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This supplement contains proofs as well as auxiliary results and monte carlos. Section

A contains proofs of results in the main text. Section B discusses large market asymptotics

in some additional settings. Section C provides primitive conditions for the condition on

equilibrium prices in Theorem 1, and relaxes some of the support conditions in that theorem.

Section D gives the details of the monte carlo study, and presents additional monte carlo

results for designs not reported in the main text.

A Proofs

This section presents proofs of the results in the main text. Section A.1 states equivalence

results used in the rest of the section. The rest of the section contains proofs of the results

in the main text.

A.1 Equivalence Results for IV Estimators

Many of the results in the paper are based on the IV equivalence results. The results follow

from characterizations of the asymptotic behavior of IV estimators under possible lack of

identification (this step follows known results in the literature; see, for example Staiger

and Stock, 1997) along with bounds on the difference between sample moments involving

different covariates. The following theorems are stated for a general linear IV estimator

β̂ =
[(

1
J

∑J
j=1 zjx

′
j

)
WJ

(
1
J

∑J
j=1 zjx

′
j

)]−1 (
1
J

∑J
j=1 zjx

′
j

)′
WJ

(
1
J

∑J
j=1 zjy

′
j

)
where zj is a

vector of instruments, xj is a vector of covariates and yj = x′
jβ + ξj (in the notation of

the rest of the paper, this theorem is used with (xj, pj) taking the place of xj and (α, β′)′

taking the place of β). In the following, the behavior of β̂ under a sequence x∗
j and y∗j with

y∗j = x∗′
j β + ξj is compared to the behavior of β under the original sequences.
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Assumption 1. (i)
√
J
(

1
J

∑J
j=1 zjx

′
j −Mzx

)
d→ Zzx for some k × d matrix Mzx, and a

k× d random matrix Zzx. (ii)
1√
J

∑J
j=1 zjξj

d→ Zzξ for a multivariate normal random vector

Zzξ with nonsingular variance. (iii) WJ
p→ W for some positive definite weighting matrix

W .

Assumption 2.
√
J maxj ‖x∗

j − xj‖
p→ 0 and 1

J

∑J
j=1 ‖zj‖ = OP (1).

Theorem 4. Under Assumption 1, we have the following.

(i) Let d2 = rankMzx and d1 = d− d2. Let H be an invertible d× d matrix such that the

first d1 columns of MzxH are zero and split H into its first d1 and last d2 columns as

(H1, H2). Define TJ = H−1(β̂ − β) with T1J the first d1 elements and T2J the last d2

elements. Then

(
T1J√
JT2J

)
d→
( (

(ZzxH1)
′Q′

W,2WQW,2ZzxH1

)−1
(ZzxH1)

′Q′
W,2WQW,2Zzξ(

(Ezx′H2)
′Q′

W,1WQW,1Ezx′H2

)−1
(Ezx′H1)

′Q′
W,1WQW,1Zzξ

)

where QW,1 is the W inner product projection matrix for the orthogonal complement of

the column span of ZzxH1 and QW,2 is the W inner product projection matrix for the

orthogonal complement of the column span of Ezx′H2.

(ii) If Assumption 2 holds as well, then, letting β̂∗ be the estimator with x∗
j and y∗j replacing

xj and yj, ‖β̂ − β̂∗‖ p→ 0.

Proof. Part (i) essentially follows from applying results for partially identified IV (see, for

example Stock and Wright, 2000) to a version of the model that is reparameterized so that

the parameter of interest is H−1β. We have, letting AJ be the d × d diagonal matrix with

the first d2 diagonal entries equal to 1 and the last d1 equal to
√
J ,

β̂ − β =

([
J∑

j=1

z′jxj

]′
WJ

[
J∑

j=1

z′jxj

])−1 [
J∑

j=1

z′jxj

]′
WJ

[
J∑

j=1

zj(yj − x′
jβ)

]

= argmin
γ

‖EJzξ − EJzx
′γ‖WJ
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so that

(
T1J√
JT2J

)
= AJH

−1(β̂ − β) = argmin
γ

∥∥EJzξ − EJzx
′HA−1

J γ
∥∥
WJ

= argmin
γ

∥∥∥
√
JEJzξ −

√
JEJzx

′HA−1
J γ
∥∥∥
WJ

= argmin
γ

∥∥∥
√
JEJzξ − (

√
JEJzx

′H1, EJzx
′H2)γ

∥∥∥
WJ

.

By the continuous mapping theorem, this converges to

argmin
γ

‖Zzξ − (ZzxH1,MzxH2)γ‖WJ
.

The result follows from applying the partitioned least squares formula to this expression.

For part (ii), the note that, under Assumptions 1 and 2, Assumption 1 will also hold with

x∗
j and y∗j . In fact, we will have

(√
J
(

1
J

∑J
j=1 zjx

∗′
j −Mzx

)
,
√
J
(

1
J

∑J
j=1 zjx

′
j −Mzx

))
d→

(Zzx, Zzx). The result follows by applying the above results to β̂∗ where we modify the above

argument by applying the continuous mapping theorem to (T ′
1J ,

√
JT ′

2J)
′ − (T ∗′

1J ,
√
JT ∗′

2J)
′ to

show that this quantity converges in distribution (and in probability) to a limiting distribu-

tion that can be seen to be identically zero.

The next theorem deals with the case where Mzx is full rank, leading to consistent

estimators. The theorem uses a slightly weaker version of the assumptions used for theorem

4 (with Mzx full rank).

Assumption 3. Assumption 1 holds with part (i) replaced by the condition that 1
J

∑J
j=1 zjx

′
j

p→
Mzx.

Assumption 4. maxj ‖x∗
j − xj‖

p→ 0 and 1
J

∑J
j=1 ‖zj‖ = OP (1).

Theorem 5. Under Assumptions 3 and 4,
√
J(β̂ − β) and

√
J(β̂∗ − β) are consistent and

asymptotically normal, with the same asymptotic distribution.

Proof. Under these assumptions, Assumption 3 holds for both the original and starred quan-

tities. The result then follows from standard arguments.

The following corollary restates some immediate implications of the above theorems in a

more concise way, for use in the main text.
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Corollary 1. If Assumptions 1 and 2 hold, β̂ is consistent iff. β̂∗ is consistent (iff Mzx

is full rank) and, in particular, ‖β̂ − β̂∗‖ p→ 0. In addition, if β̂∗ is consistent and asymp-

totically normal, then β̂ is consistent and asymptotically normal with the same asymptotic

distribution.

A.2 Proof of Theorem 1

By the central limit theorem, Assumption 1 holds with Zzx and Zzξ normal random variables.

Thus, the result follows from Corollary 1 by verifying Assumption 2 for (xj, p
∗
j).

The markup can be written as

α−1

(
1−

∫
s̃2j(δ, ζ) dPζ(ζ)∫
s̃j(δ, ζ) dPζ(ζ)

)−1

.

Thus, it suffices to show that
(∫

s̃2j(δ, ζ) dPζ(ζ)
)
/
(∫

s̃j(δ, ζ) dPζ(ζ)
)
converges to zero at a

faster than
√
J rate. Fix a sequence kJ → ∞. Let sJ and sJ be the supremum and infimum

respectively of s̃j(δ, ζ) with ‖ζ‖ ≤ kJ , j ≤ J , and the elements of δ ranging over the given

bounded set. Then

max
j≤J

∫
s̃2j(δ, ζ) dPζ(ζ)∫
s̃j(δ, ζ) dPζ(ζ)

≤ max
j≤J

∫
s̃2j(δ, ζ)I(‖ζ‖ ≤ kJ) dPζ(ζ) + Pζ(‖ζ‖ > kJ)∫

s̃j(δ, ζ)I(‖ζ ≤ kJ‖) dPζ(ζ)

≤
∫
s2JI(‖ζ‖ ≤ kJ) dPζ(ζ) + Pζ(‖ζ‖ > kJ)∫

sJI(‖ζ ≤ kJ‖) dPζ(ζ)
≤ s2J + Pζ(‖ζ‖ > kJ)

sJ(1− Pζ(‖ζ‖ > kJ))
.

