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Abstract

In this paper we study the asymptotic distribution of simulation estimators where the
same set of simulation draws are used for all observations under general conditions that
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estimators that solve a system of simulated moments and estimators that maximize
a simulated likelihood. Many simulation estimators used in empirical work involve
both overlapping simulation draws and nondifferentiable moment functions. Develop-
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to the existing results in the literature on the asymptotics of simulation estimators.
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1 Introduction

Simulation estimation is popular in economics and is developed by Lerman and Manski

(1981), McFadden (1989), Laroque and Salanie (1989), (1993), Duffie and Singleton (1993),

and Gourieroux and Monfort (1996) among others. A general asymptotic approach is pro-

vided by Pakes and Pollard (1989) who consider generalized method of simulated moment

estimators when a fixed number of independent simulations are used for each of the inde-

pendent observations. A recent insightful paper by Lee and Song (2009) also developed

results for a class of simulated maximum likelihood-like estimators. In practice, however,

researchers sometimes use the same set of simulation draws for all the observations in the

dataset.

The properties of simulation based estimators using overlapping simulation draws are

studied by Lee (1992) and Lee (1995) under the conditions that the simulated moment

conditions are smooth and continuously differentiable functions of the parameters. This is,

however, a strong assumption that is likely to be violated by many simulation estimators used

in practice. We extend the above results to nonsmooth moment functions using empirical

process and U process theories developed in a sequence of papers by Pollard (1984), Nolan

and Pollard (1987, 1988) and Neumeyer (2004). In particular, the main insight relies on

verifying the high level conditions in Chen, Linton, and Van Keilegom (2003) and Ichimura

and Lee (2010) by combining the results in Neumeyer (2004) with empirical process theories

(Pakes and Pollard (1989), Andrews (1994) and Newey and McFadden (1994)).

Whether using overlapping simulations for all observations presents an improvement in

computational efficiency depends on the specific model. Generating the random numbers is

easy but computing the moment condition or the likelihood function is typically difficult.

If the observations yi and xi, i = 1, . . . , n, where n is the sample size, are continuous and

are different for each observation, then one might not save at all at computation if the

same simulations are used for all observations because the total account of computations is

still of the order of n × R, where R is the total number of simulation draws. However, in

practice, researchers often extrapolate the simulated moment conditions or the likelihood

function over a range of the covariate variables (Gallant, Hong, and Khwaja (2011)). The
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literature of dynamic discrete choice models, for example, also extrapolates the solution of the

dynamic program over the space of state variables (e.g. Keane and Wolpin (1994)). Strictly,

these methods that combine nonparametric smoothing with simulation estimation do not

fall squarely into either the independent case in Pakes and Pollard (1989) or the overlapping

simulation case studied here. Yet the results reported here together with the results for

independent simulations in the literature should provide some guidance to how future work

can be developed for the intermediate case of extrapolated simulation draws. Allowing for

nonsmooth simulators may indeed improve computation time over smooth simulators. For

example, the Stern (1992) decomposition simulator, while smooth and unbiased, requires

repeated calculations of eigenvalues and is computationally prohibitive. Laffont, Ossard,

and Vuong (1995) and Kristensen and Salanié (2010) develops bias reduction techniques for

simulation estimators.

2 Simulated Moments and Simulated Likelihood

We begin by formally defining the method of simulated moments and maximum simulated

likelihood using overlapping simulation draws. These methods are defined in Lee (1992) and

Lee (1995) in the context of multinomial discrete choice models. We use a more general

notation to allow for both continuous and discrete dependent variables. Let zi = (yi, xi) be

i.i.d. random variables in the observed sample for i = 1, . . . , n, where yi are the dependent

variables and xi are the covariates or regressors. We are concerned about estimating an

unknown parameter θ.

The method of moments estimator is based on a set of moment conditions g(zi, θ) such

that g(θ) ≡ Pg(zi, θ) is zero if and only if θ = θ0 where θ0 is construed as the true parameter

value. In the above Pg(zi, θ) denotes expectation with respect to the sample observation of

zi. In models where the moment g(zi, θ) can not be analytically evaluated, it can often be

approximated using simulations. Let ωr, r = 1, . . . , R, be a set of simulation draws, and let

q(zi, ωr, θ) be a function such that it is an unbiased estimator of g(zi, θ) for all zi:

Qq(z, ·, θ) ≡
∫
q(z, ω, θ) dQ(ω) = g(z, θ).
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Then the unknown moment condition g(z, θ) can be estimated by

ĝ(z, θ) =
1

R

R∑
r=1

q(z, ωr, θ),

which in turn is used to form an estimate of the population moment condition g(θ):

ĝ(θ) =
1

n

n∑
i=1

ĝ(zi, θ) =
1

nR

n∑
i=1

R∑
r=1

q(zi, ωr, θ).

The method of simulated moments (MSM) estimator with overlapping simulated draws is

defined with the usual quadratic norm as in Pakes and Pollard (1989)

θ̂ =
θ∈Θ

argmin ‖ĝ(θ)‖2
Wn

where ‖x‖2
W = x′Wx.

In the maximum simulated likelihood method, we reinterpret g(zi; θ) as the likelihood func-

tion of θ at the observation zi, and ĝ(zi; θ) as the simulated likelihood function which is an

unbiased estimator of g(zi; θ). The MSL estimator is usually defined as, for i.i.d data,

θ̂ =
θ∈Θ

argmax
1

n

n∑
i=1

log ĝ(zi; θ).

While g(zi; θ) is typically a smooth function of zi and θ, ĝ(zi; θ) often times is not. In these

situations it is difficult to obtain the exact optimum for both MSM and MSL, and these

definitions will be relaxed below to only require that the MSM and MSL estimators obtain

“near-optimum” of the respective objective functions.

In the following we will develop conditions under which both MSM and MSL are consis-

tent as both n→∞ and R→∞. Under the conditions given below, they both converge at

the rate of
√
m, where m = min(n,R) to a limiting normal distribution. These results are de-

veloped separately for MSM and MSL. For MSL, the condition that R >>
√
n is required for

asymptotic normality with independent simulation draws, e.g. Laroque and Salanie (1989)

and Train (2003). With overlapping draws, asymptotic normality holds as long as both R

and n converge to infinity. If R << n, then the convergence rate becomes
√
R instead of

√
n. A simulation estimator with overlapping simulations can also be viewed as a profiled

two step estimator to invoke the high level conditions in Chen, Linton, and Van Keilegom

(2003). The derivations in the remaining sections are tantamount to verifying these high
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level conditions. For maximum likelihood with independent simulations, the bias reduction

condition
√
R/n → ∞ is derived in Laroque and Salanie (1989), (1993) and Gourieroux

and Monfort (1996), and is strengthened by Lee and Song (2009) to
√
R logR/n → ∞ for

nonsmooth maximum likelihood like estimators.

