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Abstract

This paper proposes set estimators and conservative confidence regions for the iden-

tified set in conditional moment inequality models using Kolmogorov-Smirnov statistics

with a truncated inverse variance weighting with increasing truncation points. The new

weighting differs from those proposed in the literature in two important ways. First,

this paper shows that estimators based on KS statistics with the proposed weighting

function converge to the identified set at a faster rate than existing procedures based

on bounded weight functions in a broad class of models. This provides a theoretical

justification for inverse variance weighting in this context, and contrasts with analogous

results for conditional moment equalities in which optimal weighting only affects the

asymptotic variance. The results on rates of convergence of set estimators are the first

such results even for the existing procedures, and involve developing the first general

framework for determining consistency and rates of convergence for set estimators and

confidence regions in this context. Second, the new weighting changes the asymptotic

behavior, including the rate of convergence, of the KS statistic itself, requiring a new

asymptotic theory in choosing the critical value. A series of examples illustrates the

broad applicability of the results.
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1 Introduction

This paper proposes a class of test statistics for conditional moment inequality models and

derives new relative efficiency results for these models that show that set estimates based

on these test statistics are more efficient than available methods in a certain precise sense.

In doing so, this paper proposes a general set of conditions for deriving rates of convergence

of set estimators in these models, and uses them to derive rates for several set estimators

proposed in the literature for which rates of convergence have been unknown. While the

relative efficiency comparisons are stated for set estimators (which can be interpreted as

conservative confidence regions), the results can also be used to make power comparisons for

the corresponding testing procedures.

Formally, these models are defined by a restriction of the form EP (m(Wi, θ)|Xi) ≥ 0

almost surely. Here, m is a known parametric function, which may be vector valued (in

which case the inequality is interpreted as elementwise). This setup includes many models

commonly used in econometrics, including regression models with endogenously censored

or missing data, selection models, and certain models of firm and consumer behavior. The

problem is to estimate or perform inference on the identified set

Θ0(P ) ≡ {θ|EP (m(Wi, θ)|Xi) ≥ 0 a.s.}

given a sample (X1,W1), . . . , (Xn,Wn) from P . This paper proposes sets Cn that satisfy

lim
n→∞

inf
P∈P

P (Θ0(P ) ⊆ Cn) = 1 (1)

for classes of probability distributions P restricted only by mild regularity conditions. For

these sets and several others available in the literature satisfying this requirement, I derive

rates of convergence of Cn to Θ0(P ). The results give sequences an, which depend on the

smoothness of P and the method used to construct Cn, such that

sup
P∈P

P (dH(Θ0(P ), Cn) ≥ an) → 0, (2)

where dH denotes Hausdorff distance, a notion of distance between sets (see Section 4 for the

formal definition). It should be emphasized that, while several methods have been proposed

for constructing sets that satisfy the coverage condition (1), the present paper is the first to

determine whether or for which rates an these sets satisfy the rate of convergence condition
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(2) for conditional moment inequalities in the general set identified case. These results show

that, in a general class of models, the sets proposed here are the only ones to obtain the best

rate an in (2) for a variety of classes P defined by different smoothness conditions without

prior knowledge of P . In this sense, the procedures proposed here are adaptive.

The procedures proposed in this paper apply the approach of Chernozhukov, Hong,

and Tamer (2007) along with new asymptotic bounds and convergence rate results to a

Kolmogorov-Smirnov (KS) statistic weighted by a truncation of the inverse of the sample

variance with an increasing sequence of truncation points to obtain set estimates that satisfy

(1). The increasing sequence of truncation points I propose changes the asymptotic behavior

of the KS statistic relative to the bounded weightings proposed in the literature. In particu-

lar, the sequence of random processes maximized by the test statistic is no longer tight, and

functional central limit theorems no longer apply. To overcome this, I use maximal inequal-

ities that bound the supremum of a random process by a function of the maximal variance

of the process. This approach, while very general, leads only to rates or to extremely conser-

vative upper bounds for the distribution of the test statistic. From a practical standpoint,

the results require using either extremely conservative critical values or arbitrary sequences

going slowly to infinity. To the extent that this approach is unpalatable, the results in this

paper can be taken as theoretical results guiding empirical practice on the optimal choice

of test statistic and future research on the theoretical properties of these test statistics (see

also Armstrong and Chan (2012) and Chetverikov (2012) for nonconservative critical values

for some of these statistics that apply to a weaker notion of coverage).

I derive the rate of convergence to the identified set (sequences an that satisfy (2)) for

these set estimates under conditions that apply to a broad class of models while still being

interpretable. Since general results for rates of convergence to the identified set have not

been derived for estimators based on kernel methods or KS statistics with bounded weights, I

derive rates of convergence for estimators based on these existing approaches as well. For the

class of models I consider, I find that using the inverse variance with increasing trunaction

points as the weight function in the KS statistic results in an estimator for the identified

set that has a faster rate of convergence to the identified set than the KS statistic based

estimators with bounded weights proposed in the literature, and achieves the same rate

of convergence as a kernel estimate with the optimal bandwidth. For classes of underlying

distributions in which smoothness of two derivatives or less is imposed, these rates correspond

with the upper bounds derived by Stone (1982) for estimating conditional means.

To my knowledge, these results provide the first theoretical justification for weighting
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moments by their variance in conditional moment inequality problems. If the truncation

parameter is allowed to increase fast enough, weighting by the variance in the KS objective

function increases the rate of convergence of estimators to the identified set under the con-

ditions I consider. While this result can be thought of as analogous to optimal weighting

results for GMM, it is also related to the problem of adaptive choice of smoothing param-

eters in nonparametric estimation. The results in this paper show that a truncated inverse

variance weighting allows the test statistic to automatically optimize a bias variance tradeoff

analogous to the one faced in kernel estimation. This allows the set estimate to obtain the

optimal rate of convergence without prior knowledge of the smoothness properties of the

data generating process.

The results in this paper show that, in certain smoothness classes, estimators based

on the methods in this paper achieve the best rate of convergence to the identified set

in the Hausdorff metric. While other methods achieve the same rate of convergence if

prior information is known about the shape of the conditional mean, these methods will do

much worse if incorrect prior information is used to choose a different approach. A succinct

way of putting this is that, among the approaches considered here, the approach based on

inverse variance weighted KS statistics has the optimal minimax rate for a broad set of

smoothness classes. While minimax definitions of relative efficiency are useful, they ignore

the possibility that, while the inverse variance weighting approach is better in the worst case

in a particular class of distributions, other approaches might do much better under more

favorable data generating processes. However, the results in Section 6 show that, even in

a very restrictive set of cases that are more favorable for the approach based on bounded

weights, the inverse variance weighting proposed in this paper will only lose a log n term in

the rate of convergence to the identified set relative to the rate of convergence using bounded

weights (see, in particular, the last part of Theorem B.4). This contrasts with the polynomial

differences in rates of convergence in cases where bounded weights or kernel based methods

do worse.