If we can choose kJ so that
√
JPζ(‖ζ‖ > kJ)/sJ and

√
Js2J/sJ both go to zero, we will have

the desired result. Since product characteristics are bounded, there exists some B such that,

for all j,

∣∣∣∣∣
∑

k

xjkζk

∣∣∣∣∣ ≤ B‖ζ‖.

Letting M be a bound for δj, this gives the following bounds for sJ and sJ :

sJ ≤ exp(M + BkJ)∑
ℓ exp(−M − BkJ)

=
exp(2M + 2BkJ)

J

sJ ≥ exp(−M − BkJ)∑
ℓ exp(M + BkJ)

≥ exp(−2M − 2BkJ)

J
.
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This gives s2J/sJ ≤ exp(6M + 6BkJ)/J . If the distribution of ζ is joint normal, then, for

some constants K1 and K2,

Pζ(‖ζ‖ > kJ) ≤ K1 exp(−K2k
2
J).

If this holds, then

Pζ(‖ζ‖ > kJ)

sJ
≤ K1 exp(−K2k

2
J)J

exp(−2M −BkJ)
= K1 exp(−K2k

2
J + BkJ + 2M)J.

For kJ = (log J)2/3, we will have
√
Js2J/sj → 0 and

√
JPζ(‖ζ‖ > kJ)/sJ → 0 as desired.

A.3 Proof of Theorem 2

If 1
J

∑J
j=1 Ezj(x

′
j, p

∗
j) converges in probability to a positive definite matrix, then, by a law of

large numbers for inid variables, 1
J

∑J
j=1 zj(x

′
j, p

∗
j) will converge in probability to the same

matrix. The result then follows by Theorem 5 as long as maxj ‖pj − p∗j‖
p→ 0.

Arguing as in Konovalov and Sandor (2010), it can be seen that equation 5 has a

unique solution, and defines b as a R
F valued function that is continuously differentiable

at (π1µr,1, . . . , πFµr,F ) (the latter claim can be seen using the implicit function theorem).

The difference between pj and p∗j can then be written as, for f the firm producing product j,

bf (π1µr,1, . . . , πFµr,F )−bf (π̂1r̄1, . . . , π̂F r̄F ), which converges in probability to zero by the law

of large numbers. Since maxj ‖pj − p∗j‖ = maxf bf (π1µr,1, . . . , πFµr,F ) − bf (π̂1r̄1, . . . , π̂F r̄F )

and the number of firms does not increase with J , the result follows.

A.4 Proof of Theorem 3

The following notation is used throughout this section. Let dz = dx + dh (where dx and

dh are the dimensions of xi,j and h(xi,j) respectively). Define m2 = 1
N

∑N
i=1(Ji/J̄)

2, m3 =
1
N

∑N
i=1(Ji/J̄)

3, m2,∞ = limN→∞
1
N

∑N
i=1(Ji/J̄)

2 and m3,∞ = limN→∞
1
N

∑N
i=1(Ji/J̄)

3. Let

ri,j = exp(x′
i,jβ − αMCi,j − 1 + ξi,j). Let wi,j be the nonconstant part of xi,j so that

xi,j = (1, w′
i,j)

′ and let µr = E(ri,j), µxr = E(xi,jri,j) and µwr = E(wi,jri,j).

It will be useful to define some additional quantities to describe the asymptotic distribu-

tion. Let

Wi,j =

(
xi,jx

′
i,j − Exi,jx

′
i,j xi,j(MCi,j + 1/α)− Exi,j(MCi,j + 1/α)

µh(xi,j − µx)
′ + (h(xi,j)− µh)µ

′
x µh(MCi,j − (EMCi,j))

′ + (h(xi,j)− µh)(EMCi,j + 1/α)

)

28



and let ui,j = ξi,j(x
′
i,j , µ

′
h)

′. Let ΣWu be the variance matrix of (vec(Wi,j)
′, u′

i,j)
′ and let

Σ̃Wu be defined by starting with ΣWu and multiplying diagonal elements dx + 1 through dz,

dz + dx + 1 through 2dz, 2dz + dx + 1 through 3dz, etc. (those corresponding to the last

dh rows of Wi,j and ui,j) by m3,∞, and multiplying off diagonal elements in these rows and

columns by m2,∞. Define

M1 =

(
Idx 0

0 0

)
, H =

(
E(xi,jx

′
i,j) E(xi,j(MCi,j +

1
α
))

0 1

)
, Km2

=




1 0 0

0 Idx−1 0

m2µh 0 1dh×1




where 1dh×1 is a dh × 1 vector of ones, and let Km2,∞ be defined in the same way, but with

m2,∞ replacing m2. Let

M2 =




1/α

0dz×dx µwr/(µrα)

µh/α


 , Aq =

(
Idx×dx 0

0 q

)

for any positive real number q. Let

M̃1 =




1 E(wi,j)
′ E(MCi,j) +

1
α

E(wi,j) E(wi,jw
′
i,j) E(wi,jMCi,j) +

1
α
E(wi,j)

µhm2 µhm2E(wi,j)
′ µhm2

[
E(MCi,j) +

1
α

]




Note that A−1
q = A1/q and, with the above notation, M̃1 = Km2

M1H.

We first prove the following lemma.

Lemma 1. Under the conditions of Theorem 3,

Ri,j ≡ J2
i

(
pi,j −MCi,j −

1

α
− ri,j

α
∑Ji

k=1 ri,k

)

is bounded uniformly over i as N and the Ji’s increase.

Proof. First, note that

pi,j −MCi,j −
1

α
=

1

α

(
1

1− si,j
− 1

)
=

1

α

exp
(
x′
i,jβ − αpi,j + ξi,j

)
∑

k 6=j exp
(
x′
i,kβ − αpi,k + ξi,k

) . (7)

Now, substituting the bound 0 ≤ pi,j −MCi,j −1/α ≤ C/(Jα) on the right hand side, which
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holds for C large enough, we see that the above display is bounded from above by

1

α

exp
(
x′
i,jβ − αMCi,j − 1 + ξi,j

)
∑

k 6=j exp
(
x′
i,kβ − αMCi,k − 1− C/J + ξi,k

)

=
1

α

exp
(
x′
i,jβ − αMCi,j − 1 + ξi,j

)

exp(−C/J)
∑

k 6=j exp
(
x′
i,kβ − αMCi,k − 1 + ξi,k

)

This, and a similar lower bound give the result with the sum in the denominator replaced by

the same sum over k 6= j. The result then follows since ri,j/
∑

k 6=j ri,k = (ri,j/
∑Ji

k=1 ri,k)(1 +

ri,j/
∑

k 6=j ri,k), which is equal to ri,j/
∑Ji

k=1 ri,k plus a term that is bounded by a constant

times 1/J2.

This result is used in the following lemmas, which concern the sample means involved in

the IV estimator.