3 Asymptotics of MSM with Overlapping Simulations

The MSM objective function takes the form of a two-sample U-process studied extensively

in Neumeyer (2004):

ĝ(θ) ≡ 1

nR
SnR(θ) where SnR(θ) ≡

n∑
i=1

R∑
r=1

q(zi, ωr, θ),

with kernel function q(zi, wr, θ) and its associated projections

g(zi, θ) = Qq(zi, ·, θ) and h(wr, θ) ≡ Pq(·, wr, θ).

The following assumption restricts the complexity of the kernel function and its projections

viewed as classes indexed by the parameter θ.

ASSUMPTION 1 The following three classes of functions

F = {q(zi, wr, θ), θ ∈ Θ},

QF = {g(zi, θ), θ ∈ Θ} = {Qf, f ∈ F},

PF = {h(wr, θ), θ ∈ Θ} = {Pf, f ∈ F},

are Euclidean classes for the L1 norm as defined in Pakes and Pollard (1989) whose envelope

functions, denoted respectively by F , QF and PF , have at least two moments; cf. Lemma 25

(p. 27), Lemma 36 (p. 34), and Theorem 37 (p. 34) of Pollard (1984). The function q(yi, ωr, θ)

is mean square continuous at θ0.

This assumption is satisfied by most known functions, except for very large classes of

functions such as the example in page 2252 of Andrews (1994). In the case of binary choice

models, it is satisfied given common low level conditions on the random utility functions. For

example, when the random utility function is linear with an addititive error term, q(zi, wr, θ)
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typically takes a form that resembles 1 (z′iθ + wr ≥ 0), which is Euclidean by Lemma 18

in Pollard (1984). As another example, in random coefficient binary choice models, the

conditional choice probability is typically the integral of a distribution function of a single

index Λ (x′iβ) over the disribution of the random coefficient β. Suppose β follows a normal

distribution with mean v′iθ1 and a variance matrix with Cholesky factor θ2, then the choice

probability is given by, for φ (·;µ,Σ) normal density function with mean µ and variance

matrix Σ,
∫

Λ (x′iβ)φ (β; v′iθ1, θ
′
2θ2) dβ. In this model, for draws ωr from the standard normal

density, and for zi = (xi, vi), q(zi, wr, θ) takes a form that resembles

Λ (x′i (viθ1 + θ′2ωr)) = Λ

(
x′iviθ1 +

K∑
k=1

xikθ
′
2kωr

)
.

As long as Λ (·) is a monotone function, this function is Euclidean according to Lemma 2.6.18

in Van der Vaart and Wellner (1996).

Under assumption 1, which implies that the class F and its projections QF and PF are

VC-classes (see Neumeyer (2004), p. 79), the following lemma is analogous to Theorems 2.5,

2.7 and 2.9 of Neumeyer (2004).

LEMMA 1 Under Assumption 1 the following statements hold:

a. Define

q̃(z, ω, θ) = q(z, ω, θ)− g(z, θ)− h(w, θ) + g(θ),

then

sup
θ∈Θ

S̃nR(θ) = Op(
√
nR),

where

S̃nR(θ) ≡
n∑
i=1

R∑
r=1

q̃(z, ω, θ).

b. Define

UnR(θ) ≡
√
m

(
1

nR
SnR(θ)− g(θ)

)
,

then

sup
d(θ1,θ2)=o(1)

|UnR(θ1)− UnR(θ2)| = op(1).
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c. Further,

sup
θ∈Θ

∣∣∣∣ 1

nR
SnR(θ)− g(θ)

∣∣∣∣ = op(1).

Proof The first statement (a) follows from Theorem 2.5 in Neumeyer (2004). The proof of

part (b) resembles Theorem 2.7 in Neumeyer (2004) but does not require n/(n + R)→ κ ∈

(0, 1). First define ŨnR(θ) =
√
m

nR
S̃nR(θ). It follows from part (a) that

sup
θ∈Θ

ŨnR(θ) = Op

(√
m

nR

)
= op(1).

Since UnR(θ) = ŨnR(θ) +
√
m(Pn − P )g(zi, θ) +

√
m(QR − Q)h(ωr, θ), where we define

Pnf(zi) ≡ 1
n

∑n
i=1 f (zi) and QRg (ωr) = 1

R

∑R
r=1 g (ωr), it then only remains to verify the

stochastic equicontinuity conditions for the two projection terms:

sup
d(θ1,θ2)=o(1)

√
m(Pn − P )(g(zi, θ1)− g(zi, θ2)) = op(1),

and

sup
d(θ1,θ2)=o(1)

√
m(QR −Q)(h(ωr, θ1)− h(ωr, θ2)) = op(1).

This in turn follows from m ≤ n,R and the equicontinuity lemma of Pollard (1984), p. 150.

Part (c) mimicks Theorem 2.9 in Neumeyer (2004), noting that

1

nR
SnR(θ)− g(θ) =

1

nR
S̃nR(θ) + (Pn − P )g(zi, θ) + (QR −Q)h(wr, θ),

and invoking part (a) and Theorem 24 of Pollard (1984), p. 25. 2

Lemma 1 will be applied in combination with the following restatement of a version of

Theorem 7.2 of Newey and McFadden (1994) and Theorem 3.3 of Pakes and Pollard (1989).

THEOREM 1 Let θ̂
p−→ θ0, where g(θ) = 0 if and only if θ = θ0, which is an interior point

of the compact Θ. If

i. ‖ĝ(θ̂)‖Wn ≤ infθ ‖ĝ(θ)‖Wn + op(m
−1/2).

ii. Wn = W + op(1) where W is positive definite.

iii. g(θ) is continuously differentiable at θ0 with a full rank derivative matrix G.

iv. supd(θ,θ0)=o(1)

√
m ‖ĝ(θ)− g(θ)− ĝ(θ0)‖W = op(1).
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v.
√
m ĝ(θ0)

d−→ N(0,Σ).

Then the following result holds

√
m(θ̂ − θ0)

d−→ N(0, (G′WG)−1G′WΣWG(G′WG)−1). �

Remark: The original Theorem 3.3 of Pakes and Pollard (1989) uses the Euclidean norm

to define the GMM objective function, which amounts to using an identity weighting matrix

Wn ≡ I. However, generalizing their proof arguments to a general random Wn is straight-

forward. First, note that their Theorem 3.3 is isophormic to using a fixed positive definite

weighting matrix W to define the norm. This is because if one uses the square root A of

W (such that A′A = W ) to form a linear combination of the original moment conditions

ĝ(θ), the moment condition in Theorem 3.3 can be reinterpreted as Aĝ(θ), and exactly the

same arguments in the proof goes through, with the matrixes Γ and V in P&P being AG

and AΣA′.