The sets considered in this paper can be used as outwardly biased estimates of the

identified set. Since they satisfy the coverage requirement (1), they can also be considered

conservative confidence sets for the identified set in the sense of Chernozhukov, Hong, and

Tamer (2007). With the latter interpretation, these rate results can be thought of as power

results for a (conservative) setwise inference procedure. Alternatively, following Imbens and

Manski (2004), one may wish to report a confidence region that satisfies only the weaker

pointwise coverage requirement that infθ0∈Θ0(P) P (θ0 ∈ Cn) increases to one or is above a
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prespecified level asymptotically. The rate results in this paper can be used to derive local

power results for confidence regions satisfying the weaker Imbens and Manski (2004) coverage

requirement, and may be of direct interest for these confidence regions in settings where one

wishes to compare the behavior of confidence regions rather than the power of tests.

This paper relates to the recent literature on econometric models defined by moment

inequalities and, in particular, conditional moment inequalities where the conditioning vari-

able is continuously distributed. Andrews and Shi (2009), Kim (2008), Menzel (2008, 2010)

and Chernozhukov, Lee, and Rosen (2009) treat this problem in different ways. The esti-

mators of the identified set considered in the present paper are similar to those considered

by Andrews and Shi (2009) and Kim (2008), but have dramatically different properties, as

discussed above. The present paper also contributes to this literature by deriving the first

results on rates of convergence to the identified set for these approaches or set estimators

based on these approaches that apply in the general set identified case (the rate of conver-

gence results in Kim, 2008, hold only in the point identified case except for in a few very

restrictive settings). These estimators and inference procedures build on the idea of trans-

forming conditional moment inequalities to unconditional moment inequalities, which was

used by Khan and Tamer (2009) to propose estimates for a point identified model. Their

setting differs from most of those considered here in that their model is point identified with

a root-n rate of convergence for the point estimate. Galichon and Henry (2009) propose

a similar statistic for a class of models under a different setup with possible lack of point

identification.

More broadly, this paper relates to the literature on set identified models. Much of

this research has been on models defined by finitely many unconditional moment inequali-

ties. Papers that treat this problem include Andrews, Berry, and Jia (2004), Andrews and

Jia (2008), Andrews and Guggenberger (2009), Andrews and Soares (2010), Chernozhukov,

Hong, and Tamer (2007), Romano and Shaikh (2010), Romano and Shaikh (2008), Bugni

(2010), Beresteanu and Molinari (2008), Moon and Schorfheide (2009), Imbens and Manski

(2004) and Stoye (2009).

The test statistics in this paper are closely related to the statistics literature on tests for

goodness of fit and global hypothesis tests in the gaussian white noise model. Dumbgen and

Spokoiny (2001) consider a test related to the test statistic used in the present paper in a

one dimensional gaussian setting, while the tests proposed by Andrews and Shi (2009) and

Kim (2008) and Chernozhukov, Lee, and Rosen (2009) can be considered generalizations

of tests proposed by Bierens (1982) and Bickel and Rosenblatt (1973), respectively. Power
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comparisons against various types of alternatives have been considered in this literature. The

present paper shows that uniform rates of convergence in the Hausdorff metric in conditional

moment inequalities are determined by certain types of alternatives, which are related to

those that determine minimax rates in the supremum norm in the gaussian white noise model

(see, e.g. Lepski and Tsybakov, 2000). See also Ingster and Suslina (2003), Chapter 14 of

Lehmann and Romano (2005) and references therein for more on these nonparametric testing

problems. Interpreting these sets as estimators rather than confidence regions, the rates of

convergence derived in this paper are related to rates of convergence for nonparametric

estimation of the conditional mean (see, e.g. Ibragimov and Hasminskii, 1981; Stone, 1982).

In addition to the existing literature on conditional moment inequalities and set infer-

ence, some papers written after or around the same time the present paper first circulated

have considered inference using similar test statistics. Armstrong and Chan (2012) and

Chetverikov (2012) consider related statistics, but consider pointwise rather than setwise

inference (see Imbens and Manski, 2004, for a discussion of the difference between these

notions of inference).

The rest of the paper is organized as follows. In Section 2, I describe the estimation

problem and estimators of the identified set, and give an informal description of some of the

results in the paper and the intuition behind them. In Section 3, I state conditions under

which the estimate contains the identified set with probability approaching one. In Section

4, I state conditions for consistency and rates of convergence. In Section 5, I derive rates of

convergence of other estimators of the identified set under the conditions in Section 4 and

compare them to rates of convergence for the estimators proposed in this paper. In Section

6, I verify the conditions of Section 4 in some examples. Section 7 reports the results of a

monte carlo study of the finite sample properties of the estimators. Section 8 concludes, and

an appendix contain proofs and additional results referred to in the body of the paper.

I use the following notation throughout the paper. For observations (X1,W1), . . . , (Xn,Wn)

and a measurable function h on the sample space, Enh(Xi,Wi) ≡ 1
n

∑n
i=1 h(Xi,Wi) denotes

the sample mean and EPh(Xi,Wi) denotes the mean of h(Xi,Wi) under the probability

measure P . The support of a random variable Xi under a probability measure P is denoted

suppP (Xi). I use double subscripts to denote elements of vector observations so that Xi,j

denotes the jth component of the ith observation Xi. For a vector x ∈ Rk, use the notation

x−i to denote the vector (x1, . . . , xi−1, xi+1, . . . , xk)
′. Inequalities on Euclidean space refer to

the partial ordering of elementwise inequality. I use a ∧ b to denote the elementwise min-

imum and a ∨ b to denote the elementwise maximum of a and b. For a norm ‖ · ‖ on Rk,
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‖t‖− ≡ ‖t ∧ 0‖. Unless otherwise noted, ‖ · ‖ denotes the Euclidean norm.

2 Setup and Informal Description of Results

We observe iid observations (X1,W1), . . . , (Xn,Wn) distributed according to some probability

distribution P ∈ P , and wish to perform inference on the identified set Θ0(P ) of parameters

θ ∈ Θ ⊆ Rd that satisfy the conditional moment inequalities

EP [m(Wi, θ)|Xi] ≥ 0 P -a.s.

Here, Xi andWi are random variables on RdX and RdW respectively, and m : RdW ×Θ → RdY

is a measurable function. See Section 6 for examples of econometric models that fit into this

framework. In what follows, m̄(θ, x, P ) will denote a version of EP [m(Wi, θ)|Xi = x].