Lemma 2. Under the conditions of Theorem 3,

1

NJ̄

N∑

i=1

Ji∑

j=1

[
1

J̄
h(xi,k)

](
pi,j −MCi,j −

1

α

)
=

1

J̄

(µh

α
+ oP (1)

)

Proof. We have

1

NJ̄

{
N∑

i=1

Ji∑

j=1

[
Ji∑

k=1

h(xi,k)

](
pi,j −MCi,j −

1

α

)
− µh

α
NJ̄

}

=
1

NJ̄

{
N∑

i=1

Ji∑

j=1

[
Ji∑

k=1

h(xi,k)

](
ri,j

α
∑Ji

k=1 ri,k
+

Ri,j

J2
i

)
− µh

α
NJ̄

}

=
1

NJ̄

{
N∑

i=1

[
Ji∑

j=1

h(xi,j)

](
1

α
+

Ji∑

k=1

Ri,k

J2
i

)
−

N∑

i=1

Ji∑

j=1

µh

α

}

=
1

NJ̄

{
N∑

i=1

[
Ji∑

j=1

h(xi,j)− µh

α

]
+

N∑

i=1

[
Ji∑

j=1

h(xi,j)

][
Ji∑

k=1

Ri,k

J2
i

]}

where Ri,j is the remainder term in Lemma 1. This converges to zero since Ri,k is bounded

and 1
NJ̄

∑N
i=1

∑Ji
j=1 h(xi,j)

p→ µh by the law of large numbers.
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Lemma 3. Under the conditions of Theorem 3,

1

NJ̄

N∑

i=1

Ji∑

j=1

xi,j

(
pi,j −MCi,j −

1

α

)
=

1

J̄

(
µxr

αµr

+ oP (1)

)

Proof. We have

J̄
1

NJ̄

N∑

i=1

Ji∑

j=1

xi,j

(
pi,j −MCi,j −

1

α

)
=

1

N

N∑

i=1

Ji∑

j=1

xi,j

(
ri,j

α
∑Ji

k=1 ri,k
+

Ri,j

J2
i

)

=
1

N

N∑

i=1

(∑Ji
j=1 xi,jri,j

α
∑Ji

k=1 ri,k
+

Ji∑

j=1

xi,jRi,j

J2
i

)

where Ri,j is the quantity in Lemma 1. The last term is bounded by a constant times 1/Ji.

For the first term, we have

1

N

N∑

i=1

∑Ji
j=1 xi,jri,j

α
∑Ji

k=1 ri,k
=

1

N

N∑

i=1

∑Ji
j=1 xi,jri,j

αJiµr

Jiµr∑Ji
k=1 ri,k

=
µxr

αµr

+
1

N

N∑

i=1

(
1
Ji

∑Ji
j=1 xi,jri,j − µxr

αµr

)
+

1

N

N∑

i=1

(
1
Ji

∑Ji
j=1 xi,jri,j

αµr

)(
µr∑Ji

k=1 ri,k
− 1

)
.

The last two terms converge in probability to zero (this can be shown by bounding their

second moments).

Lemma 4. Under the conditions of Theorem 3, for any sequence of iid variables vi,j with

mean µv and a finite fourth moment,

1

NJ̄

N∑

i=1

Ji∑

j=1

[
1

J̄

Ji∑

k=1

h(xi,k)

]
vi,j

= m2µhµv +
1

NJ̄

N∑

i=1

Ji∑

j=1

Ji
J̄
[µh(vi,j − µv) + µv(h(xi,j)− µh)] + oP

(
1/
√

NJ̄
)
.
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Proof. We have

1

NJ̄

N∑

i=1

Ji∑

j=1

[
1

J̄

Ji∑

k=1

h(xi,k)

]
vi,j

= µh
1

NJ̄

N∑

i=1

Ji∑

j=1

Ji
J̄
vi,j +

1

NJ̄

N∑

i=1

{
Ji∑

j=1

[h(xi,j)− µh]

}[
1

J̄

Ji∑

j=1

vi,j

]

= µhµv
1

NJ̄

N∑

i=1

Ji∑

j=1

Ji
J̄

+ µh
1

NJ̄

N∑

i=1

Ji∑

j=1

Ji
J̄
[vi,j − µv]

+ µv
1

NJ̄

N∑

i=1

Ji∑

j=1

[h(xi,j)− µh]
Ji
J̄

+
1

NJ̄

N∑

i=1

{
Ji∑

j=1

[h(xi,j)− µh]

}{
1

J̄

Ji∑

j=1

[vi,j − µv]

}

= µhµv
1

NJ̄

N∑

i=1

Ji∑

j=1

Ji
J̄

+
1

NJ̄

N∑

i=1

Ji∑

j=1

Ji
J̄
{µh[vi,j − µv] + µv[h(xi,j)− µh]}

+
1

NJ̄

N∑

i=1

{
Ji∑

j=1

[h(xi,j)− µh]

}{
1

J̄

Ji∑

j=1

[vi,j − µv]

}

≡ I + II + III

where I ≡ µhµvm2, II ≡ 1
NJ̄

∑N
i=1

∑Ji
j=1

Ji
J̄
{µh[vi,j − µv] + µv[h(xi,j)− µh]} and III ≡

1
NJ̄

∑N
i=1

{∑Ji
j=1 [h(xi,j)− µh]

}{
1
J̄

∑Ji
j=1[vi,j − µv]

}
. Note that III = OP (1/(J̄

√
N)) since

var(III) =
1

NJ̄2

1

N

N∑

i=1

var

({
1√
J̄

Ji∑

j=1

[h(xi,j)− µh]

}{
1√
J̄

Ji∑

j=1

[vi,j − µv]

})

and the variance on the right hand side can be seen to be bounded uniformly in Ji by an appli-

cation of Cauchy-Schwarz and boundedness of the fourth moments of
{

1√
J̄

∑Ji
j=1 [h(xi,j)− µh]

}

and
{

1√
J̄

∑Ji
j=1[vi,j − µv]

}
.

Lemma 5. Under the conditions of Theorem 3,

1

NJ̄

N∑

i=1

Ji∑

j=1

(
xi,j

1
J̄

∑J
k=1 h(xi,k)

)(
x′
i,j MCi,j +

1
α

)
= M̃1 + VJN/

√
NJ̄

where M̃1 is defined at the beginning of this section and

(
(vec(VJN)

′,
(

1√
NJ̄

∑N
i=1

∑Ji
j=1 zi,jξi,j

)′)′

converges to a normal distribution with variance Σ̃Wu (where Σ̃Wu is defined at the beginning
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of this section).

Proof. It follows from Lemma 4 that

(
(vec(VJN)

′,
(

1√
NJ̄

∑N
i=1

∑Ji
j=1 zi,jξi,j

)′)′
is, up to

oP (1), equal to

1√
NJ̄

N∑

i=1

Ji∑

j=1

(Idx+2 ⊗BJi/J̄)

(
vec(Wi,j)

ui,j

)

where, for any scalar r, Br is defined to be the dz × dz diagonal matrix with ones in the first

dx diagonal entries and r in the remaining diagonal entries. By a central limit theorem for

triangular arrays of inid variables, this converges to a normal distribution with variance

lim
N→∞

1

NJ̄

N∑

i=1

Ji∑

j=1

(Idx+2 ⊗BJi/J̄)ΣWu(Idx+2 ⊗BJi/J̄)
′,

which can be seen to be equal to Σ̃Wu by inspection.

Putting the above lemmas together and using the fact that M̃1 = Km2
M1H, we have

M̂zx ≡ 1

NJ̄

N∑

i=1

Ji∑

j=1

zj(x
′
j, pj) = Km2

M1H + VJN/
√

J̄N +M2(A1/J̄ + oP (1/J̄))

where VJN is given in Lemma 5. Since the last column of M1 is all zeros, M1AJ̄ = M1. Also,

since the first dx columns of M2AJ̄ are zero, M2AJ̄H = M2AJ̄ , so that M2AJ̄H
−1 = M2AJ̄

as well. Thus,

QN ≡ M̂zxH
−1A−1

1/J̄
= Km2

M1 + VJNH
−1AJ̄/

√
J̄N +M2 + oP (1).

Note that Km2
M1 + M2 is full rank iff m2 6= 1, so that this matrix is full rank under the

conditions of the theorem. Let Ẑzξ = 1√
J̄N

∑N
i=1

∑Ji
j=1 zi,jξi,j (which converges jointly with

VJN to a vector of normal variables).