Second, a close inspection of the proof of Theorem 3.3 in P&P shows that their Condi-

tion (i) is only used to the extent of requiring both

‖ĝ(θ̂)‖W ≤ ‖ĝ(θ0)‖W + op(m
−1/2), and ‖ĝ(θ̂)‖W ≤ ‖ĝ(θ∗)‖W + op(m

−1/2),

where θ∗ is the minimizer of the quadratic approximation to the objective function ‖ĝ(θ)‖W
defined in p. 1042 of P&P. These will follow from Condition [i] if:

‖ĝ(θ̂)‖Wn = ‖ĝ(θ̂)‖W + op(m
−1/2), ‖ĝ(θ0)‖Wn = ‖ĝ(θ0)‖W + op(m

−1/2)

and

‖ĝ(θ∗)‖Wn = ‖ĝ(θ∗)‖W + op(m
−1/2),

all of which follow in turn from combining Conditions [ii], [iv] and [v].

Consistency, under the conditions stated in Corollary 1, is an immediate consequence of

part (c) of Lemma 1 and Corollary 3.2 of Pakes and Pollard (1989). Asymptotic normality

is an immediate consequence of Theorem 1.

COROLLARY 1 Given Assumption 1, θ̂
p−→ θ0 under the following conditions: (a) g(θ) =

0 if and only if θ = θ0; (b) Wn
p−→ W for W positive definitive; and (c)∥∥∥ĝ(θ̂)
∥∥∥
Wn

= ‖ĝ(θ0)‖Wn
+ op(1).
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Furthermore, if
∥∥∥ĝ(θ̂)

∥∥∥
Wn

= ‖ĝ(θ0)‖Wn
+ op(m

−1/2), and if R/n→ κ ∈ [0,∞] as n→∞,

R→∞, then the conclusion of Theorem 1 holds under Assumption 1, with Σ = (1∧κ)Σg +

(1 ∧ 1/κ)Σh, where Σg = Var(g(zi, θ0)) and Σh = Var(h(ωr, θ0)). �.

In particular, Lemma 1.b delivers condition [iv]. Condition [v] is implied by Lemma 1.a

because

√
mĝ(θ0) = ŨnR(θ0) +

√
m(Pn − P )g(zi, θ0) +

√
m(QR −Q)h(ωr, θ0)

=
√
m(Pn − P )g(zi, θ) +

√
m(QR −Q)h(ωr, θ0) + op(1)

d−→ N(0, (1 ∧ κ)Σg + (1 ∧ 1/κ)Σh).

3.1 MSM Variance Estimation

Each component of the asymptotic variance can be estimated using sample analogs. A

consistent estimate Ĝ of G, with individual elements Gj, can be formed by numerical differ-

entiation, for ej being a dθ × 1 vector with 1 in the jth position and 0 otherwise, and δ a

step size parameter

Ĝj ≡ Ĝj

(
θ̂, δ
)

=
1

2δ

[
ĝ(θ̂ + ejδ)− ĝ(θ̂ − ejδ)

]
.

A sufficient condition for Ĝ(θ̂)
p−→ G (θ0) is that both δ → 0 and

√
mδ → ∞. Under these

conditions, Lemma 1.b implies that Ĝj −Gj(θ̂)
p−→ 0, and Gj(θ̂)

p−→ Gj(θ0) as both δ → 0

and θ̂
p→ θ0. (In practice one would not let δ fall below the value that is optimal for a

machine’s precision.) Hong, Mahajan, and Nekipelov (2009) shows that consistency holds

under much weaker sufficient conditions. Extending these results to two sample U-statistics

is beyond the scope of paper. Σ can be consistently estimated by

Σ̂ = (1 ∧R/n) Σ̂g + (1 ∧ n/R) Σ̂h,

where

Σ̂g =
1

n

n∑
i=1

ĝ(zi, θ̂) ĝ
′(zi, θ̂) and Σ̂h =

1

R

R∑
r=1

ĥ(ωr, θ̂) ĥ
′(ωr, θ̂).

In the above

ĥ(ω, θ) =
1

n

n∑
i=1

q (zi, ω, θ) .
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Resampling methods, such as bootstrap and subsampling, or MCMC, can also be used for

inference. Note that in Σ̂ above, R has to go to infinity with overlapping draws. In contrast,

with independent draws, a finite R only incurs an efficiency loss of the order of 1/R.

4 Asymptotics of MSL with overlapping simulations

In this section we derive the asymptotic properties of maximum simulated likelihood estima-

tors with overlapping simulations, which requires a different approach due to the nonlinearity

of the log function. Recall that MSL is defined as

θ̂ =
θ∈Θ

argmax L̂(θ),

where

L̂(θ) = Pn logQR q(·, ·, θ) =
1

n

n∑
i=1

log
1

R

R∑
r=1

q(zi, ωr, θ) =
1

n

n∑
i=1

log ĝ(zi, θ);

L̂(θ) and θ̂ are implicitly indexed by m = min(n,R).

To begin with, the Euclidean property is required of the class of functions q(z, ·, θ) of

ω viewed as indexed by both θ and z. Frequently g(z, θ) is a conditional likelihood in the

form of g(y |x, θ) where z = (y, x) includes both the dependent variable and the covariates.

The “densities” g(zi; θ) are broadly interpreted to include also probability mass functions

for discrete choice models or a mixture of probability density functions and probability mass

functions for mixed discrete-continuous models.

ASSUMPTION 2 The class of functions indexed by both θ and z: L = { q(z, ·, θ) : z ∈

Z, θ ∈ Θ} has polynomial degree of covering numbers and uniformly bounded envelope

function L.

The following boundedness assumption is restrictive, but is difficult to relax for nons-

mooth simulators using empirical process theory. It is also assumed in Lee (1992, 1995).

ASSUMPTION 3 There is an M <∞ such that supz,θ

∣∣∣ 1
g(z,θ)

∣∣∣ < M .

Let L(θ) = P log g(z; θ). The Euclidean property and boundedness assumption ensures

uniform convergence.
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LEMMA 2 Under Assumptions 1, 2, and 3, L̂ (θ) − L̂ (θ0) converges to L (θ) − L (θ0) as

m→∞ uniformly over Θ.

Proof Consider the decomposition

L̂(θ)− L(θ)− L̂ (θ0) + L (θ0) = A+B

where

A = (Pn − P )[log g(z, θ)− log g(z, θ0)] (1)

B = Pn[log ĝ(z, θ)− log ĝ(z, θ0)− log g(z, θ)− log g(z, θ0)].

First, we show that A converges uniformly to 0 in probability. By Assumption 1, the

monotonicity of log transformation and Lemma 2.6.18 (v) and (viii) in Van der Vaart and

Wellner (1996), log ◦QF − log g(y, θ0) is VC-subgraph. Furthermore, by Assumptions 1, 3,

and concavity of the log transformation, logQF − log g(y, θ0) is an envelope function with

bounded first moment for log ◦QF− log ◦g(y, θ0). Hence, by Lemma 19.13 and Lemma 19.15

of van der Vaart (1999), supθ∈Θ |A|
p→ 0 as n→∞.