I consider inference on Θ0(P ) using a standard deviation weighted KS statistic defined as

follows. Let G be a class of functions from RdX to R+. Let µP,j(θ, g) = EPmj(Wi, θ)gj(Xi)

and σP,j(θ, g) = {EP [mj(Wi, θ)gj(Xi)]
2 − [EPmj(Wi, θ)gj(Xi)]

2}1/2 and define the sam-

ple analogues µ̂n,j(θ, g) = Enmj(Wi, θ)gj(Xi) and σ̂n,j(θ, g) = {En[mj(Wi, θ)gj(Xi)]
2 −

[Enmj(Wi, θ)gj(Xi)]
2}1/2. Since the functions in G are nonnegative, EP [m(Wi, θ)|Xi = x] ≥ 0

for all x implies that µP,j(θ, g) = EPmj(Wi, θ)gj(Xi) is nonnegative for all g and j. The KS

statistics in this paper are designed to be positive and large in magnitude when one of these

moments is small (negative and large in magnitude). For a fixed function S : RdY → R+

chosen by the researcher, the KS statistic is defined as

Tn(θ) = sup
g∈G

S

(

µ̂n,1(θ, g)

σ̂n,1(θ, g) ∨ σn
, . . . ,

µ̂n,dY (θ, g)

σ̂n,dY (θ, g) ∨ σn

)

where σn is a decreasing sequence of truncation points. Here, S is a function that is positive

and large in magnitude when one of its arguments is negative and large in magnitude.

Possible choices include t 7→
√

∑dY
j=1(min{tk, 0})2 or, more generally, any function that

satisfies Assumption 3.3, given in Section 3. If Tn(θ) is positive and large in magnitude, this

is evidence that µP,j(θ, g) is negative for some j and g, so that θ is not in the identified set.

The set estimates in this paper invert this test statistic using critical values that control

the probability of false rejection uniformly over Θ, as proposed by Chernozhukov, Hong, and

Tamer (2007). For some data dependent value ĉn, the estimator Cn(ĉn) for the identified set
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is defined as

Cn(ĉn) ≡
{

θ ∈ Θ

∣

∣

∣

∣

√
n√

log n
Tn(θ) ≤ ĉn

}

.

The results in this paper place various conditions on the user defined sequences ĉn and σn.

While weaker conditions suffice for the results in this paper, one can ensure that these con-

ditions hold by choosing, for example, ĉn =
√
log log n and σn =

√

(log log n)(log n)/n (here,

the log log n sequence is arbitrary and can be replaced by any slowly increasing sequence).

2.1 Intuition for the Results

To describe the intuition behind the results in this paper, consider a special case of the KS

statistic based estimators I treat in this paper applied to a particular model. Consider an

interval regression model, in which we posit a linear conditional mean for a latent variable

W ∗
i given an observed variable Xi, EP (W

∗
i |Xi) = θ1 + X ′

iθ−1, but only observe intervals

known to contain W ∗
i . Here, Xi is a continuously distributed random variable on RdX .

While surveys that elicit interval responses are an obvious application, this encompasses

other forms of incomplete data including selection models and missing data (see Section B.3

for an example). I give a more thorough treatment of this model in Sections 6.1 and 6.2. To

keep things simple, suppose that we only observe a one sided interval containing W ∗
i . That

is, we observe a variable WH
i known to be greater than or equal to W ∗

i . Then the problem

can be defined formally as estimating or performing inference on the identified set Θ0(P ) of

values of θ = (θ1, θ−1) that satisfy EP (W
H
i |Xi) ≥ θ1 +X ′

iθ−1.

To fix ideas, consider using the KS statistic defined above with the class of functions G
given by the set of indicator functions I(‖Xi−s‖ ≤ h) with s ranging over real numbers and

h ranging over nonnegative reals. For some positive weighting function ωn(θ, s, h), define

the KS statistic Tn,ω(θ) = sups,h |ωn(θ, s, h)En(WH
i − θ1 − X ′

iθ−1)I(‖Xi − s‖ ≤ h)|− where

|r|− ≡ |r ∧ 0|. This corresponds to the KS statistic defined above with S(r) = |r|− and

with the weight function 1
σ̂(θ,s,h)∨σn (here σ̂(θ, s, h) ≡ {En[(WH

i − θ1 −X ′
iθ−1)I(‖Xi − s‖ ≤

h)]2− [En(W
H
i − θ1−X ′

iθ−1)I(‖Xi− s‖ ≤ h)]2}1/2) replaced by an arbitrary weight function

ωn(θ, s, h).

Following Andrews and Shi (2009) and Kim (2008), one can show that Tn,ω(θ) will con-

verge at a
√
n rate under regularity conditions if ωn(θ, s, h) is bounded uniformly in n.

However, since the variance of the moment indexed by (θ, s, h) will be arbitrarily small when

h is small (Xi has a continuous distribution), setting ωn(θ, s, h) equal to 1
σ̂(θ,s,h)∨σn gives a
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weight function that increases without bound as σn decreases with the sample size. This

decreases the rate of convergence from
√
n to

√

n/ log n. The estimators of the identified set

I propose in this paper are based on inverting KS tests with this weighting function, where
√

n/ log nTn,ω(θ) is compared to a critical value ĉn that is bounded or increases slowly.

With a bounded weight function that does not increase with n,
√
nTn,ω(θ) is compared to a

bounded or slowly increasing critical value.

While the results in this paper apply to rates of convergence in the Hausdorff metric,

much of the intuition for the results in this paper can be exposited in the context of a single

sequence of local alternatives. Consider a value of θ such that the regression line θ1 +X ′
iθ−1

is tangent to the conditional mean EP (W
H
i |Xi) at a single point x0, and Xi has a density

bounded away from zero and infinity near x0. This will typically be the case at least for

some, if not all, elements on the boundary of the identified set. The results are the same if

x0 is replaced by a finite set, and can be extended to cases of set identification at infinity

or at a finite boundary in which x0 may be infinite and the density of Xi may go to zero or

infinity near x0 by transforming the model (see Section B.3). Suppose that, for some α > 0,

EP (W
H
i − θ1 −X ′

iθ−1|Xi = x) behaves like ‖x− x0‖α (3)

as ‖x − x0‖ increases for x close to x0. If EP (W
H
i |Xi = x) is twice differentiable and x0 is

on the interior of the support of Xi, this will hold with α = 2, and a Lipschitz condition on

EP (W
H
i |Xi = x) leads to α = 1. While other values of α appear less natural in this context,

they are common in irregularly identified cases such as the selection model considered in

Section B.3.

