte Carlo Results for−α̂ in Logit Model with Product Characteristic Instruments
with Asymmetric Firms

according to the analysis in section 5. However, with a small number of firms and a large

number of products per firm, the arguments in section 5.6 suggest that product characteristic

instruments will typically have power if the data generating processes for product charac-

teristics is different for each firm. To investigate whether this gives a good description of

finite sample behavior, I run a monte carlo for the logit model similar to the one presented

in section 7.1, but with firms drawing product characteristics from different data generating

processes. Everything is the same as in the logit monte carlo presented in section 7.1 except

for the data generating process for the product characteristic xj. Rather than drawing xj

from the same distribution for each product, I draw xj from a uniform (−1.5,−.5) distri-

bution for half of the firms, and a uniform (.5, 1.5) distribution for the other half of the

firms.

As predicted, while the product characteristic instruments still tend to perform poorly

with a large number of products per firm, these estimates do better with a small number

of large firms. With 60 products and 10 products per firm, the IV estimate with product

characteristic instruments is centered near zero. This contrasts with the large median bias

that occurs with product characteristic instruments in the same situation with symmetric

firms, and with a larger number of smaller asymmetric firms. Note that even with 10 firms

and 10 products per firm, the product characteristic estimator performs much better than

with symmetric firms. With 20 firms, each with 5 products, however, the asymmetry in

product characteristics does not appear to help much in this case. Note that the cost shifters

still perform well.
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Products Products per firm Median bias of −α̂ Median absolute deviation of −α̂
20 2 0.030595 0.2525
20 5 0.05201 0.3152
20 10 0.058311 0.3775
60 2 0.011253 0.13973
60 5 0.0063074 0.1352
60 10 0.0010869 0.14376
100 2 0.0072848 0.09454
100 5 0.00876 0.10094
100 10 0.010869 0.10398

Table 7: Monte Carlo Results for −α̂ in Logit Model with Cost Instruments with Asymmetric
Firms

8 Implications for Empirical Work

Determining whether asymptotic approximations can be applied to a particular estimator,

or whether a parameter can even be consistently estimated, is clearly important for any

empirical study that uses it. For the IV estimates considered in this paper, this depends

on how strongly the instruments are correlated with prices. Since prices are determined

by equilibrium in a supply side model, a careful researcher can use this information to

determine which instruments will have a strong enough correlation with prices to give good

IV estimates. In most IO applications, the researcher must take a stand on the supply side

anyway, so it makes sense to use this information in choosing instruments and specifying a

demand model as well. The results in this paper show how to do this.

Another approach to determining whether the correlation between instruments and prices

is strong enough to give good estimates is through a first stage test for identification. While

such a test should certainly be performed and will complement an analysis based on results

in this paper, it is important to emphasize that testing for identification alone does not suf-

ficiently address these issues. This paper shows that certain models of supply and demand

used in practice can constrain product characteristic instruments to have poor identifying

power in the data set at hand. If a researcher estimates such a model after performing a

first stage test that finds evidence that product characteristics strongly identify the model,

the researcher is ignoring evidence that the model is misspecified in ways that are economi-

cally important for policy counterfactuals. The very fact that the instruments are strongly

correlated with price means that the demand model and pricing game fail to fit the data in

ways that are likely to lead to incorrect policy counterfactuals.
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This paper shows how to construct models that avoid such issues. After constructing

such a model, one should still test whether it is strongly identified with the data at hand.

If the test finds evidence for identification, the researcher can proceed confidently, knowing

that this result confirms, rather than rejects, the supply side model that will later be used

in policy counterfactuals.

The results in section 5 cover many demand models used in practice. However, the best

approach to modeling demand in a particular application may not fall neatly into one of

the examples considered in this paper. In this case, these examples can be used as a guide

toward a demand specification that meets the researcher’s needs. For example, one might

want a demand specification in which product characteristics matter for competition with

many firms, but restricting all of the random coefficients to indicator variables as in the

nested logit model may be too stringent for a particular application. For such applications,

the researcher could specify a nested logit model with some additional random coefficients

on continuous variables or some other model with a large number of random coefficients.

Rather than taking the results of section 5 as a rigid set of models from which to choose,

these results should be thought of as a guide toward building a demand specification that

is flexible enough for a particular application, but can be estimated with data from a small

number of large markets.

9 Conclusion

Thinking about the implications of a complete economic model for identification is always

important. The results of this paper show that the issue takes a different form when the

number of products is large relative to the number of markets. Instruments that can be

used to consistently estimate a model with data on many markets may not even satisfy the

order condition under large market asymptotics. A monte carlo study confirms that these

asymptotic approximations provide a good description of the logit and random coefficients

logit models in market sizes of practical importance. The IV estimates that are inconsistent

as the number of products increases perform poorly. The consistent estimators do better,

and become increasingly accurate as the size of the market increases.