Second, we show that B converges uniformly to 0 in probability as R→∞. By Taylor’s

theorem and Assumption 3,

sup
θ
|B| ≤ 2 sup

y,θ
| log ĝ(y, θ)− log g(y, θ)|

= 2 sup
y,θ

∣∣∣∣ ĝ(y, θ)− g(y, θ)

g∗(y, θ)

∣∣∣∣ for g∗(y, θ) ∈ [g(y, θ), ĝ(y, θ)]

≤ 2M sup
y,θ
|ĝ(y, θ)− g(y, θ)|

Moreover, by Assumption 2 and Lemma 19.13 and 19.15 of van der Vaart (1999), as R→∞,

sup
y,θ
|ĝ(y, θ)− g(y, θ)| p→ 0.

Therefore, B converges uniformly to 0 as R→∞. The lemma then follows from the triangle

inequality. 2

Consistency is a direct consequence of Theorem 2.1 in Newey and McFadden (1994) from

uniform convergence when the true parameter is uniquely identified.
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COROLLARY 2 Under Assumptions 1, 2, and 3, if

1. L̂(θ̂) ≥ L̂(θ0)− op(1)

2. For any δ > 0, sup‖θ−θ0‖≥δ L(θ) < L(θ0)

then θ̂ − θ0
p−→ 0.

As pointed out in Pollard (1984), the requirement that supθ∈Θ |L̂ (θ) − L (θ) | = op (1)

implies, but can be weakened to

lim sup
n→∞

P

{
sup
θ∈Θ

[
L̂(θ)− L(θ)

]
≥ ε

}
= 0

for all ε > 0.

In the remaining of this section, we investigate the asymptotic normality of MSL, which

requires that the limiting population likelihood is at least twice differentiable. First we

recall a general result (see for example Sherman (1993) for optimization estimators and

Chernozhukov and Hong (2003) for MCMC estimators, among others).

THEOREM 2
√
m(θ̂ − θ0)

d−→ N(0, H−1ΣH−1)

under the following conditions:

1. L̂(θ̂) ≥ supθ∈Θ L̂(θ)− op( 1
m

);

2. θ̂
p−→ θ0;

3. θ0 is an interior point of Θ;

4. L(θ) is twice continuously differentiable in an open neighborhood of θ0 with positive

definite Hessian H(θ);

5. There exists D̂ such that
√
mD̂

d−→ N(0,Σ); and such that

6. For any δ → 0 and for R̂(θ) = L̂ (θ)− L (θ)− L̂ (θ0) + L(θ0)− D̂′ (θ − θ0),

sup
‖θ−θ0‖≤δ

mR̂(θ)

1 +m ‖θ − θ0‖2
= op (1) .

12



(If θ̂ is known to be rm consistent, i.e., θ̂ − θ0 = op(1/rm) for rm → ∞, then Condition 6

only has to hold for δ = op(1/rm).)

The following analysis consists of verifying the conditions in the above general theorem.

The finite sample likelihood, without simulation, is required to satisfy the stochastic dif-

ferentiability condition as required in the high level assumption, but does not need to be

pointwise differentiable.

ASSUMPTION 4 There exists a mean zero random variable D0 (zi) with finite variance

such that for any δ → 0 we have

lim
n→∞

sup
‖θ−θ0‖≤δ

nRn (θ)

1 + n‖θ − θ0‖2
= op (1)

for

Rn (θ) ≡ (Pn − P ) (log g(z, θ)− log g(z, θ0))− D̂′0(θ̂ − θ0),

where

D̂0 =
1

n

n∑
i=1

D0 (zi) .

An primitive condition for this assumption is given in Lemma 3.2.19, p. 302, of Van der

Vaart and Wellner (1996).

To account for the simulation error we need an intermediate step which is a modification

of Theorem 1 of Sherman (1993).

THEOREM 3 Let {am}, {bm}, and {cm} be sequences of positive numbers that tend to

infinity. Suppose

1. L̂(θ̂) ≥ L̂(θ0)−Op(a
−1
m );

2. θ̂
p−→ θ0;

3. In a neighborhood of θ0 there is a κ > 0 such that L(θ) ≤ L(θ0)− κ‖θ‖2;

4. For every sequence of positive numbers {δm} that converges to zero, ‖θm − θ0‖ < δm

implies
∣∣∣L̂(θm)− L̂(θ0)− L(θm) + L(θ0)

∣∣∣ ≤ Op(‖θm‖/bm) + op(‖θm‖2) +Op(1/cm) .
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then ∥∥∥ θ̂ ∥∥∥ = Op

(
1√
dm

)
,

where dm = min (am, b
2
m, cm).

Proof The proof is a modification of Sherman (1993). Condition 2 implies that there is a

sequence of positive numbers {δm} that converges to zero slowly enough that P (‖θ̂ − θ0‖ ≤

δm)→ 1. When ‖θ̂ − θ0‖ ≤ δm we have from Conditions 1 and 2 that

κ‖θ̂‖2 −Op(1/am) ≤ L̂(θ̂)− L̂(θ0)− L(θ̂) + L(θ0) ≤ Op

(
‖θ̂‖/bm

)
+ op

(
‖θ̂‖2

)
+Op(1/cm)

whence

[κ+ øp(1)] ‖θ̂‖2 ≤ Op(1/am) +Op

(
‖θ̂‖/bm

)
+Op(1/cm) ≤ Op(1/dm) +Op

(
‖θ̂‖/

√
dm

)
.

Letting Ŵ denote an Op(1/
√
dm) random variable, the expression above implies that

1

2
κ‖θ̂‖2 − Ŵ‖θ̂‖ ≤ Op(1/dm)

on an event that has probability one in the limit. Completing the square gives

1

2
κ
(
‖θ̂‖ −W/κ

)2

≤ Op

(
1

dm

)
+
Ŵ 2

2κ
= Op

(
1

dm

)
whence

√
dm

∥∥∥θ̂∥∥∥ ≤ √dmŴ +Op(1) = Op(1). 2

The next assumption requires that the simulated likelihood is not only unbiased, but is

also a proper likelihood function.

ASSUMPTION 5 For all simulation lengths R and all parameters θ, both g (zi; θ) and

Qnq (zi, ·; θ) are proper (possibly conditional) density functions.

We also need to regulate the amount of irregularity that can be allowed by the simulation

function q (z, ω, θ). In particular, it allows for q (z, ω, θ) to be an indicator function.

ASSUMPTION 6 sup‖θ−θ0‖≤δ,z∈Z Varω

(
q(z,ω,θ)
g(z,θ)

− q(z,ω,θ0)
g(z,θ)

)
= O (δ) .
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ASSUMPTION 7 Define ψ (ω, θ, θ0) =
∫ q(z,ω,θ)

g(z,θ)
g (z, θ0) dz. There exists a mean zero ran-

dom variable D1 (ωr) with finite variance such that for D̂1 = 1
R

∑R
r=1D1 (ωr),

sup
‖θ−θ0‖=o((logR)−1)

R (QR −Q) (ψ (·, θ, θ0)− ψ (·, θ0, θ0))−RD̂′1 (θ − θ0)

1 +R‖θ − θ0‖2
= op (1)

THEOREM 4 Under Assumptions 1, 2, 3, 4, 5, 6, and 7 and Conditions 1, 2, and 4 of

Theorem 2, the conclusion of Theorem 2 holds with D̂ = PnD0 (zi) +QRD1 (ωr) and

Σ = (1 ∧ κ) Var (D0 (zi)) + (1 ∧ 1/κ) Var (D1 (ωr)) .