Consider the power of KS tests against local alternatives of the form θn = (θ1,0+an, θ−1,0),

where θ0 = (θ1,0, θ−1,0) is on the boundary of the identified set and satisfies the above

conditions for some α. Since moments centered at x0 will have more negative expected

values under this sequence of alternatives, the moments with the most power for detecting

this sequence of local alternatives will be those indexed by s = x0 and some sequence of

values of h. For both classes of weight functions, the order of magnitude of the value of

h that indexes the moment with the most power will be determined by a tradeoff between

variance and the magnitude of the expectation. The KS objective function evaluated at

some (θ, s, h) is the sum of a mean zero term (En −EP )(W
H
i − θ1 −X ′

iθ−1)I(‖Xi − s‖ ≤ h)

and a drift term EP (W
H
i − θ1 − X ′

iθ−1)I(‖Xi − s‖ ≤ h). Under (θn, s, h) with s = x0, the
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drift term is

EP (W
H
i − θ1,n −X ′

iθ−1,n)I(‖Xi − x0‖ ≤ h) = EP (W
H
i − θ1,0 − an −X ′

iθ−1,0)I(‖Xi − x0‖ ≤ h)

= EP (W
H
i − θ1,0 −X ′

iθ−1,0)I(‖Xi − x0‖ ≤ h)− anEP I(‖Xi − x0‖ ≤ h). (4)

Some calculation shows that the first term in the above display is of order hα+dX , while the

second term in the above display is of order −anhdX .
Which values of h result in the corresponding moment having power depends on the

mean zero term and the scaling, which depends on the weight function. First, consider the

increasing sequence of weight functions given by ωn(θn, x0, h) = 1
σ̂(θn,x0,h)∨σn . In this case,

the O(hα+dX − anh
dX ) term in the above display will be divided by σ̂(θn, x0, h) ∨ σn, which,

for σn small enough, will be approximately equal to the standard deviation of the moment

indexed by (θn, x0, h), which is of order hdX/2, and compared to a critical value that is of order

(n/ log n)−1/2 (the mean zero term will be of the same order of magnitude as the normalized

critical value, so it will not affect the power calculation). Thus, the local alternative indexed

by an will be detected if O
(

hα+dX−anhdX
hdX/2

)

≤ −O(n/ log n)−1/2 for some h. The left hand

side is minimized when h is equal to a small constant times a
1/α
n , which leads to the left hand

side being of order −a(dX+2α)/(2α)
n . This will be less than the −O(n/ log n)−1/2 critical value

if an is greater than or equal to a large enough constant times (n/ log n)−α/(dX+2α).

Now consider using a KS statistic with a bounded weight function. The drift term will

still be of order hα+dX −anhdX before being multiplied by the weight function, but, since the

weight function is bounded uniformly in n, weighting will not increase the order of magnitude

of the drift term. In this case, the KS statistics will be compared to a critical value of order

n−1/2, and the mean zero term will be of a smaller order of magnitude, so that the local

alternative indexed by an will be detected if O(hα+dX − anh
dX ) ≤ −O(n−1/2). As before,

the left hand side is minimized when h is equal to some small constant times a
1/α
n . In this

case, this leads to the left hand side being of order a
(dX+α)/α
n . This will be less than the

−O(n−1/2) critical value of an is greater than some large constant times n−α/(2dX+2α). This

is a slower rate of convergence than the (n/ log n)−α/(dX+2α) rate for estimators that use the

inverse variance weighting with increasing truncation points.

The increase in power from weighting low variance moments by the inverse of their stan-

dard deviations comes from the fact that local alternatives violate the conditional moment

inequality on a shrinking subset of the support of the conditioning variable. If we require that

the weight be bounded uniformly in n, low variance moments cannot be weighted properly
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because the inverse of the standard deviation will be greater than the truncation point.

3 Coverage of the Identified Set

In this section, I state conditions under which the set Cn(ĉn) contains the identified set

Θ0(P ) with probability approaching one. Under these conditions, these estimates control

the probability of falsely concluding that the data are not consistent with some parameter

value. I show that the probability that the estimate contains the identified set converges to

one uniformly in any class of probability distributions P that satisfy a set of assumptions

stated below. Since these conditions do not restrict the smoothness of the conditional mean

m̄(θ, x, P ) or the distribution of the conditioning variable, this shows that the estimator is

robust to many types of data generating processes, at least in the sense of controlling the

probability of type I error (of the corresponding testing procedure). In contrast, rates of

convergence derived later in the paper depend on additional smoothness conditions on the

data generating process.

I make the following assumptions.

Assumption 3.1. gj(Xi) ≥ 0 P -a.s. for j from 1 to dY for g ∈ G and P ∈ P.

Assumption 3.1 states that the conditional moment inequalities are integrated against

nonnegative functions, so that going from conditional moment inequalities to unconditional

moment inequalities does not change the sign of the moment inequalities.

Assumption 3.2. For some fixed Y ≥ 0, we have the following.

1. For j from 1 to dY , define the classes of functions Fj,1 = {smj(Wi, θ)gj(Xi) + t|θ ∈
Θ, g ∈ G, s, t ∈ [−(Y ∨1), Y ∨1]} and Fj,2 = {(smj(Wi, θ)gj(Xi)+t)

2|θ ∈ Θ, g ∈ G, s, t ∈
[−(Y ∨1), Y ∨1]}. Suppose that, for j from 1 to dY and i = 1, 2, supQN(ε,Fj,i, L1(Q)) ≤
Aε−V for 0 < ε < 1 for some A, V > 0, where the supremum over Q is over all prob-

ability measures and N(ε,Fj,i, L1(Q)) is the L1 covering number defined in Pollard

(1984).

2. |mj(Wi, θ)gj(Xi)| ≤ Y P -a.s. for j from 1 to dY for all P ∈ P.

Part (1) of Assumption 3.2 bounds the complexity of the classes of functions involved so

that empirical process methods can be used. This condition will hold if the corresponding

bounds hold for G and {w 7→ m(w, θ)|θ ∈ Θ} individually. In Section A.5 of the appendix, I
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state sufficient conditions for Assumption 3.2, and verify them for some classes of functions

G and the moment functionsm from the examples in Section 6. See Pollard (1984) or van der

Vaart and Wellner (1996) for definitions and additional sufficient conditions for these covering

number bounds.

Part (2) of Assumption 3.2 is natural in many cases, such as models defined by quantile

restrictions. In other cases, it restricts some variables to a finite interval. While this is clearly

stronger than just bounding some of the moments of mj(Wi, θ)gj(Xi), when combinded with

part (1) of this assumption, it leads to rates of convergence that are uniform in θ and g and in

the underlying distribution with no additional assumptions on the shape of the conditional

mean or variance or the smoothness of the cdfs of the random variables.