Once the issues involved with large market asymptotics are taken into account, one can

use the results in this paper in much the same way one would use identification results to

guide empirical work in the small market case. The results in this paper can be used to

decide what types of models can be consistently estimated, what testable restrictions they
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imply, and how they restrict the possible outcomes of counterfactual analysis.

Appendix

Proof of Theorem 1

Proof. Part (i) follows from (ii) and (iii), and (ii) follows by the usual combination of a law of

large numbers, a central limit theorem, and Slutsky’s theorem. Part (iii) essentially follows

from applying results for partially identified IV (see, for example, Stock and Wright (2000))

to a version of the model that is reparameterized so that the parameter of interest is H−1β.

We have, letting AJ be the d× d diagonal matrix with the first d2 diagonal entries equal to

1 and the last d1 equal to
√
J ,

β̂ − β =

([

J
∑

j=1

z′jxj

]′

WJ

[

J
∑

j=1

z′jxj

])−1 [
J
∑

j=1

z′jxj

]′

WJ

[

J
∑

j=1

zj(yj − x′
jβ)

]

= argmin
γ

‖EJzξ − EJzx
′γ‖WJ

so that

(

T1J√
JT2J

)

= AJH
−1(β̂ − β) = argmin

γ

∥

∥EJzξ − EJzx
′HA−1

J γ
∥

∥

WJ

= argmin
γ

∥

∥

∥

√
JEJzξ −

√
JEJzx

′HA−1
J γ
∥

∥

∥

WJ

= argmin
γ

∥

∥

∥

√
JEJzξ − (

√
JEJzx

′H1, EJzx
′H2)γ

∥

∥

∥

WJ

.

By the continuous mapping theorem, this converges to

argmin
γ

‖Zzξ − (ZzxH1,MzxH2)γ‖WJ
.

The result follows from applying the partitioned least squares formula to this expression.

Proof of Theorem 2
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Proof. Define mj = x′
jβ + ξj. First, note that

pj −MCj =
1

α

∑

i 6=j exp(mi − αpi) + exp(mj − αpj)
∑

i 6=j exp(mi − αpi)
=

1

α
+

1

α

exp(mj − αpj)
∑

i 6=j exp(mi − αpi)

≤ 1

α
+

1

α
exp(mj − αpj)

(the inequality follows because, with an outside good, the summand in the denominator is 1

for i = 0). Let pmon(MCj,mj) be the value of pj that solves pj−MCj =
1
α
+ 1

α
exp(mj−αpj)

(this is the price that firm j would set if it were a monopoly with only the outside good as

a competitor). Since pj −MCj − 1/α exp(mj − αpj) − 1/α is an increasing function of pj,

the Bertrand value of pj, for which this expression is nonpositive by the above display, is

no greater than pmon(MCj,mj), which sets this expression equal to zero. If MCj and mj

are bounded by some B as assumed, then, since pmon(MCj,mj) is nondecreasing in MCj

and mj by comparative statics arguments, 0 ≤ pj ≤ pmon(MCj, pj) ≤ pmon(B,B). Thus, for

some M , maxj≤J |mj − αpj| ≤ M , so

max
j≤J

∣

∣

∣

∣

pj −MCj −
1

α

∣

∣

∣

∣

= max
j≤J

1

α

∣

∣

∣

∣

∣

exp(mj − αpj)
∑

i 6=j exp(mi − αpi)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

exp(M)
∑

i 6=j exp(−M)

∣

∣

∣

∣

∣

=
exp(2M)

J

which converges to zero when scaled up by
√
J . The statement about IV estimates then

follows from the corollary to Theorem 1.

Proof of Theorem 4

Proof. For use in section 6, I prove the slightly stronger result that the convergence is also

uniform in the parameters over a neighborhood of any fixed value of the parameters for which

the conditions of the theorem hold, that is, for any θ0 ≡ (α, β, γ, σ) for which the conditions

of the theorem hold

√
J sup

‖θ−θ0‖<ε,j≤J

‖p∗j(x, ξ, η, θ)− pj(x, ξ, η, θ)‖ → 0

where θ ≡ (α, β, γ, σ) and p∗j(x, ξ, η, θ) and pj(x, ξ, η, θ) are defined as the solutions to the

system of equations given by 8 and the nested logit equilibrium prices respectively.
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Define f : R(4+d)|Jg |+2d+2 → R
|Jg | by

fj(p, x, ξ, η, θ, r)

= pj −MCj(x, η, θ)

− 1− σ

α

∑

k exp((x
′
kβ − pkα + ξk)/(1− σ))

[
∑

k exp((x
′
kβ − pkα + ξk)/(1− σ))]− σ exp((x′

jβ − pjα + ξj)/(1− σ))
+ rj.