It follows that, in the case where N/J̄ → ∞,

diag(
√
J̄N, . . . ,

√
J̄N,

√
N/J̄)H[(β̂′, α̂)′ − (β′, α)′] =

√
J̄NA1/J̄H[(β̂′, α̂)′ − (β′, α)′]

= (Q′
NWQN)

−1
Q′

NWẐzξ
d→ (Q′WQ)

−1
Q′WZzξ
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where Q = Km2,∞M1 + M2 and Zzξ is a normal vector defined below. In the case where

N/J̄ → c for a finite constant c,

Q̃N ≡ M̂zxH
−1A−1

1/
√
NJ̄

= Km2
M1 + VJNH

−1A√
NJ̄/

√
J̄N +M2A√N/J̄

+ oP (1)

This converges in distribution to Km2,∞M1+ZzxH
−1diag(0, . . . , 0, 1)+M2A√

c ≡ Q̃∞ jointly

with M̂zξ, where (vec(Zzx)
′, Z ′

zξ)
′ is normal with mean zero and variance matrix Σ̃Wu (so

that M̂zξ and VJN converge in distribution jointly to Zzξ and Zzx by Lemma 5). Thus,

diag(
√
J̄N, . . . ,

√
J̄N, 1)H[(β̂′, α̂)′ − (β′, α)′] =

√
J̄NA1/

√
NJ̄H[(β̂′, α̂)′ − (β′, α)′]

=
(
Q̃′

NWQ̃N

)−1

Q̃′
NWẐzξ

d→
(
Q̃′

∞WQ̃∞

)−1

Q̃′
∞WZzξ.

For c = 0, Q̃∞ = Km2,∞M1 + ZzxH
−1diag(0, . . . , 0, 1), and this limiting distribution is the

same as if the markup were equal to 1/α (by the same arguments, but with M2 a matrix of

zeros).

B Additional Large Market Asymptotic Results

This section gives the formal results described in section 3.2 for the nested logit model,

and discusses large market asymptotics for the vertical model, and for some of the cases

considered in the main text under multi product firms.

B.1 Nested Logit

In the nested logit model, the J products are split into G mutually exclusive groups. Here,

the number of groups G will increase, while the number of products per group stays fixed. As

in section 3.1, this section considers single product firms, although the results will be similar

for multiproduct firms as long as the number of firms increases rather than the number

of products per firm. The set of products in a given group g ∈ {1, . . . , G} is denoted by

Jg ⊆ {1, . . . , J}. The share of product j as a fraction of its group g is denoted by s̄j/g(x, p, ξ),

and the share of group g as a fraction of all products is given by s̄g(x, p, ξ). Consumer i’s

utility for good j is

uij = x′
jβ − αpj + ξj + ζig + (1− σ)εij ≡ δj + ζig + (1− σ)εij
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where ζig is a random coefficient on a dummy variable for group g and εij is still extreme

value. The distribution of ζig depends on σ and is such that ζig + (1 − σ)εij is extreme

value. This leads to the formulas s̄j/g =
exp(δj/(1−σ))

Dg
and s̄g =

D1−σ
g∑

h D1−σ
h

for shares where

Dg =
∑

j∈Jg
exp(δj/(1− σ)). These can be inverted to get

log sj − log s0 = x′
jβ − αpj + σ log s̄j/g + ξj (8)

(here, the outside good, product 0, has mean utility normalized to zero and is the only

product in its nest). The derivative of j’s share with respect to j’s price is
dsj
dpj

= −α
1−σ

sj(1−
σs̄j/g − (1− σ)sj), which gives a markup of

pj −MCj =
1− σ

α
/(1− σs̄j/g − (1− σ)sj). (9)

If the number of nests increases with the number of products per nest fixed, sj will go

to zero. Thus, we might expect that prices converge to the solution to a limiting system of

equations where sj is removed from the right hand side of (9). Since s̄j/g depends only on

products in group g, this would mean that asymptotic markups are determined by a pricing

game involving only firms with products in the same group. To formalize this, let p∗j for j

in group j be defined as the unique solution to the system of equations

p∗j −MCj =
1− σ

α
/(1− σs̄j/g(x, p

∗, ξ))

=
1− σ

α

∑
k∈Jg

exp((x′
kβ − p∗kα + ξk)/(1− σ))

[∑
k∈Jg

exp((x′
kβ − p∗kα + ξk)/(1− σ))

]
− σ exp((x′

jβ − p∗jα + ξj)/(1− σ))
(10)

and let s̄∗j/g = s̄j/g(x, p
∗, ξ). That is, p∗j is defined as the solution to a system of equations

given by the markup formula (9), but with sj set to its limiting value of 0. The following

theorem states that IV estimates in this model are asymptotically equivalent to the estimates

that would be obtained if prices were replaced with p∗j . Since prices in the limiting model

depend on characteristics of products in the same nest but not on characteristics of products

in other nests, this means that characteristics of products in the same nest will potentially

have identifying power, while products in other nests will not.

Theorem 6. In the nested logit model single product firms and many nests, suppose that

(xj, ξj ,MCj) is bounded and iid across j. Let zj = (xj, h({xk}j∈Jg−L
, . . . , {xk}j∈Jg+M

) for

j ∈ Jg for some function h with finite variance. Let p∗j and s̄∗j/g be defined in (10). Let
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(α̂, β̂, σ̂) be the IV estimates defined in (4), and let (α̂∗, β̂∗, σ̂∗) be defined in the same way, but

with p∗j and s̄∗j/g replacing pj and s̄j/g. Then ‖(α̂, β̂, σ̂)− (α̂∗, β̂∗, σ̂∗)‖ p→ 0 and, if (α̂∗, β̂∗, σ̂∗)

is consistent and asymptotically normal, (α̂, β̂, σ̂) will also be consistent and asymptotically

normal, with the same asymptotic distribution.

Note that, if we had taken the number of nests fixed with the number of products per

nest increasing, both s̄j/g and sj would converge to zero in the markup formula (9), and

the markup would converge to a constant as with the results in section 3.1. Thus, if the

dimension of ζ is fixed, we obtain the same results as in section 3.1 (with the stronger result

for the nested logit model that ‖σ̂ − σ̂∗‖ p→ 0, where both estimates are inconsistent). The

proof of Theorem 6 is given below.

proof of Theorem 6. As before, it suffices to show that pj and, in this case sj/g converge

uniformly to the starred versions at a faster than
√
J rate.

Define f : R(4+d)|Jg |+2d+2 → R
|Jg | by

fj(p, x, ξ, η, θ, r)

= pj −MCj(x, η, θ)

− 1− σ

α

∑
k exp((x

′
kβ − pkα + ξk)/(1− σ))

[
∑

k exp((x
′
kβ − pkα + ξk)/(1− σ))]− σ exp((x′

jβ − pjα + ξj)/(1− σ))
+ rj.

Then p∗g satisfies f(p∗g, xg, ξg, ηg, 0) = 0 and any solution p to the Nash pricing equations

satisfies f(p∗g, xg, ξg, ηg, r̃) = 0 for

r̃j =
1− σ

α

(1− σ)sj(p, x)

(1− σs̄j/g(p, x))(1− σs̄j/g(p, x)− (1− σ)sj(p, x))

where the functions sj and s̄j/g take prices and product characteristics to the expressions for

nested logit shares defined earlier in the section.

The proof proceeds by first showing that
√
J maxj≤J r̃j converges to zero, and then using

the implicit function theorem and the mean value theorem to get a linear approximation to

the p that solves f(p, x, ξ, η, r) = 0 as a function of r. The first statement follows since

|r̃j| ≤
1− σ

α

sj(p, x)

1− σ − (1− σ)sj(p, x)
.

so that
√
J maxj≤J r̃j will converge to zero as long as

√
J maxj≤J sj converges to zero. In-

spection of the formula for sj shows that this will hold as long as equilibrium prices are
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bounded.