I make the following assumption on the function S. These assumptions are satisfied by

the function t→ ‖t‖− ≡ ‖t ∧ 0‖ for any norm ‖ · ‖ on Euclidean space.

Assumption 3.3. S : RdY → R+ satisfies (i) S(t) > 0 iff. tj < 0 for some j and (ii)

for some positive constants KS,1 and KS,2, we have, for any c > 0, S(t) ≥ c =⇒ tj ≤
−cKS,1 some j and S(t) ≤ c =⇒ tj ≥ −cKS,2 all j.

Under these conditions with ĉn chosen large enough and σn decreasing slowly enough,

the probability of type I error (in the sense of the estimate not containing the identified set)

converges to zero uniformly in P ∈ P .

Theorem 3.1. Suppose that Assumptions 3.1, 3.2 and 3.3 hold with σn
√

n/ log n ≥ K and

ĉn ≥ K with probability approaching one uniformly in P ∈ P. If K is larger than some

constant that depends only on V and Y in Assumption 3.2

inf
P∈P

P (Θ0(P ) ⊆ Cn(ĉn)) n→∞→ 1.

While interesting as a theoretical result, Theorem 3.1 does not explicitly state a value for

the constant K, making it difficult to use in practice. In fact, the constant can be calculated

by carefully following the maximal inequality bounds in the proof. While this gives a feasible

critical value that can be used for inference, the resulting bound is extremely conservative.

This critical value is given in Theorem A.2 in Section A.2 in the appendix.

While this gives a feasible critical value that can be used for inference on the identified set

under very general conditions, the resulting critical value will typically be too conservative

to be of use in practice unless the sample size is extremely large. While general methods for

obtaining less conservative critical values are not yet available for the problem of inference
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on the identified set considered in this paper, a few papers written after or around the same

time the first draft of the present paper circulated have made important contributions in

proposing less conservative critical values for the related problem of inference on points in

the identified set (see Armstrong and Chan, 2012; Chetverikov, 2012). While these results

do not apply in our setting, they do give some indication of how conservative the bound

is in Theorem A.2. For example, applying the bound in Theorem A.2 to critical values for

pointwise inference (θ fixed) with the class G given by {x 7→ I(s < x < s+t)|s, t ∈ RdX} gives
a critical value that is conservative by a factor of just over 128 compared to critical values

based on asymptotic distribution results in Armstrong and Chan (2012) (see the discussion

in Section A.2).

4 Consistency and Rates of Convergence

To get consistency and rates of convergence, we need additional assumptions that lead to

EPm(Wi, θ)g(Xi) being large enough for parameters far from the identified set. Consistency

and rate of convergence results are stated for the Hausdorff metric on sets. For a metric d

on Θ, define the Hausdorff distance dH(A,B) between any two sets A and B by

dH(A,B) = max{sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)}.

Here, I define dH to be the Hausdorff distance that arises when d is defined to be the

metric associated with the Euclidean norm. Note that under the conditions of Theorem 3.1,

Θ0(P ) ⊆ Cn(ĉn) with probability approaching one uniformly in P ∈ P . When this holds,

supb∈Θ0(P ) infa∈Cn(ĉn) d(a, b) = 0 so that we just need to bound supa∈Cn(ĉn) infb∈Θ0(P ) d(a, b).

4.1 Consistency

The following assumption states that for θ bounded away from the identified set, some

moment EPmj(Wi, θ)gj(Xi) is negative and is bounded away from zero. This assumption is

used to obtain consistency, and is in general stronger than what would be needed for power

against fixed points in Θ\Θ0(P ), since consistency in the sense of convergence under some

metric on sets requires that the power against fixed alternatives be uniform in alternatives

bounded away from the identified set in this metric.

Assumption 4.1. For every ε > 0, there exists a δ > 0 such that, for all P ∈ P,
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dH(θ,Θ0(P )) > ε implies that there exists a g ∈ G such that EPmj(Wi, θ)gj(Xi) < −δ
for some j.

Theorem 4.1. Suppose that Assumption 4.1 and the assumptions of Theorem 3.1 hold, and

that supP∈P P (ĉn
√

(log n)/n > η) → 0 for all η > 0. Then, for every ε > 0,

sup
P∈P

P (dH(Θ0(P ), Cn(ĉn)) > ε)
n→∞→ 0.

4.2 Rates of Convergence under High Level Conditions

While the focus of this paper is the interpretable conditions for rates of convergence of

the estimate of the identified set given in Section 4.3, I first present a result using a high

level condition. The derivations of the rates of convergence in Section 4.3 use this result

along with additional arguments relating the variance and expectation of the moments to

the conditions in this section. The conditions in this section also encompass the case where

local alternatives violate the conditional moment inequality on a non-shrinking set, leading

to
√

n/ log n convergence (such as Assumption B.7 for the application in Section B.3), and

it is instructive to compare the verification of the conditions in this section under these two

types of set identification.

The next assumption is a high level assumption that incorporates both the variance

and expectation of the moments defined by each g ∈ G. The assumption is similar to the

polynomial minorant condition in Chernozhukov, Hong, and Tamer (2007).

Assumption 4.2. For some positive constants C, ψ, γ, and δ with ψ < 1, we have, (i) for

all P ∈ P and θ ∈ Θ with dH(θ,Θ0(P )) ≤ δ,

inf
g,j

µP,j(θ, g)

σP,j(θ, g) ∨ dH(θ,Θ0(P ))ψ/γ
≤ −CdH(θ,Θ0(P ))

1/γ

where the infimum is taken over g ∈ G and j ∈ {1, . . . , dY } and (ii) σn(n/ log n)
ψ/2 is bounded

uniformly in P .

Part (ii) of this assumption states that the cutoff σn must go to zero fast enough that

the moments with the most identifying power relative to their variance are scaled by their

standard deviation. This condition can be made to hold for all ψ < 1 by choosing, e.g.,

σn =
√

(log log n)(log n)/n, as discussed in Section 2.

The following theorem gives rates of convergence to the identified set under this assump-

tion.
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Theorem 4.2. Suppose that Assumption 4.1 and 4.2 hold, and that Assumptions 3.1, 3.2

and 3.3 hold with σn and ĉn chosen to satisfy the requirements of Theorems 3.1 and 4.1.

Then, for some large B that does not depend on P ,

sup
P∈P

P

(

(

n

ĉ2n log n

)γ/2

dH(Cn(ĉn),Θ0(P )) > B

)

n→∞→ 0.