Proof Consistency is given in Corollary 2. Consider again the decomposition given by

Equation (1). Because of the linearity structure of Conditions (5) and (6) of Theorem 2, it

suffices to verify them separately for the terms A and B.

It follows immediately from Assumption 4 that Conditions (5) and (6) of Theorem 2 hold

for the first term A because n ≥ m. Next we verify them for B.

Decompose B further into B = B1 +B2 +B3, where

B1 = Pn

[
1

gθ
(ĝθ − gθ)−

1

g0

(ĝ0 − g0)

]
B2 = −1

2
Pn

[
1

g2
θ

(ĝθ − gθ)2 − 1

g2
0

(ĝ0 − g0)2

]
B3 =

1

3
Pn

[
1

ḡ3
θ

(ĝθ − gθ)3 − 1

ḡ3
0

(ĝ0 − g0)3

]
.

In the above ḡθ and ḡ0 are mean values, dependent on zi, between [g (z, θ) , ĝ (z, θ)] and

[g (z, θ0) , ĝ (z, θ0)] respectively. By Assumption 3,

sup
θ∈Θ
|B3| ≤

2

3
M3| sup

θ∈Θ,z∈Z
(ĝθ − gθ) |3 ≤ Op

(
1

R
√
R

)
,

where the last inequality follows from supθ∈Θ,z∈Z |ĝθ − gθ| = Op

(
1√
R

)
due e.g. to Theorem

2.14.1 of Van der Vaart and Wellner (1996). Due to Theorem 2.14.1 it also holds that

sup
θ∈Θ
|B1| = Op

(
1√
R

)
and sup

θ∈Θ
|B2| = Op

(
1

R

)
.

This allows us to invoke Theorem 3, with dm =
√
m, to claim that

‖θ̂ − θ0‖ = Op

(
m−1/4

)
.
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Next we bound the second term by, up to a constant, within ‖θ̂ − θ0‖ = op (1/ logR):

sup
‖θ−θ0‖�(logR)−1

|B2| = op

(
1

R

)
. (2)

To show (2), first note that

sup
‖θ−θ0‖�(logR)−1

|B2| ≤ sup
‖θ−θ0‖�(logR)−1,z∈Z

B21 ×B22

where

B21 =

∣∣∣∣ (QR −Q)

(
q (z, ω, θ)

g (z, θ)
+
q (z, ω, θ0)

g (z, θ0)

) ∣∣∣∣
and

B22 =

∣∣∣∣ (QR −Q)

(
q (z, ω, θ)

g (z, θ)
− q (z, ω, θ0)

g (z, θ0)

) ∣∣∣∣.
It follows again from Theorem 2.14.1 that

sup
‖θ−θ0‖�(logR)−1,z∈Z

|B21| = Op

(
1√
R

)
.

Next we consider B22 in light of arguments similar to Theorem 2.37 in Pollard (1984), for

which it follows that for δ = o
(
(logR)−1), for

f (z, ω, θ) = q (z, ω, θ) /g (z, θ)− q (z, ω, θ0) /g (z, θ0)

where ‖θ−θ0‖ ≤ δ, and for εR = ε/
√
R: Var (QRf (z, ω, θ)) /ε2R → 0 for each ε > 0. Therefore

the symmetrization inequalities (30) in p. 31 of Pollard (1984) apply and subsequently, for

FR = {f (z, ω, θ) , z ∈ Z, ‖θ − θ0‖ ≤ δ},

P

(
sup
FR

∣∣∣∣ (QR −Q) f (·) > 8
ε√
R

∣∣∣∣)
≤ 4P

(
sup
FR
|Q0

Rf | > 2
ε√
R

)
≤ 8Aε−WRW/2 exp

(
− 1

128
ε2δ−1

)
+ P

(
sup
FR

QRf
2 > 64δ

)
.

The second term goes to zero for the same reason as in Pollard. The first also goes to zero

since logR− 1
δ
→ −∞. Thus we have shown that B22 = op

(
1√
R

)
uniformly in θ−θ0 ≤ δ and

z ∈ Z, and consequently (2) holds. By considering n � R, n � R and n ≈ R separately,

(2) also implies that for some α > 0:

sup
‖θ−θ0‖�m−α

|B2| = op

(
1

m

)
.
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It remains to investigate B1 = PnQRf (z, ω, θ), which, using Assumption 5, can be written

B1 =
1

nR
SnR

(
f̃θ

)
+B0,

where

f̃ (z, ω, θ) = f (z, ω, θ)−Qf (·, z, θ)− Pf (ω, ·, θ) + PQf (·, ·, θ) ,

B0 = (QR −Q) (ψ (ω, θ)− ψ (ω, θ0)) , and ψ (ω, θ) =
∫ q(z,ω,θ)

g(z,θ)
g (z, θ0) dz upon noting that

the other projection term is 0 since Q q(·,z,θ)
g(z,θ)

= 1 identically. The proof of Theorem 2.5 (pp.

83) of Neumeyer (2004) shows that, since

Q× P

[
sup

‖θ−θ0‖=o(1)

f (z, ω, θ)2

]
= o (1) =⇒ 1

nR
SnR

(
f̃θ

)
= op

(
1√
nR

)
= op

(
1

m

)
.

Finally, B0 is handled by Assumption 7. 2

Assumption 7 can be further simplified when the true likelihood g (z, θ) is twice contin-

uously differentiable (with bounded derivatives for simplicity). In this case

D1 (ωr) = −
∫
q (ωr, z, θ0)

g (z; θ0)

∂

∂θ
g (z; θ0) dz.

To see this, note that

(QR −Q) (ψ (ω, θ)− ψ (ω, θ0))

= P

[
1

gθ
− 1

g0

]
(ĝ0 − g0)

+ P
1

g0

(ĝθ − gθ − ĝ0 + g0)

+ P

(
1

gθ
− 1

g0

)
(ĝθ − gθ − ĝ0 + g0) .