For r small and MC(x, θ, η) bounded away from zero, the equation f(p, x, θ, η, r) = 0 has

a unique solution for p. To see that a solution exists, note that this equation is equivalent to

the first order condition for setting prices in the Bertrand pricing game with demand given

by qj(p) ≡ exp((x′
jβ−αpj)/(1−σ))/Dσ

g and marginal cost equal toMCj+rj. An equilibrium

exists in this game, since it is log supermodular (see pp. 151-152 of Vives (2001)):

∂2 log πj

∂pj∂pk
=

∂2 log qj(p)

∂pj∂pk

=
∂2

∂pj∂pk

{
log exp((x′

jβ − αpj)/(1− σ))− σ log
∑

ℓ

exp((x′
ℓβ − αpℓ)/(1− σ))

}

= − ∂

∂pj
σ

−α
1−σ

exp((x′
kβ − αpk)/(1− σ))∑

ℓ exp((x
′
ℓβ − αpℓ)/(1− σ))

=
ασ exp((x′

kβ − αpk)/(1− σ))

1− σ

α
1−σ

exp((x′
jβ − αpj)/(1− σ))

(
∑

ℓ exp((x
′
ℓβ − αpℓ)/(1− σ)))2

> 0.

Uniqueness follows from verifying a dominant diagonal condition for f (see p. 47 of Vives

(2001)). We have

∂fj
∂pj

= 1− 1− σ

α
σ

1(
1− σs̄j/g(p)

)2
∂

∂pj
s̄j/g(p)

= 1− 1− σ

α
σ

1
(
1− σs̄j/g(p)

)2
−α

1− σ
s̄j/g(p)(1− s̄j/g(p)) = 1 + σ

s̄j/g(p)(1− s̄j/g(p))(
1− σs̄j/g(p)

)2

and, for k 6= j,

∂fj
∂pk

= −1− σ

α
σ

1
(
1− σs̄j/g(p)

)2
∂

∂pk
s̄j/g(p)

= −1− σ

α
σ

1
(
1− σs̄j/g(p)

)2
α

1− σ
s̄j/g(p)s̄k/g(p)) = −σ

s̄j/g(p)s̄k/g(p))(
1− σs̄j/g(p)

)2 .

Thus,

∂fj
∂pj

−
∑

k 6=j

∣∣∣∣
∂fj
∂pk

∣∣∣∣ = 1 +
σs̄j/g(p)(

1− σs̄j/g(p)
)2

(
1− sj/g(p)−

∑

k 6=j

sk/g(p)

)
= 1 > 0.

Since a unique p solves f(p, x, ξ, η, θ, r) = 0 for the elements of (x, ξ, η) in the given
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bounded set, θ in the given neighborhood of θ0, and r close to zero, this defines p as a

function φ(x, ξ, η, θ, r) of the remaining variables. By the implicit function theorem, the

derivative matrix of φ is given by

Dφ(x, ξ, η, θ, r) = (Dpf(φ(x, ξ, η, θ, r), x, ξ, η, θ, r))
−1Dx,ξ,η,θ,rf(φ(x, ξ, η, θ, r), x, ξ, η, θ, r)

where subscripts denote blocks of the derivative matrix corresponding to derivatives with

respect to given variables (the derivative matrix of f with respect to p is invertible since it

is diagonally dominant). Since p = φ(x, ξ, η, θ, r̃) and p∗ = φ(x, ξ, η, θ, 0), by the mean value

theorem, for every index j, there is a r between 0 and r̃ such the difference between pj and

p∗j is given by the jth row of

(Dpf(φ(x, ξ, η, θ, r), x, ξ, η, θ, r))
−1Drf(φ(x, ξ, η, θ, r), x, ξ, η, θ, r)r̃.

Since the elements of (Dpf(φ(x, ξ, η, θ, r), x, ξ, η, θ, r))
−1Drf(φ(x, ξ, η, θ, r), x, ξ, η, θ, r) are

continuous functions of x, ξ, η, θ, and r, the function that maps t to the maximum of the abso-

lute values of the elements of (Dpf(φ(x, ξ, η, θ, r), x, ξ, η, θ, r))
−1Drf(φ(x, ξ, η, θ, r), x, ξ, η, θ, r)t

takes a maximum M as x, ξ, η, θ, and r range over the compact set that contains them and

t ranges over the unit sphere in R
|Jg |. This gives

√
J max

j≤J,‖θ−θ0‖<ε
|p∗j − pj| ≤

√
J max

j≤J
M‖r̃j‖ → 0.

The rate of uniform convergence for s̄j/g follows since s̄j/g is equal to s̄∗j/g with p∗k replaced

by pk in the definition, and the formula in the definition has a derivative with respect to the

vector of prices in group g that is bounded in an open set containing all values of (x, ξ, η, θ, p)

that can be taken under the assumptions of the theorem. Thus, by the mean value theorem,

for some finite B,
√
J maxj≤J,‖θ−θ0‖<ε |s̄∗j/g − s̄j/g| ≤

√
JBmaxj≤J,‖θ−θ0‖<ε |p∗j − pj| → 0.

B.2 Vertical Model

In contrast to the other models in which consumers have an idiosyncratic preference term

εij for each item, consider a model in which consumers agree on the ranking of goods, but

differ in their willingness to pay for product quality, as in Bresnahan (1987). Utility of an

individual consumer is given by

uij = x′
jβ − ζippj + ξj ≡ δj − ζippj
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where ζip represents consumer i’s preference for product quality. A small value of ζip means

that consumer i has a high value for the quality of the inside goods relative to the numeraire

good. The outsize good 0 has p0 = 0 and δ0 normalized to 0.

Arrange the goods in order of product quality so that δ1 < . . . < δJ . If all products have

positive market share, this will imply that prices satisfy p1 < . . . < pJ as well. Consumer i

will prefer good j to j − 1 if

δj − ζippj > δj−1 − ζippj−1 ⇔ ∆j ≡
δj − δj−1

pj − pj−1

> ζip.

Combining this with the expression for j + 1, consumer i will prefer j to its neighbors if

∆j > ζip > ∆j+1. In order for all products to have positive market share, this must hold

for some ζip for all j, so we must have ∆1 > . . . > ∆J . If this is the case, consumers who

prefer j to its neighbors will also prefer j to all other products, so, letting F be the cdf of

ζip, market shares will be given by

sj = F (∆j)− F (∆j+1). (11)

If we define ∆0 = ∞ and ∆J+1 = −∞, this will hold for good J and the outside good 0 as

well.

This can be inverted to give

F−1

(
J∑

k=j

sk

)
(pj − pj−1) = (xj − xj−1)

′β + ξj − ξj−1.

If F is known, this equation can be estimated using OLS. If F is allowed to depend on

an unknown parameter, more instruments will be needed, so it will be useful to study the

identifying power of moment conditions based on characteristics of other products.

Differentiating the formula for shares with respect to pj gives, letting f be the pdf of ζip,

dsj
dpj

= −f(∆j)
∆j

pj − pj−1

− f(∆j+1)
∆j+1

pj+1 − pj
.

This gives markups in an interior Bertrand equilibrium as

pj −MCj =
F (∆j)− F (∆j+1)

f(∆j)
∆j

pj−pj−1
+ f(∆j+1)

∆j+1

pj+1−pj

. (12)
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Suppose that, for some ζ > 0, ζ ≤ ζip for all consumers. That is, willingness to pay

for product quality is bounded from above. In this case, if all products have positive mar-

ket share, we will have ∆j > ζ for all j. Thus, the denominator in Equation 12 will be

bounded from below as J increases, so, if market shares all converge to zero, markups will

converge to zero at the same rate or faster. If firms have approximately equal market shares

asymptotically, they will converge to zero at a 1/J rate, fast enough for Theorem 4 to hold.

One set of primitive conditions under which markups will converge to zero at a fast rate

is the following. In addition to assuming that ζip is bounded from below, suppose that

the density f of the random coefficient is bounded from above by f and from below by f .