The results in the next section use Theorem 4.2 along with additional arguments to

formalize the intuition described in Section 2.1. The balancing of the mean and variance

described in Section 2.1 plays out through the ratio of the mean µP,j(θ, g) and the standard

deviation σP,j(θ, g) in Assumption 4.2. This determines the best attainable value of γ in

Assumption 4.2. If a sequence of g functions can be found such that, as the distance of θ

to the identified set decreases, the magnitude of µP,j(θ, g) decreases much more slowly than

σP,j(θ, g), the left hand side of the display in Assumption 4.2 will be large in magnitude,

so that the condition will hold with a larger value of γ. It is useful to contrast this with

the case where local alternatives violate one of the conditional moment inequalities on a

non-shrinking set. In this case, g can be chosen to be some fixed function that is positive

only on this set. This leads to σP,j(θ, g) being fixed while µP,j(θ, g) typically goes to zero

at a rate proportional to dH(θ,Θ0(P )), so that Assumption 4.2 holds with γ = 1, and

Theorem 4.2 gives a
√

n/ log n rate of convergence for the set estimator (see the proof of

the part of Theorem B.4 that applies under Assumption B.7 for more details). In cases like

those described in Section 2.1, the best attainable ratio of µP,j(θ, g) to σP,j(θ, g) depends on

smoothness properties of the data generating process and leads to a smaller γ and a slower

rate of convergence. The results in the next section cover this case.

4.3 Interpretable Conditions for Rates of Convergence

Assumption 4.2 is a high level condition that incorporates both the expectation and variance

of each g function. The next assumptions place restrictions on the shape of the conditional

mean m̄(θ, x, P ) = EP (m(Xi, θ)|Xi = x) as a function of x and θ that can be used to verify

Assumption 4.2. These conditions shed light on how the shape of the data generating process

and m̄(θ, x, P ) as a function of θ and x determine the rate of convergence, and are easier to

verify in many applications. Once consistency is established, these assumptions only need

to hold for dH(θ,Θ0(P )) < ε for some ε > 0.
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Assumption 4.3. m̄(θ, x, P ) is differentiable in θ with derivative m̄θ(θ, x, P ) that is con-

tinuous as a function of θ uniformly in (θ, x, P )

Assumption 4.4. For some η > 0 and C > 0, we have, for all θ ∈ Θ\Θ0(P ), there exists

a j0(θ, P ), θ0(θ, P ) and x0(θ, P ) such that

m̄θ,j0(θ,P )(θ0(θ, P ), x0(θ, P ), P )(θ − θ0(θ, P )) ≤ −η‖θ − θ0(θ, P )‖,

m̄j0(θ,P )(θ0(θ, P ), x0(θ, P ), P ) = 0, and, for ‖x− x0‖ < η,

|m̄j0(θ,P )(θ0(θ, P ), x, P )− m̄j0(θ,P )(θ0(θ, P ), x0(θ, P ), P )| ≤ C‖x− x0(θ, P )‖α.

The first part of Assumption 4.4 states that, for θ close to the identified set, there is some

element in the identified set such that that moving from this element to θ corresponds to

moving some index of the conditional mean downward. This assumption restricts the angle

between the path from θ to some point on the identified set and the directional derivative of

the conditional mean for θ along this path. To see that the first part of Assumption 4.4 comes

from a condition on the magnitude of the derivative of the conditional mean with respect to

θ and the angle of between the derivative and the difference between θ and some point on

the identified set, note that, letting φ be the angle between m̄θ,j0(θ,P )(θ0(θ, P ), x0(θ, P ), P )

and θ − θ0(θ, P ),

m̄θ,j0(θ,P )(θ0(θ, P ), x0(θ, P ), P )(θ − θ0(θ, P ))

= ‖m̄θ,j0(θ,P )(θ0(θ, P ), x0(θ, P ), P )‖‖θ − θ0(θ, P )‖ cosφ.

Thus, the first part of Assumption 4.4 will be satisfied if ‖m̄θ,j0(θ,P )(θ0(θ, P ), x0(θ, P ), P )‖ is

bounded away from zero and cosφ is negative and bounded away from zero. As shown in a

counterexample in Section A.4, the rate of convergence can be slower when such a condition

is not placed on the angle φ.

The second part of Assumption 4.4 is a restriction on the shape of the conditional mean

as a function of x for θ on the boundary of the identified set. Combining this with the first

part of the assumption determines which functions in G have power under local alternatives.

As verified for several models in Section 6, this typically follows from Hölder conditions or

conditions on the first two derivatives of conditional means or quantiles of variables in the

data, leading to some value of α between zero and 2, or from conditions on densities and

conditional means near the boundary of the support of the conditioning variable, which can
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lead to larger values of α after a transformation of the data.

The next assumption states that, for any P ∈ P , all points must either be outside of the

support of Xi under P , or have sufficient probability mass nearby. While this assumption

rules out Xi having infinite support or having a density that goes to zero near the boundary

of its support, these cases can typically be handled by transforming the data to make this

assumption hold. I do this for one application in Section B.3.

Assumption 4.5. For some η > 0, we have, for all P ∈ P and all ε > 0, P (‖Xi − x‖ ≤
ε)/εdX ≥ η for all x on the support of Xi.

The next assumption ensures that the set of functions G is rich enough to contain func-

tions that behave like indicators of small sets. This assumption holds for any class that

contains indicator sets of the open balls for any norm on RdX , or, for any nonnegative

bounded kernel function k : RdX → R+ with finite support and k(x) bounded away from

zero near x = 0, the class {x 7→ k((x − t)/h)|t ∈ R, h ≥ 0} that contains all dilations and

translations of the kernel function k (in the following assumption, the upper bound is taken

to be one, CG,1 can be taken to be the positive lower lower bound on the kernel function in

a neighborhood of zero, and CG,2 can be taken to be such that {x|‖x‖ ≤ CG,2} is contained

in this neighborhood of zero).

Assumption 4.6. The functions in G are uniformly bounded and for some constants 0 <

CG,1 < 1 and 0 < CG,2 < 1, we have that, for all s ∈ RdX and t ≥ 0, G contains a function g

such that CG,1I(‖Xi − s‖ < CG,2t) ≤ g(Xi) ≤ I(‖Xi − s‖ < t).

The next theorem gives rates of convergence under these assumptions.

Theorem 4.3. Suppose that Assumptions 4.3, 4.4, 4.5 and 4.6 hold. Then part (i) of

Assumption 4.2 holds with γ = 2α/(dX + 2α) and ψ = dX/(dX + 2α).

Applying Theorem 4.2, this gives a (n/ log n)α/(dX+2α) rate of convergence as long as

the cutoff point σn for the standard deviation weighting decreases at least as quickly as

((log n)/n)ψ/2 = (n/ log n)dX/(2dX+4α), but slightly more slowly than ((log n)/n)1/2, so that

σn satisfies the conditions of Theorem 3.1. As discussed in Section 2, one can ensure that

both of these conditions hold by choosing σn =
√

(log log n)(log n)/n.