The second line is zero because of assumption 5. The third line can be bounded by

M‖θ− θ0‖ sup
‖θ−θ0‖=o((logR)−1),z∈Z

| (QR −Q) (q (ωr, z, θ)− q (ωr, z, θ0)) ‖ = op

(
1√
R

)
‖θ− θ0‖,

using the same arguments that handle the B22 in the proof. Finally, the first line becomes

P

[
1

gθ
− 1

g0

]
(ĝ0 − g0) = (QR −Q)D1 (wr) (θ − θ0) + R̃ (θ) ,

where ‖R̃ (θ) ‖ ≤ op (‖θ − θ0‖) | supz∈Z (QR −Q) q (·, z, θ0) | = op

(
‖θ−θ0‖√

R

)
.
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4.1 MSL Variance Estimation

A consistent estimate of the asymptotic variance can be formed by sample analogs. In

general, each of

Ĥ = Pn
∂2

∂θ∂θ′
logQRq

(
ωr, zi, θ̂

)
, D̂0 (zi) =

∂

∂θ
log ĝ

(
zi, θ̂

)
and D̂1 (ωr) =

∂

∂θ
Pn
q
(
ωr, zi, θ̂

)
ĝ
(
zi, θ̂

)
can not be computed analytically, and has to be replaced by numerical estimates:

Ĥij =
1

4ε2

(
Pn logQRq

(
ωr, zi, θ̂ + eiε+ ejε

)
− Pn logQRq

(
ωr, zi, θ̂ − eiε+ ejε

)
−Pn logQRq

(
ωr, zi, θ̂ + eiε− ejε

)
+ Pn logQRq

(
ωr, zi, θ̂ − eiε− ejε

))
,

ĴD0j (zi) =
1

2h

(
log ĝ

(
zi, θ̂ + ejh

)
− log ĝ

(
zi, θ̂ − ejh

))
,

D̂1j (wr) =
1

2h

Pn q
(
ωr, zi, θ̂ + ejh

)
ĝ
(
zi, θ̂ + ejh

) − Pn
q
(
ωr, zi, θ̂ − ejh

)
ĝ
(
zi, θ̂ − ejh

)
 .

Let

Σ̂h = PnD̂0 (zi) Σ̂g = QRD̂1 (ωr) Σ̂ = (1 ∧ κ) Σ̂h + (1 ∧ 1/κ) Σ̂g.

Under the given assumptions, if ε→ 0, h→ 0,
√
nh→∞ and n

1
4 ε→∞, then Ĥ = H+op (1)

and Σ̂ = Σ + op (1).

5 MCMC

Simulated objective functions that are nonsmooth can be difficult to optimize by numer-

ical methods. An alternative to optimizing the objective function is to run it through a

MCMC routine, as in Chernozhukov and Hong (2003). Under the assumptions given in the

previous sections, the MCMC Laplace estimators can also be shown to be consistent and

asymptotically normal. The Laplace estimator is defined as

θ̃ = arg min
θ∈Θ

∫
ρ
(√

m (u− θ)
)

exp
(
mL̂ (u)

)
du.

In the above ρ (·) is a convex symmetric loss function such that ρ (h) ≤ 1 + |h|p for some

p ≥ 1, and π (·) is a continuous density function with compact support and postive at θ0. In
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the above the objective function can be either GMM:

L̂ (θ) =
1

2
PnQRq (ωr, zi, θ)

′WnPnQRq (ωr, zi, θ) ,

or the log likelihood function L̂ (θ) =
∑n

i=1 log ĝ (zi, θ).

The asymptotic distribution of the posterior distribution and θ̃ follows immediately from

Assumption 1, which leads to Theorem 1, and Chernozhukov and Hong (2003). Define

h =
√
m
(
θ − θ̂

)
, and consider the posterior distribution on the localized parameter space:

pn (h) =
π
(
θ̂ + h√

m

)
exp

(
mL̂

(
θ̂ + h/

√
m
)
−mL̂

(
θ̂
))

Cm

where

Cm =

∫
θ̂+h/

√
m∈Θ

π

(
θ̂ +

h√
m

)
exp

(
mL̂

(
θ̂ + h/

√
m
)
−mL̂

(
θ̂
))

dh.

Desirable properties of the MCMC method include the following, for any α > 0:∫
|h|α|pn (h)− p∞ (h) |dh p−→ 0, where p∞ (h) =

√
| det(J0)|
(2π)dim θ

exp

(
−1

2
h′J0h

)
. (3)

In the above J0 = G′WG for the GMM model and J0 = − ∂2

∂θ∂θ′
L (θ0) for the likelihood

model.

THEOREM 5 Under Assumption 1 for the GMM model, and under Assumptions 1

to 7, Conditions 1, 2, 4 of Theorem 2 for the MLE model, (3) holds. Consequently,
√
m
(
θ̃ − θ̂

)
p−→ 0, and the variance of pn,R (h) converges to J−1

0 in probability.

Proof For the GMM model, the stated results follow immediately from Assumption 1, which

leads to Theorem 1, and Chernozhukov and Hong (2003) (CH). The MLE case is also almost

identical to CH but requires a small modification. When Condition (6) in Theorem 2 holds for

δ = o (1), the original proof shows (3) over three areas of integration separately, {|h| ≤
√
mδ}

and {|h| ≥ δ
√
m}. When Condition 6 in Theorem 2 only holds for δ = am = (logm)−d,

we need to consider separately, for a fixed δ, {|h| ≤
√
mam}, {

√
mam ≤ |h| ≤

√
mδ} and

{|h| ≥ δ
√
m}. The arguments for the first and third regions {|h| ≤

√
mam} and {|h| ≥ δ

√
m}

are identical to the ones in CH. Hence we only need to show that (since the prior density is

assumed bounded around θ0):∫
√
mam≤|h|≤

√
mδ

exp
(
mL̂

(
θ̂ + h/

√
m
)
−mL̂

(
θ̂
))

dh
p−→ 0.
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By arguments that handle the term B in the proof of Theorem 4, in this region,

ω (h) ≡ mL̂
(
θ̂ + h/

√
m
)
−mL̂

(
θ̂
)

= −1

2
(1 + op (1))h′J0h+mOp

(
1√
m

)
.

Hence the left hand side integral can be written as∫
√
mam≤|h|≤

√
mδ

exp (ω (h)) dh = exp
(
Op

(√
m
)) ∫

√
mam≤|h|

exp

(
−1

2
(1 + op (1))h′J0h

)
dh

The tail of the normal distribution can be estimated by w.p. → 1:

∫
√
mam≤|h| exp

(
−1

2
(1 + op (1))h′J0h

)
dh

≤
∫
√
mam≤|h| exp

(
−1

4
h′J0h

)
dh ≤ C (

√
mam)

−1
exp (−ma2

m) ,

for am >> m−α for any α > 0, hence for some α > 0.∫
√
mam≤|h|≤

√
mδ

exp (ω (h)) dh ≤ C exp
(
Op

(√
m
)) (

m
1
2
−α
)−1

exp
(
−m1−2α

)
= op (1) .

The rest of the proof is identical to CH. 2

The MCMC method can always be used to obtain consistent and asymptotically normal

parameter estimates. For the GMM model with W = asym Var (
√
mĝ (θ0)), or for the

likelihood model where n >> R, the posterior distribution from the MCMC can also be

used to obtain valid asymptotic confidence intervals for θ0.