Suppose that product characteristics are added in such a way that
√
J maxj≤J δj − δj−1 → 0

(e.g., this holds with probability one by results in Devroye, 1981, for the case where the

δj’s are order statistics of the uniform distribution or, by a quantile transformation, any

distribution with finite support and continuous density bounded from above and below) and

that all products have positive market share in equilibrium. Then

pj −MCj =
F (∆j)− F (∆j+1)

f(∆j)
∆j

pj−pj−1
+ f(∆j+1)

∆j+1

pj+1−pj

≤ f

f

∆j −∆j+1

∆j

pj−pj−1
+

∆j+1

pj+1−pj

≤ f

f
(pj − pj−1)

(the last inequality follows by bounding the denominator from below by f
∆j−∆j+1

pj−pj−1
). In order

for product j to have positive market share, we must have

ζ <
δj − δj−1

pj − pj−1

⇒ pj − pj−1 <
δj − δj−1

ζ
.

Thus,

√
J max

j≤J
pj −MCj ≤

√
J

f

f · ζ max
j≤J

δj − δj−1 → 0.

B.3 Multi Product Firms

This section considers the case with many small multiproduct firms. If the number of

products sold by each firm is fixed and the number of firms grows large, the results are

similar the single product case, although, due to the difficulty of proving existence and

uniqueness of equilibrium for these models with multi product firms, these results place

some conditions directly on equilibrium prices. In particular, these results require prices to

be bounded as the number of products increases, and the nested logit model requires the
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existence of an equilibrium in a limiting form of the game in which price is a differentiable

function of costs and characteristics.

For the logit model, we have
∂sj
∂pj

= −αsj(1−sj) and, for k 6= j,
∂sj
∂pk

= αsjsk. Substituting

this into the first order conditions for pj (equation 1) and dividing by −αsj gives

(pj −MCj)(1− sj(x, p, ξ))−
∑

k∈Ff ,k 6=j

(pk −MCk)sk(x, p, ξ)−
1

α
= 0. (13)

Assuming that prices and product characteristics are bounded as J increases, shares will go

to zero at a faster than
√
J rate. In this case, markups will converge to 1/α at a faster than√

J , as in the single product case.

For the nested logit model, it can be checked that, for k 6= j and k and j in the same nest,

∂sk/∂pj =
α

1−σ
sk(σs̄j/g + (1 − σ)sj). For k in some other nest ℓ, we have ∂sk/∂pj = αsksj.

Plugging these into the first order conditions for firm f setting pj gives

0 = − α

1− σ
(pj −MCj)sj(1− σs̄j/g − (1− σ)sj)

+
∑

k∈Ff∩Jg ,k 6=j

(pk −MCk)
α

1− σ
sk(σs̄j/g + (1− σ)sj) +

∑

k∈Ff\Jg

(pk −MCk)αsksj + sj.

Rearranging gives

0 =
1− σ

α
− (pj −MCj)(1− σs̄j/g − (1− σ)sj)

+
∑

k∈Ff∩Jg ,k 6=j

(pk −MCk)
s̄k/g
s̄j/g

(σs̄j/g + (1− σ)sj) +
∑

k∈Ff\Jg

(pk −MCk)(1− σ)sk

This can be written as, for r̃J a term that converges to zero at faster than a
√
J rate as

long as prices and product characteristics are bounded as J increases,

0 =
1− σ

α
− (pj −MCj)(1− σs̄j/g) +

∑

k∈Ff∩Jg ,k 6=j

(pk −MCk)σs̄k/g + r̃J . (14)

If this system of equations has a unique solution, and the function that takes marginal costs

and product characteristics of nest g and the remainder term to the vector of prices for nest

g that solves this system of equations for nest g has an invertible derivative for marginal

costs and product characteristics in a compact set that contains them by assumption, then

an argument similar to the one used for Theorem 6 will show that prices in the nested logit
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game converge uniformly at a faster than
√
J rate to those that solve these equations. As

with the single product firm case, equilibrium prices do not depend on characteristics of

goods in other nests asymptotically. This holds even for products in other nests owned by

the same firm.

In the full random coefficients model with multi product firms, the first order conditions

for product j are

− α(pj −MCj)

∫
s̃j(δ, ζ)(1− s̃j(δ, ζ)) dPζ(ζ)

+ α
∑

k∈Fj ,k 6=j

(pk −MCk)

∫
s̃j(δ, ζ)s̃k(δ, ζ) dPζ(ζ) + sj = 0.

This can be rearranged to give

(pj −MCj)

∫
s̃j(δ, ζ)(1− s̃j(δ, ζ)) dPζ(ζ)∫

s̃j(δ, ζ) dPζ(ζ)

=
∑

k∈Fj ,k 6=j

(pk −MCk)

∫
s̃j(δ, ζ)s̃k(δ, ζ) dPζ(ζ)∫

s̃j(δ, ζ) dPζ(ζ)
+

1

α
.

Under the assumptions of Theorem 1, the left hand side converges to (pj −MCj) at faster

than a
√
J rate. Assuming prices are bounded, the first term on the right hand side is

bounded by a constant times
∫
s̃j(δ,ζ)s̃k(δ,ζ) dPζ(ζ)∫

s̃j(δ,ζ) dPζ(ζ)
. This term goes to zero at the required rate

using the same argument as for
∫
s̃2j (δ,ζ) dPζ(ζ)∫
s̃j(δ,ζ) dPζ(ζ)

, since, using the notation of the proof of Theorem

1,
∫
s̃j(δ, ζ)s̃k(δ, ζ) dPζ(ζ) ≤ s2J + Pζ(‖ζ‖ > kJ), giving the same bound on the numerator.

C Support Conditions

This section provides primitive sufficient conditions for the bounded price assumption in

Theorem 1, and relaxes the assumption of bounded product characteristics. Theorem 7

shows that the high level assumption on prices in Theorem 1 will hold as long as the support

of the random coefficients ‖ζ‖ is bounded. Theorem 8 relaxes the finite support condition for

product characteristics to an exponential tail bound, also using an assumption of bounded

random coefficients. It seems likely that some of these conditions could be relaxed further

using more involved arguments, although this is left for future research.

Theorem 7. In the random coefficients logit model, suppose that the support of the distri-

bution of the random coefficients ζ is bounded and that the sequence of marginal costs and
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product characteristics is bounded. Then, for any Nash-Bertrand equilibrium of the pricing

game with single product firms, prices are bounded by a constant that does not depend on J .

Proof. For B a bound on x′
k(β + ζ) + ξk over all j and the support of ζ,

exp(−2B − αpj)∑
k exp(−αpk)

=
exp(−B − αpj)∑
k exp(B − αpk)

≤ s̃j(δ, ζ) ≤
exp(B − αpj)∑
k exp(−B − αpk)

=
exp(2B − αpj)∑

k exp(−αpk)

for all ζ its support. In particular, supζ∈supp(ζ) sj(δ, ζ)/ infζ∈supp(ζ) sj(δ, ζ) ≤ exp(4B). Plug-

ging these bounds into the first order conditions for product j gives

pj −MCj −
1

α
=

1

α

∫
s̃2j(δ, ζ) dPζ(ζ)∫

s̃j(δ, ζ)(1− s̃j(δ, ζ)) dPζ(ζ)
≤ exp(4B)

1

α

∫
s̃j(δ, ζ) dPζ(ζ)

1−
∫
s̃j(δ, ζ) dPζ(ζ)

.

The right hand side is increasing in
∫
s̃j(δ, ζ) dPζ(ζ), which is bounded by exp(B−αpj)/[1+

exp(B − αpj)] (since one of the other products is the outside good with utility 0), giving a

bound of

exp(4B)
1

α

exp(B−αpj)

1+exp(B−αpj)

1− exp(B−αpj)

1+exp(B−αpj)

= exp(4B)
1

α
exp(B − αpj) =

1

α
exp(5B − αpj)

for the previous display. Taking logs and rearranging,

αpj ≤ − logα + 5B − log

(
pj −MCj −

1

α

)

If pj −MCj − 1
α
≥ 1, then the right hand side is less than − logα + 5B, so pj ≤ (− logα +

5B) ∨ (MCj + 1/α + 1).