5 Rates of Convergence for Other Estimators

In order to compare the estimators based on KS statistics with increasing variance weights

proposed in this paper to estimation procedures based on kernels or KS statistics with
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bounded weights, we need rates of convergence for these estimators as well. Since these

results are not available in the literature, I derive these results in this section. The re-

sults show that, in contrast to the truncated inverse weighting approach which achieves

a (n/ log n)α/(dX+2α) rate, an approach with bounded weights leads to a slower rate of

nα/(2dX+2α), and a kernel approach leads to the same rate as the truncated inverse weighting

approach only if the rate for the optimal bandwidth is known, and otherwise leads to set

estimates that converge to the identified set more slowly.

5.1 Bounded Weight Functions

Consider a set estimate based on a KS statistic similar to the ones considered so far, but with

the weight function 1/(σ̂(θ, g) ∨ σn) replaced by some bounded weight function ωn(θ, g) =

(ωn,1(θ, g), . . . , ωn,dY (θ, g)). Here, ωn(θ, g) is unrestricted, except for the requirement that,

for some ω we have ‖ωn(θ, g)‖ ≤ ω for all n, θ, and g. Define

Tn,ω(θ) ≡ sup
g∈G

S (ωn,1(θ, g)µ̂n,1(θ, g), . . . , ωn,dY (θ, g)µ̂n,dY (θ, g)) .

Following Andrews and Shi (2009) (with additional conditions to control the complexity of

mj(Wi, θ)gj(Xi) over θ as well as g), Tn,ω(θ) will converge at a
√
n rate, so define the estimate

of the identified set for critical value ĉn to be

Cn,ω(ĉn) ≡
{

θ ∈ Θ

∣

∣

∣

∣

√
nTn,ω(θ) ≤ ĉn

}

.

Under upper bounds on the smoothness of the conditional mean that correspond to the

lower bounds given in Section 4, upper bounds on the rate of convergence of set estimates

based on KS statistics with bounded weights can be derived. These conditions are stated in

the following assumption.

Assumption 5.1. For some θ0 ∈ δΘ0(P ) such that θ0 is in the interior of Θ, the following

holds for some neighborhood B(θ0) of θ0. (i) m̄(θ, x, P ) is differentiable in θ with derivative

m̄θ(θ, x, P ) bounded over θ ∈ B(θ0). (ii) For some η > 0, we have, for all θ′0 ∈ (δΘ0(P )) ∩
B(θ0), the set X0(θ

′
0) of points x0 such that mink m̄k(θ

′
0, x0, P ) = 0 satisfies

|m̄j(θ
′
0, x, P )− m̄j(θ

′
0, x0, P )| ≥ η (‖x− x0‖α ∧ η) ,

for all j, and the number of elements in X0(θ
′
0) is bounded uniformly over θ′0. (iii) Xi has
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finite support and a bounded density on its support. (iv) There exists a path t 7→ θt such that

θt → θ0 as t→ 0 and t→ d(θt, θ0) is continuous for t in a neighborhood of 0.

Assumption 5.1 gives an upper bound on the smoothness of the conditional mean similar

to the lower bound of Assumption 4.4. It states that α is the best (greatest) possible value of

α for which Assumption 4.4 can hold. Without this assumption, rates of convergence derived

using Assumption 4.4 and some value of α could be conservative, since the same assumption

could also hold with a larger value of α. The next theorem uses this condition to get an

upper bound on the rate of convergence of the set estimator Cn,ω(ĉn) when the sequence of

weight functions is uniformly bounded.

Theorem 5.1. Under Assumptions 3.1, 3.2, 3.3 and 5.1, if ĉn is bounded away from zero

and g(Xi) and m(Wi, θ) are uniformly bounded, then, for some ε > 0,

P
(

nα/(2dX+2α)dH (Cn,ω(ĉn),Θ0(P )) ≥ ε
) n→∞→ 1.

Under the smoothness conditions of Section 4, this slower rate of convergence can be

achieved (up to an arbitrarily slow rate of growth of the critical value) using bounded weights

with an estimated set that contains Θ0(P ) with probability approaching one.

Theorem 5.2. Suppose that Assumptions 3.1, 3.2, 3.3, 4.1, 4.3, 4.4, 4.5 and 4.6 hold. Let

the weight function ωn(θ, g) satisfy ω ≤ ωn(θ, g) ≤ ω for some 0 < ω ≤ ω <∞, and suppose

that ĉn → ∞ with ĉn/
√
n→ 0. Then

inf
P∈P

P (Θ0(P ) ⊆ Cn,ω(ĉn)) n→∞→ 1

and, for B large enough,

sup
P∈P

P
(

(

n/ĉ2n
)α/(2dX+2α)

dH(Cn(ĉn),Θ0(P )) > B
)

n→∞→ 0.

The nα/(2dX+2α) rate of convergence for the estimator using bounded weights is slower

than the (n/ log n)α/(dX+2α) rate of convergence derived in Section 4 for the estimator using

the truncated variance weights. The rate of convergence is slower because sequences of

local alternatives violate a shrinking set of moment inequalities. This leads to sequences

of functions in G with the most power having a shrinking sequence of variances, so that a

bounded weighting function cannot give them enough weight. While the examples in Section

6 show that this case is likely to be common in practice, bounded weight functions will have
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advantages in other important cases (for example, when two inequalities form an equality

conditional on Xi in a positive probability set, leading to point identification, bounded

weights will typically perform better). Under conditions such as Assumption B.7 for the

selection model in Section B.3, sequences of local alternatives lead to a single function in

G with positive variance having power. In this case, using a bounded sequence of weight

functions does not cause such a problem, and the increasing sequence of truncation points

does worse by a power of log n because of the larger critical value needed for the KS statistic.

5.2 Kernel Methods

Suppose that we estimate the conditional mean EP (mj(Wi, θ)|Xi = x) = m̄j(θ, x, P ) using

the kernel estimate

ˆ̄mj(θ, x) ≡
Enmj(Wi, θ)k((Xi − x)/hn)

Enk((Xi − x)/hn)

for some sequence hn → 0. Chernozhukov, Lee, and Rosen (2009) and Ponomareva (2010)

propose methods for inference on conditional moment inequalities based on this estimate of

the conditional mean. Following Chernozhukov, Lee, and Rosen (2009) this estimate of the

conditional mean will converge at a
√

nhdX/ log n rate uniformly over x. Using the results

in this paper, this rate can be shown to be uniform over θ as well, so that the statistic

T kern
n,k,hn(θ) ≡ sup

x∈suppP (Xi)

S( ˆ̄m(θ, x))

can be used to form an estimate

Ckern
n (ĉn) ≡

{

θ ∈ Θ

∣

∣

∣

∣

√
nhdX√
log n

T kern
n,k,hn(θ) ≤ ĉn

}

that will contain the identified set with probability approaching one for ĉn large enough.