Then p∗g satisfies f(p∗g, xg, ξg, ηg, 0) = 0 and any solution p to the Nash pricing equations

satisfies f(p∗g, xg, ξg, ηg, r̃) = 0 for

r̃j =
1− σ

α

(1− σ)sj(p, x)

(1− σs̄j/g(p, x))(1− σs̄j/g(p, x)− (1− σ)sj(p, x))

where the functions sj and s̄j/g take prices and product characteristics to the expressions for

nested logit shares defined earlier in the section.

The proof proceeds by first showing that
√
J maxj≤J r̃j converges to zero, and then using

the implicit function theorem and the mean value theorem to get a linear approximation to

the p that solves f(p, x, ξ, η, r) = 0 as a function of r. The first statement follows since

|r̃j| ≤
1− σ

α

sj(p, x)

1− σ − (1− σ)sj(p, x)
.

so that
√
J maxj≤J r̃j will converge to zero as long as

√
J maxj≤J sj converges to zero. In-

spection of the formula for sj shows that this will hold as long as equilibrium prices are

bounded.

For r small and MC(x, θ, η) bounded away from zero, the equation f(p, x, θ, η, r) = 0 has

a unique solution for p. To see that a solution exists, note that this equation is equivalent to

the first order condition for setting prices in the Bertrand pricing game with demand given

by qj(p) ≡ exp((x′
jβ−αpj)/(1−σ))/Dσ

g and marginal cost equal toMCj+rj. An equilibrium
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exists in this game, since it is log supermodular (see pp. 151-152 of Vives (2001)):

∂2 log πj

∂pj∂pk
=

∂2 log qj(p)

∂pj∂pk

=
∂2

∂pj∂pk

{

log exp((x′
jβ − αpj)/(1− σ))− σ log

∑

ℓ

exp((x′
ℓβ − αpℓ)/(1− σ))

}

= − ∂

∂pj
σ

−α
1−σ

exp((x′
kβ − αpk)/(1− σ))

∑

ℓ exp((x
′
ℓβ − αpℓ)/(1− σ))

=
ασ exp((x′

kβ − αpk)/(1− σ))

1− σ

α
1−σ

exp((x′
jβ − αpj)/(1− σ))

(
∑

ℓ exp((x
′
ℓβ − αpℓ)/(1− σ)))2

> 0.

Uniqueness follows from verifying a dominant diagonal condition for f (see p. 47 of Vives

(2001)). We have

∂fj
∂pj

= 1− 1− σ

α
σ

1
(

1− σs̄j/g(p)
)2

∂

∂pj
s̄j/g(p)

= 1− 1− σ

α
σ

1
(

1− σs̄j/g(p)
)2

−α

1− σ
s̄j/g(p)(1− s̄j/g(p)) = 1 + σ

s̄j/g(p)(1− s̄j/g(p))
(

1− σs̄j/g(p)
)2

and, for k 6= j,

∂fj
∂pk

= −1− σ

α
σ

1
(

1− σs̄j/g(p)
)2

∂

∂pk
s̄j/g(p)

= −1− σ

α
σ

1
(

1− σs̄j/g(p)
)2

α

1− σ
s̄j/g(p)s̄k/g(p)) = −σ

s̄j/g(p)s̄k/g(p))
(

1− σs̄j/g(p)
)2 .

Thus,

∂fj
∂pj

−
∑

k 6=j

∣

∣

∣

∣

∂fj
∂pk

∣

∣

∣

∣

= 1 +
σs̄j/g(p)

(

1− σs̄j/g(p)
)2

(

1− sj/g(p)−
∑

k 6=j

sk/g(p)

)

= 1 > 0.

Since a unique p solves f(p, x, ξ, η, θ, r) = 0 for the elements of (x, ξ, η) in the given

bounded set, θ in the given neighborhood of θ0, and r close to zero, this defines p as a

function φ(x, ξ, η, θ, r) of the remaining variables. By the implicit function theorem, the

derivative matrix of φ is given by

Dφ(x, ξ, η, θ, r) = (Dpf(φ(x, ξ, η, θ, r), x, ξ, η, θ, r))
−1Dx,ξ,η,θ,rf(φ(x, ξ, η, θ, r), x, ξ, η, θ, r)
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where subscripts denote blocks of the derivative matrix corresponding to derivatives with

respect to given variables (the derivative matrix of f with respect to p is invertible since it

is diagonally dominant). Since p = φ(x, ξ, η, θ, r̃) and p∗ = φ(x, ξ, η, θ, 0), by the mean value

theorem, for every index j, there is a r between 0 and r̃ such the difference between pj and

p∗j is given by the jth row of

(Dpf(φ(x, ξ, η, θ, r), x, ξ, η, θ, r))
−1Drf(φ(x, ξ, η, θ, r), x, ξ, η, θ, r)r̃.