Theorem 8. Under the setup of Theorem 1, suppose that ‖ζ‖ has finite support. Then the

condition that the support of prices, product characteristics and marginal costs is bounded

can be replaced by the condition that, for some K and ε > 0, P (‖xj, ξj ,MCj‖ > t) ≤
K exp (−t1+ε), and the conclusion of the theorem will still hold.

Proof. If ζ has bounded support and xk and ξk are bounded by some BJ , then, for some

constant K1, ‖x′
k(β + ζ) + ξk‖ ≤ K1BJ on the support of ζ. In addition, by the bound in

Theorem 7, if MCk is bounded by BJ as well, we will have, for some constant K2, pk ≤ K2BJ

for all k.

Thus, on the event that ‖(xk, ξk,MCk)‖ ≤ BJ for all k ≤ J , we will have, for a constant

K that depends only on K1, K2 and α, ‖x′
k(β + ζ)− αpk + ξk‖ ≤ KBJ , so, on the support
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of ζ,

exp(−2KBJ)

J
=

exp(−KBJ)∑
k exp(KBJ)

≤ s̃j(δ, ζ) ≤
exp(KBJ)∑
k exp(−KBJ)

=
exp(2KBJ)

J
.

It follows that

∫
s̃2j(δ, ζ) dPζ(ζ)∫
s̃j(δ, ζ) dPζ(ζ)

≤

[
exp(2KBJ )

J

]2

exp(−2KBJ )
J

=
1

J
exp(6KBJ)

on this event. Since the markup goes to zero at the same rate as the quantity in the above

display, the result will hold as long as the bound on the right hand side decreases at a faster

than
√
J rate, and the event ‖(xk, ξk,MCk)‖ ≤ BJ for all k ≤ J holds with probability

approaching one.

The right hand side of the above display decreases more quickly than 1/
√
J for BJ =

(log J)/(12K+1), so the result will follow as long as P (‖(xj, ξj ,MCj)‖ > BJ some j ≤ J) →
0 for this choice of BJ . Indeed,

P (‖(xj, ξj,MCj)‖ > BJ some j ≤ J) ≤ JP (‖(x1, ξ1,MC1)‖ > BJ) ≤ JK exp
(
−B1+ε

J

)

= JK exp
{
−[(log J)/(12K + 1)]1+ε

}
→ 0,

giving the result.

D Monte Carlo

This section reports details for the monte carlos, as well as results for designs not reported

in the main text. The data generating process for the monte carlo data sets is as follows.

xj contains a constant and a uniform (0, 1) random variable. I generate the cost shifter, zj,

as another uniform random variable independent of x. Marginal cost is given by MCj =

(x′
j, z

′
j)γ + ηj for a ηj defined as follows. To generate η and ξ, I generate three independent

uniform (0, 1) random variables u1j , u2j, and u3j, and set ξj = .9 · u1j + .1 · u3j − 1 and

ηj = .9 · u1j + .1 · u2j − 1 so that η and ξ are correlated and bounded. xj, ξj, and ηj are

independent across products j. Utility is given by the random coefficients model of section

3.1, with the random coefficient on the covariate given by a N(0, σ2) random variable, where

σ2 is set to 9 and is estimated in the monte carlos. The parameters are given by α = 1,

β = (3, 6)′, and γ = (2, 1, 1)′, where the last element of γ is the coefficient of the excluded
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cost instrument. Note that with these parameter values, the variance of the observed portion

of utility x′β across products and the idiosyncratic component εij across consumers is of the

same order of magnitude (the variance of the extreme value error εij is π2/6, while the

nonconstant element of x′β has a variance of 3). For a small number of monte carlo draws,

the equation solver did not converge to a solution for equilibrium prices or the estimator did

not converge, and these were discarded.

The share function and inverse share function were computed by monte carlo integration

with 10 draws of the random coefficients, with the same draws used to generate shares and

to compute the inverse share function. Since the same monte carlo draws are used in both

cases, there is no simulation error from monte carlo integration if we consider the random

coefficients to be drawn from a discrete distribution with 10 points.

The last two columns report rejection probabilities for a two sided test for the price

coefficient α at its true value and for testing α = 0. Note that the second to last column,

which gives the rejection probability at the true value of α, is a lower bound for the size

of the test, since the size of the test is the supremum of this rejection probability over all

possible values of other parameters (correlation between cost shocks and demand shocks,

etc.).

In addition to the results reported in the main text, which use 10 products per firm, I

perform monte carlos with 2 products per firm, and with firm size varying between 2 products

in approximately 1/3 of the markets, 5 products in 1/3 of the markets, and 10 products per

firm in the remaining markets. Finally, I report the results of the first stage F test and the

test statistic suggested in section 4.2 (labeled “BLP F”) applied to the linear part of the

model. Note that neither of these tests gives a full test for lack of identification, since they

only apply to the linear part of the model.

Regarding the results for the first stage statistics, note that the usual first stage F statistic

and the “BLP F” statistic perform similarly. This is likely because the markups used for the

“BLP F” statistic are correctly specified (recall that the “BLP F” is designed not to reject

too often in cases where the supply side model is misspecified in ways that constrain BLP

instruments to perform poorly). From these monte carlos, it appears that the F above 10 rule

or a similar rule based on the “BLP F” statistic does a decent job of predicting whether the

BLP instruments perform well, despite being based on a setting where nonlinear parameters

do not have to be estimated (although this finding should be interpreted with caution given

the limited scope of the monte carlos).
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markets firm products median median absolute rejection prob. power of test
size per market bias deviation from α0 at true α of α = 0

1 2 20 -0.3385 0.6081 0.1439 0.2052
1 2 60 -0.3613 0.6660 0.0631 0.0731
1 2 100 -0.3491 0.6825 0.1266 0.1628
1 10 20 -0.2147 1.9530 0.2729 0.2729
1 10 60 -0.3698 0.6691 0.0783 0.1004
1 10 100 -0.3648 0.7177 0.1211 0.1381
3 varied 20 -0.0229 0.1665 0.0450 0.7390
3 varied varied -0.0890 0.2786 0.0520 0.4700
3 varied 60 -0.0804 0.3922 0.1002 0.2956
3 varied 100 -0.1586 0.4504 0.0160 0.1590
3 2 20 -0.2893 0.6742 0.0280 0.0750
3 2 varied -0.3313 0.6753 0.0250 0.0600
3 2 60 -0.3697 0.7407 0.0090 0.0530
3 2 100 -0.3154 0.7171 0.0140 0.0600
3 10 20 -0.1053 0.3358 0.0390 0.3980
3 10 varied -0.0494 0.2966 0.1523 0.4649
3 10 60 -0.2186 0.5827 0.0200 0.1040
3 10 100 -0.2525 0.6383 0.1351 0.1762
20 varied 20 -0.0044 0.0504 0.0510 1.0000
20 varied varied -0.0211 0.1537 0.0480 0.9170
20 varied 60 -0.0061 0.1158 0.0400 0.9990
20 varied 100 -0.0190 0.1659 0.0410 0.9450
20 2 20 -0.0393 0.3504 0.1552 0.4535
20 2 varied -0.1578 0.4697 0.0851 0.2543
20 2 60 -0.1689 0.6458 0.0090 0.1080
20 2 100 -0.2191 0.6897 0.1061 0.1632
20 10 20 0.0039 0.1140 0.0390 0.9880
20 10 varied -0.0014 0.1001 0.0400 0.9960
20 10 60 0.0130 0.2345 0.0230 0.7710
20 10 100 -0.0379 0.3154 0.0200 0.4560

Table 4: Monte Carlo Results for BLP Instruments
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markets firm products median median absolute rejection prob. power of test
size per market bias deviation from α0 at true α of α = 0