For the GMM model where W 6= asym Var (
√
mĝ (θ0)), or the likelihood model where

R >> n, R ∼ n, the posterior distribution does not resemble the asymptotic distribution of

θ̂ or θ̃. However, in this case the variance of the posterior distribution can still be used to

estimate the inverse of the Hessian term (G′WG)−1 or H (θ0) in Condition (4) of Theorem 2.

6 Monte Carlo Simulations

In this section we report the results from a set of Monte Carlo simulations from a univariate

Probit model to illustrate the finite sample properties of the asymptotic distributions derived

in this paper. The true data generating process is specified to be:

yi = 1{α0 + x̃iβ0 + εi ≥ 0}, εi ⊥⊥ x̃i, εi
iid∼ N(0, 1).
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Define zi = (yi, xi) and xi = (1, x̃i), θ := (α, β)′. In the earlier notation the likelihood

function is g(zi, θ) = Φ(x′iθ0)yi(1− Φ(x′iθ0))1−yi and the true parameter θ0 maximizes

L(θ) = Ez log g(zi, θ) = Ez[yi log Φ(x′iθ) + (1− yi) log(1− Φ(x′iθ))].

The likelihood function is simulated by ĝ(zi, θ) = 1
R

∑R
r=1 q(wr, zi, θ), where

q(wr, zi, θ) = 1{x′iθ + wr ≥ 0}yi(1− 1{x′iθ + wr ≥ 0})1−yi ,

and wr
iid∼ N(0, 1). Note that Ewĝ(zi, θ) = g(zi, θ). The simulated maximum likelihood

estimator maximizes

L̂nR(θ) =
1

n

n∑
i=1

log ĝ(zi, θ)

and is computed using the simulated annealing routine in Matlab’s global optimization tool-

box. The starting value for optimization is taken to be the OLS estimates. The numerical

results are not sensitive to the choice of the starting values when the temperature parame-

ter in the simulated annealing routine is reduced sufficiently slowly. Obviously this simple

example can be estimated by the probit command in Stata. The goal of this section is to

illustrate the finite properties of the simulated maximum likelihood estimator when we are

agnostic about the normal distribution function and density function.

We compute an estimate of the asymptotic variances using the empirical analog of The-

orem 2:
√
m
(
θ̂SMLE − θ

)
A∼ N

(
0, Ĥ−1

(
(1 ∧ κ)Σ̂0 + (1 ∧ 1/κ)Σ̂1

)
Ĥ−1

)
.

In the above κ = R/n, m = min (R, n).

While analytical derivatives can be easily computed in this example, in practice, the

analytical derivatives of the likelihood function is usually unknown. In our baseline results,

we are agnostic about the analytical derivatives and estimate the asymptotic variance using

numerical differentiation:

Σ̂0 =
1

n

n∑
i=1

D̂0(zi)D̂0(zi)
′, Ĥ = −Σ̂0,

Σ̂1 =
1

R

R∑
r=1

D̂1(wr)D̂1(wr)
′, D̂1(wr) := − 1

n

N∑
i=n

q(wr, zi, θSMLE)

ĝ(zi, θSMLE)
D̂0(zi).
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In the above, for

ĝ(zi, θ) = (1− Φ̂R(−x′iθ))yi(Φ̂R(−x′iθ))1−yi

and an estimate of the derivative of ĝ(zi, θ
SMLE), denoted as ∇ĝ(zi, θ

SMLE), we define:

D̂0(zi) :=
1

ĝ(zi, θSMLE)
∇ĝ(zi, θ

SMLE).

We use the index structure of g (zi, θ) and numerical differentiation to obtain ∇ĝ(zi, θ
SMLE).

For this purpose we note that

∂g(zi, θ)

∂θ
=

(
− ∂

∂θ
ΦR(−x′iθ)

)yi ( ∂

∂θ
ΦR(−x′iθ)

)1−yi

= xi

( ∂

∂w
ΦR(w)

∣∣∣∣
w=−x′iθ

)yi (
− ∂

∂w
ΦR(w)

∣∣∣∣
w=−x′iθ

)1−yi


= (−1)1−yixi
∂

∂w
ΦR(w)

∣∣∣∣
w=−x′iθ

.

Therefore we use:

∇ĝ(zi, θ
SMLE) = (−1)1−yixi ∇Φ̂R(w)

∣∣∣
w=−x′iθ

,

where we use a first order two-sided formula to define:

∇Φ̂R(w) =
1

R

R∑
r=1

1{wr ≤ w + ε} − 1{wr ≤ w − ε}
2ε

=
1

R

R∑
r=1

1

2ε
1

{
|wr − w|

ε
≤ 1

}
=

1

2ε

#{w − ε ≤ wr ≤ w + ε}
R

,

where ε is a step size parameter. Hong, Mahajan, and Nekipelov (2009) showed that a wide

range of step size parameter allows for consistent estimation of the analytical derivatives. In

the simulation, we experiment with a range of the step size parameter, ε = R−α, where α

ranges in
[

1
2

1
3

1
4

1
8

1
10

1
15

]
. It turns out that the largest step size produces the smallest mean

square error between the numerical variance and the analytic variance for small and moderate

ranges of n and R. Therefore we use α = 1/15 in the results reported in the following

tables. Empirically, choosing an optimal step size for numerical gradient calculation can be

difficult and depends on knowledge of the underlying function to be simulated. Without

this knowledge, we recommend using a rule of thumb of the form Cn−α for α < 1/2 for the
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Table 1: Empirical coverage frequency for 95% confidence interval, numerical derivatives

”n \ R/n” 0.2 0.5 0.8 1 2 5 10 20 50 100
50 0.9346 0.9420 0.9448 0.9430 0.9468 0.9518 0.9550 0.9580 0.9582 0.9598

0.9950 0.9862 0.9804 0.9792 0.9716 0.9708 0.9704 0.9718 0.9722 0.9732

100 0.9298 0.9366 0.9416 0.9412 0.9432 0.945 0.9478 0.9442 0.9502 0.9514
0.9846 0.9634 0.9618 0.9608 0.9592 0.9578 0.9616 0.9608 0.9604 0.9592

200 0.9396 0.9466 0.9430 0.9450 0.9496 0.9462 0.9468 0.9484 0.9476 0.9504
0.969 0.9538 0.9548 0.956 0.9528 0.9556 0.9542 0.9546 0.9536 0.954

400 0.9470 0.9492 0.9472 0.9468 0.9482 0.9478 0.9492 0.9502 0.9512 0.9484
0.9532 0.9498 0.9544 0.954 0.9536 0.9558 0.9546 0.9546 0.957 0.9574

800 0.9482 0.9486 0.9410 0.9510 0.9476 0.9486 0.9462 0.9480 0.9428 0.9466
0.9538 0.9494 0.949 0.9516 0.9532 0.949 0.9522 0.953 0.9492 0.9516

The total number of Monte Carlo simulations is 5000.

step size choice, where we have chosen α = 1/15 in this simulation example. We conjecture

that it is possible, but beyond the scope of this paper, to use cross-validation methods for

choosing the numerical differentiation step size parameter.