Since the elements of (Dpf(φ(x, ξ, η, θ, r), x, ξ, η, θ, r))
−1Drf(φ(x, ξ, η, θ, r), x, ξ, η, θ, r) are

continuous functions of x, ξ, η, θ, and r, the function that maps t to the maximum of the abso-

lute values of the elements of (Dpf(φ(x, ξ, η, θ, r), x, ξ, η, θ, r))
−1Drf(φ(x, ξ, η, θ, r), x, ξ, η, θ, r)t

takes a maximum M as x, ξ, η, θ, and r range over the compact set that contains them and

t ranges over the unit sphere in R
|Jg |. This gives

√
J max

j≤J,‖θ−θ0‖<ε
|p∗j − pj| ≤

√
J max

j≤J
M‖r̃j‖ → 0.

The rate of uniform convergence for s̄j/g follows since s̄j/g is equal to s̄∗j/g with p∗k replaced

by pk in the definition, and the formula in the definition has a derivative with respect to the

vector of prices in group g that is bounded in an open set containing all values of (x, ξ, η, θ, p)

that can be taken under the assumptions of the theorem. Thus, by the mean value theorem,

for some finite B,
√
J maxj≤J,‖θ−θ0‖<ε |s̄∗j/g − s̄j/g| ≤

√
JBmaxj≤J,‖θ−θ0‖<ε |p∗j − pj| → 0.

Proof of Theorem 5

Proof. The markup can be written as

α−1

(

1−
∫

σ2
j (δ, ζ) dPζ(ζ)

∫

σj(δ, ζ) dPζ(ζ)

)−1

.

Thus, it suffices to show that
(∫

σ2
j (δ, ζ) dPζ(ζ)

)

/
(∫

σj(δ, ζ) dPζ(ζ)
)

converges to zero at a

faster than
√
J rate. Suppose that product characteristics are bounded and fix a sequence

kJ → ∞. Let sJ and sJ be the supremum and infimum respectively of σj(δ, ζ) with ‖ζ‖ ≤ kJ ,
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j ≤ J , and the elements of δ ranging over the given bounded set. Then

max
j≤J

∫

σ2
j (δ, ζ) dPζ(ζ)

∫

σj(δ, ζ) dPζ(ζ)
≤
∫

σ2
j (δ, ζ)I(‖ζ‖ ≤ kJ) dPζ(ζ) + Pζ(‖ζ‖ > kJ)

∫

σj(δ, ζ)I(‖ζ ≤ kJ‖) dPζ(ζ)

≤
∫

s2JI(‖ζ‖ ≤ kJ) dPζ(ζ) + Pζ(‖ζ‖ > kJ)
∫

sJI(‖ζ ≤ kJ‖) dPζ(ζ)
≤ s2J + Pζ(‖ζ‖ > kJ)

sJ(1− Pζ(‖ζ > kJ‖))
.

If we can choose kJ so that
√
JPζ(‖ζ > kJ‖)/sJ and

√
Js2J/sJ both go to zero, we will have

the desired result. Since product characteristics are bounded, there exists some B such that,

for all j,

∣

∣

∣

∣

∣

∑

k

xjkζk

∣

∣

∣

∣

∣

≤ B‖ζ‖.

Letting M be a bound for δj, this gives the following bounds for sJ and sJ :

sJ ≤ exp(M + BkJ)
∑

ℓ exp(−M − BkJ)
=

exp(2M + 2BkJ)

J

sJ ≥ exp(−M − BkJ)
∑

ℓ exp(M + BkJ)
≥ exp(−2M − 2BkJ)

J
.

This gives s2J/sJ ≤ exp(6M + 6BkJ)/J . If the distribution of ζ is joint normal, then, for

some constants K1 and K2,

Pζ(‖ζ‖ > kJ) ≤ K1 exp(−K2k
2
J).

If this holds, then

Pζ(‖ζ‖ > kJ)

sJ
≤ K1 exp(−K2k

2
J)J

exp(−2M −BkJ)
= K1 exp(−K2k

2
J + BkJ + 2M)J.

For kJ = (log J)2/3, we will have
√
Js2J/sj → 0 and

√
JPζ(‖ζ‖ > kJ)/sJ → 0 as desired.
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