1 2 20 -0.0795 0.3155 0.1510 0.4387
1 2 60 -0.0202 0.1580 0.0893 0.7222
1 2 100 -0.0194 0.1250 0.0836 0.7462
1 10 20 -0.0854 0.3049 0.0794 0.2487
1 10 60 -0.0247 0.1749 0.1130 0.6710
1 10 100 -0.0196 0.1358 0.0762 0.7623
3 varied 20 -0.0241 0.1819 0.0801 0.6286
3 varied varied -0.0047 0.0932 0.0441 0.7854
3 varied 60 -0.0090 0.0960 0.0513 0.7678
3 varied 100 -0.0027 0.0760 0.0562 0.8193
3 2 20 -0.0238 0.1766 0.0843 0.6128
3 2 varied -0.0097 0.0999 0.0592 0.7653
3 2 60 0.0011 0.0930 0.0501 0.7898
3 2 100 0.0003 0.0736 0.0340 0.8338
3 10 20 -0.0262 0.1837 0.1002 0.6092
3 10 varied -0.0122 0.1000 0.0852 0.7916
3 10 60 -0.0102 0.1007 0.0661 0.7768
3 10 100 -0.0054 0.0767 0.0662 0.8175
20 varied 20 0.0036 0.0703 0.0190 0.7850
20 varied varied 0.0006 0.0390 0.0593 0.8593
20 varied 60 -0.0004 0.0369 0.0561 0.8509
20 varied 100 -0.0003 0.0287 0.0210 0.9000
20 2 20 -0.0013 0.0685 0.0633 0.7801
20 2 varied 0.0021 0.0402 0.0411 0.8537
20 2 60 0.0035 0.0385 0.0644 0.8632
20 2 100 -0.0003 0.0286 0.0483 0.8813
20 10 20 0.0065 0.0663 0.0220 0.7840
20 10 varied -0.0008 0.0385 0.0522 0.8554
20 10 60 -0.0023 0.0365 0.0641 0.8707
20 10 100 -0.0027 0.0298 0.0481 0.8826

Table 5: Monte Carlo Results for Cost Instruments
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markets firm products median median absolute rejection prob. power of test
size per market bias deviation from α0 at true α of α = 0

1 2 20 -0.3318 0.6416 0.1054 0.1486
1 2 60 -0.3589 0.6896 0.0842 0.1032
1 2 100 -0.3272 0.6853 0.0874 0.1206
1 10 20 1.4864 28.2989 0.3064 0.3064
1 10 60 -0.3112 0.6440 0.0521 0.0922
1 10 100 -0.3156 0.6748 0.1117 0.1368
3 varied 20 -0.2828 0.6433 0.0130 0.0560
3 varied varied -0.3300 0.7105 0.0110 0.0460
3 varied 60 -0.3228 0.7043 0.0090 0.0590
3 varied 100 -0.3146 0.6614 0.0060 0.0470
3 2 20 -0.3583 0.7749 0.0912 0.1082
3 2 varied -0.3333 0.6597 0.0160 0.0551
3 2 60 -0.3485 0.7714 0.0110 0.0591
3 2 100 -0.3118 0.7599 0.0340 0.0791
3 10 20 -0.3069 0.7160 0.0150 0.0520
3 10 varied -0.3049 0.7559 0.0090 0.0560
3 10 60 -0.3540 0.7290 0.0120 0.0460
3 10 100 -0.3341 0.7353 0.0250 0.0581
20 varied 20 -0.3111 0.7932 0.0100 0.0620
20 varied varied -0.2830 0.7370 0.0090 0.0580
20 varied 60 -0.3471 0.8158 0.0080 0.0450
20 varied 100 -0.3545 0.7563 0.0060 0.0530
20 2 20 -0.3432 0.8074 0.0150 0.0600
20 2 varied -0.3514 0.7758 0.0130 0.0570
20 2 60 -0.3504 0.8160 0.0060 0.0460
20 2 100 -0.3279 0.8166 0.0080 0.0580
20 10 20 -0.3292 0.7525 0.0100 0.0430
20 10 varied -0.3570 0.8237 0.0090 0.0500
20 10 60 -0.3387 0.8265 0.1533 0.1814
20 10 100 -0.3454 0.7592 0.0090 0.0470

Table 6: Monte Carlo Results for BLP Instruments with Constant Markups
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markets firm products median median absolute rejection prob. power of test
size per market bias deviation from α0 at true α of α = 0

1 2 20 -0.0614 0.3010 0.1470 0.4673
1 2 60 -0.0148 0.1538 0.0843 0.7329
1 2 100 -0.0185 0.1233 0.0604 0.7613
1 10 20 -0.0493 0.2920 0.0906 0.2867
1 10 60 -0.0231 0.1724 0.0915 0.6915
1 10 100 -0.0192 0.1329 0.0765 0.7533
3 varied 20 -0.0100 0.1694 0.0582 0.6790
3 varied varied -0.0085 0.0934 0.0654 0.7827
3 varied 60 -0.0099 0.0969 0.0350 0.7778
3 varied 100 -0.0025 0.0736 0.0431 0.8317
3 2 20 -0.0198 0.1652 0.0512 0.6305
3 2 varied -0.0078 0.0946 0.0765 0.7736
3 2 60 0.0015 0.0907 0.0240 0.8008
3 2 100 0.0011 0.0722 0.0472 0.8312
3 10 20 -0.0147 0.1765 0.0290 0.6630
3 10 varied -0.0097 0.0968 0.0361 0.7936
3 10 60 -0.0096 0.0977 0.0701 0.7808
3 10 100 -0.0055 0.0748 0.0531 0.8206
20 varied 20 0.0039 0.0693 0.0731 0.7675
20 varied varied -0.0002 0.0371 0.0581 0.8768
20 varied 60 0.0004 0.0363 0.0320 0.8639
20 varied 100 -0.0002 0.0282 0.0230 0.8979
20 2 20 0.0015 0.0643 0.0150 0.7978
20 2 varied 0.0020 0.0382 0.0561 0.8527
20 2 60 0.0040 0.0370 0.0260 0.8619
20 2 100 -0.0006 0.0283 0.0350 0.8919
20 10 20 0.0045 0.0607 0.0711 0.7886
20 10 varied -0.0000 0.0390 0.0703 0.8574
20 10 60 -0.0021 0.0362 0.0552 0.8645
20 10 100 -0.0023 0.0300 0.0733 0.8855

Table 7: Monte Carlo Results for Cost Instruments with Constant Markups
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markets firm products P (BLP F > 10) P (F > 10) median of median
per market BLP F of F

3 varied 20 0.8030 0.7270 12.2745 13.0851
3 varied varied 0 0.1080 4.6991 5.3294
3 varied 60 0 0.0120 1.8279 2.3794
3 varied 100 0 0.0020 0.9503 1.4793
3 2 20 0 0 0.2324 0.8984
3 2 varied 0 0 0.3586 1.0101
3 2 60 0 0 0.0494 0.7626
3 2 100 0 0 0.0247 0.7411
3 10 20 0.0340 0.0370 1.4653 2.1550
3 10 varied 0.9930 0.8400 13.9655 14.8231
3 10 60 0 0 0.4476 0.9579
3 10 100 0 0 0.2314 0.8708
20 varied 20 1.0000 1.0000 79.9612 80.7936
20 varied varied 0.9980 0.7080 12.3633 12.9017
20 varied 60 0.9910 0.6920 11.8897 12.1792
20 varied 100 0 0.2230 6.1283 6.7278
20 2 20 0 0.0100 1.7318 2.1817
20 2 varied 0 0.0240 2.4032 2.9314
20 2 60 0 0 0.3260 0.8944
20 2 100 0 0 0.1686 0.8750
20 10 20 0.6470 0.6380 12.1892 12.3467
20 10 varied 1.0000 1.0000 93.5960 93.5900
20 10 60 0 0.0210 3.0468 3.4386
20 10 100 0 0.0020 1.5715 2.0943

Table 8: Monte Carlo Results for First Stage Tests
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