For comparison, we also provide the empirical coverages when the analytical derivatives

is used to compute Ĥ and Σ̂0. Here

Ĥ = − 1

n

n∑
i=1

φ
(
x′iθ̂
)2

Φ (x′iθ) (1− Φ (x′iθ))
xix
′
i, Σ̂0 = −Ĥ,

and

Σ̂1 =
1

R

R∑
r=1

D̂1(wr)D̂1(wr)
′ D̂1 (wr) = − 1

n

n∑
i=1

q
(
wr, zi, θ̂

)
ĝ
(
zi, θ̂

)
(
yi − Φ

(
x′iθ̂
))

φ (x′iθ)xi

Φ
(
x′iθ̂
)

(1− Φ (x′iθ))
.

Table 1 reports the empirical coverage of the 95% confidential interval constructed from

the estimate of the asymptotic distribution using numerical derivatives, over 5000 Monte

Carlo simulations. The column dimension corresponds to the sample size n and the row

dimension corresponds to the ratio between R and n. The two rows for each sample size
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Table 2: False empirical coverage frequency for 95% confidence interval, numerical derivatives

”n \ R/n” 0.2 0.5 0.8 1 2 5 10 20 50 100
50 0.6624 0.7736 0.8240 0.8486 0.8992 0.9348 0.9468 0.9534 0.9566 0.9592

0.9676 0.9582 0.9590 0.9606 0.9628 0.9668 0.9692 0.9718 0.9716 0.9728

100 0.6122 0.7528 0.8192 0.8368 0.8844 0.9224 0.9362 0.9402 0.9478 0.9502
0.9276 0.9366 0.9472 0.9476 0.9548 0.9556 0.9596 0.9602 0.9602 0.959

200 0.5948 0.7548 0.8178 0.8412 0.8914 0.9258 0.9354 0.9434 0.9456 0.9498
0.9256 0.935 0.9448 0.9472 0.948 0.953 0.9536 0.9544 0.9536 0.954

400 0.5710 0.7382 0.8168 0.8314 0.8870 0.9260 0.9354 0.9454 0.9492 0.948
0.9206 0.9334 0.9476 0.9476 0.9504 0.9546 0.9544 0.9542 0.957 0.9572

800 0.5800 0.7346 0.8022 0.8268 0.8848 0.9246 0.9346 0.9428 0.9408 0.9456
0.929 0.9376 0.9436 0.9462 0.9502 0.9482 0.9508 0.9526 0.9492 0.9514

The total number of Monte Carlo simulations is 5000.

correspond to the intercept and the slope coefficient, respectively. The results show that

the asymptotic distribution accurately represents the finite sample distribution when m =

min (R, n) is not too small.

Table 2 reports the false empirical coverage of the 95% confidence interval when the

simulation noise is ignored in the asymptotic distribution of the estimator. As expected,

when R/n is large, in particular above 10, the improvement from accounting for Σ1 in the

asymptotic distribution is very small. When R/n is very small, the size distortion from

ignoring Σ1 is very sizable. The size distortion is quite visible when R/n is as big as 2, and

still visible even when R/n = 5.

Table 3 and 4 report the counterparts of Table 1 and 2 when analytical derivatives are

used instead to compute the asymptotic variances. In Table 3, we see that using analytical

derivatives do not necessarity give a more accurate coverage than using numerical derivatives.

The results in Table 4 is similar to that in Table 2: ignoring variances due to simulation

when R is smaller than n can lead to significant errors in the confidence interval.
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Table 3: Empirical coverage frequency for 95% confidence interval, analytical derivatives

”n \ R/n” 0.2 0.5 0.8 1 2 5 10 20 50 100
50 0.9962 0.9554 0.9570 0.9570 0.9646 0.9650 0.9616 0.9590 0.9568 0.9554

0.9958 0.9790 0.9736 0.9738 0.9722 0.9602 0.9594 0.9592 0.9602 0.9600

100 0.9408 0.948 0.9584 0.9564 0.9604 0.9526 0.9512 0.9484 0.951 0.9506
0.9842 0.9680 0.9648 0.9644 0.9548 0.9568 0.9584 0.9566 0.9592 0.9584

200 0.9334 0.9516 0.9570 0.9574 0.9602 0.9506 0.9468 0.9506 0.9494 0.9494
0.976 0.964 0.9556 0.955 0.95 0.9524 0.9506 0.953 0.9516 0.9524

400 0.9406 0.9510 0.9570 0.9562 0.9492 0.9496 0.9492 0.9514 0.9506 0.9496
0.9646 0.9516 0.9538 0.9534 0.9516 0.9520 0.9534 0.9522 0.9562 0.9560

800 0.9416 0.9458 0.9456 0.9560 0.9504 0.9500 0.9464 0.9478 0.9432 0.9476
0.957 0.9482 0.9462 0.9518 0.9502 0.9488 0.9532 0.9536 0.9516 0.9518

The total number of Monte Carlo simulations is 5000.

Table 4: False empirical coverage frequency for 95% confidence interval, analytical derivatives

”n \ R/n” 0.2 0.5 0.8 1 2 5 10 20 50 100
50 0.6708 0.7892 0.8376 0.8580 0.9016 0.9354 0.9456 0.9502 0.9536 0.9536

0.9194 0.9314 0.9362 0.9412 0.9496 0.9516 0.9552 0.9574 0.9598 0.9598

100 0.6204 0.7588 0.8222 0.8404 0.8926 0.9274 0.9418 0.9424 0.9486 0.949
0.9114 0.9252 0.937 0.938 0.9418 0.9536 0.9562 0.956 0.959 0.9584

200 0.6032 0.7592 0.8190 0.8426 0.8944 0.9272 0.9358 0.942 0.9462 0.9486
0.913 0.9278 0.9346 0.9412 0.944 0.951 0.9496 0.9522 0.9512 0.9522

400 0.5728 0.7382 0.8164 0.8312 0.8892 0.9260 0.9390 0.946 0.9482 0.949
0.9146 0.9362 0.9456 0.9442 0.9476 0.951 0.9528 0.952 0.9562 0.956

800 0.5816 0.7356 0.8056 0.8260 0.8850 0.9252 0.9344 0.9426 0.9418 0.9468
0.9222 0.9344 0.9392 0.946 0.9484 0.9476 0.953 0.9534 0.9514 0.9518

The total number of Monte Carlo simulations is 5000.
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7 Conclusion

We provide an asymptotic theory for simulated GMM and simulated MLE for nonsmooth

simulated objective function. The total number of simulations, R, has to increase without

bound but can be much smaller than the total number of observations. In this case, the

error in the parameter estimates is dominated by the simulation errors. This is a necessary

cost of inference when the simulation model is very intensive to compute.
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