I place the following conditions on the choice of kernel function k. All of these conditions

are fairly mild regularity conditions, except for the requirement that k be positive, which

rules out higher order kernels. Ruling out higher order kernels is important. Since the class of

KS statistics used in this paper integrate the conditional moment inequality against positive

functions, these statistics cannot take advantage of smoothness conditions of more than two

derivatives, while higher order kernels with a properly chosen bandwidth can.
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Assumption 5.2. (i) k is nonnegative (ii) k integrates to one, is bounded and square in-

tegrable over RdX and k(t) is bounded away from zero for t in some neighborhood of 0 (iii)

Assumption 3.2 holds with G replaced by the class of functions t 7→ k((t−x)/h) where x and

h vary.

As with set estimators based on KS statistics with bounded weights, the upper bounds

on the smoothness of the conditional mean in Assumption 5.1 lead to upper bounds on the

rate of convergence of estimates of the identified set based on kernel estimates. For the first

order kernel estimates described above, estimates of the identified set will converge no faster

than estimates based on variance weighted KS statistics, and will only achieve the same rate

if the tuning parameter hn is chosen to go to zero at the proper rate. Although this means

that properly weighted KS statistics will generally do at least as well as first order kernel

estimates and sometimes better in terms of rates of convergence, kernel estimates with a

properly chosen sequence hn may do better against alternatives that approach the identified

set at a given rate.

The upper bound on rates of convergence for kernel based estimators is stated in the

following theorem. In this theorem, the requirements that the critical value ĉn be large

and that the bandwidth hn not shrink too quickly ensure that the procedure controls the

probability of false rejection. If these conditions do not hold, we may have Θ0(P ) 6⊆ Ckern
n (ĉn)

with high probability asymptotically.

Theorem 5.3. Suppose that Assumptions 4.5, 5.1 and 5.2 hold. If ĉn is chosen large enough,

and if hdXn n/ log n ≥ a for a large enough, then, for some ε > 0,

P

((√

nhdXn√
log n

∧ h−αn

)

dH(Ckern
n (ĉn),Θ0(P )) ≥ ε

)

n→∞→ 1.

The upper bound on the rate of convergence in Theorem 5.3 is the slower of

√
nh

dX
n√

log n
,

which comes from a variance term, and h−αn , which comes from a bias term. The optimal

rate of convergence for estimates based on first order kernels will be achieved only when

these terms are of the same order of magnitude, which corresponds to h−αn = O
(√

nh
dX
n√

logn

)

or

hn = O
(

logn
n

)1/(dX+2α)
. Thus, choosing the optimal hn requires knowing or estimating the

Hölder constant α. While kernel based estimates may give more power when hn is chosen

optimally, variance weighted KS statistics give the same rate of convergence as kernel based

estimates with the optimally chosen hn without knowing α. If hn is chosen to go to zero
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at a different rate from the optimal rate for a given data generating process, kernel based

estimates of the identified set will converge more slowly than estimates based on variance

weighted KS statistics. If the choice of hn is far enough off from the optimal choice (i.e. if

the researcher is wrong enough about the smoothness of the data generating process), even

the rate of convergence for unweighted KS statistics in Theorem 5.2 will be better than the

rate of convergence of the kernel based estimate.

6 Applications

In this section, I verify the conditions for rates of convergence stated above for some appli-

cations under primitive conditions. Section B verifies the conditions for rates of convergence

in some additional applications.

6.1 One Sided Regression

We posit a linear regression model EP (W
∗
i |Xi) = X ′

iβ for a latent variable W ∗
i , but we

only observe (Xi,W
H
i ), where WH

i is known to be greater than or equal to W ∗
i . This leads

to the conditional moment inequality EP (W
H
i |Xi) ≥ X ′

iβ, which fits into the framework

of this paper with dY = 1, Wi = (Xi,W
H
i ) and m(Wi, θ) = WH

i − θ1 − X ′
iθ−1. Here,

m̄(θ, x) = EP (W
H
i |Xi = x) − θ1 − x′θ−1. I verify the conditions used above to derive rates

of convergence (Assumptions 4.3 and 4.4) under the following assumptions.

Assumption 6.1. For some C > 0 and 0 < α ≤ 1, ‖EP (WH
i |Xi = x) − EP (W

H
i |Xi =

x′)‖ ≤ C‖x− x′‖α for x and x′ on the support of Xi for all P ∈ P.

Assumption 6.1 places a Hölder condition on the conditional mean of the upper bound of

the outcome given Xi. This is a smoothness condition on the data generating process. For

α = 1, Assumption 6.1 states that this conditional mean must be Lipschitz continuous. For

smaller α, the conditional mean must still be continuous, but can be less smooth.

For α > 1, a condition like Assumption 6.1 would restrict EP (W
H
i |Xi = x) to be constant,

since its slope would have to converge to zero at every point. However, as described in

Section 2.1, this condition factors into the rate of convergence only in restricting EP (W
H
i −

θ1 − X ′
iθ−1|Xi = x) to increase no faster than a multiple of ‖x − x0‖α near some tangency

point x0 for θ = (θ1, θ−1) on the boundary of the identified set. The same argument will

still go through as long as this restriction on the difference between EP (W
H
i |Xi = x) and

a tangent line holds for some α, even if α > 1. While placing this condition directly on
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EP (W
H
i −θ1−X ′

iθ−1|Xi = x) near tangency points is a bit awkward in general, this condition

has a natural interpretation when α = 2. In this case, it requires that the difference between

the conditional mean EP (W
H
i |Xi = x) and any tangent line behave quadratically near the

tangent point, which is implied by a bound on the second derivative. This is the content of

the next assumption.

Assumption 6.2. (i) EP (W
H
i |Xi = x) has a second derivative that is bounded uniformly

in P and x and (ii) for any P ∈ P, θ0 ∈ Θ0(P ), EP (W
H
i |Xi = x) is bounded away from

θ0,1 + x′θ0,−1 on the boundary of the support of Xi

Part (ii) of Assumption 6.2 restricts the local alternatives that determine Hausdorff dis-

tance of the set estimator to be in the interior of the support ofXi. Without such a condition,

the estimators considered here suffer from the familiar problems of kernel estimators at the

boundary of the support of a conditioning variable, and the slower rate with α = 1 is

obtained.

The next assumption ensures that the condition on the tangent angle in Assumption 4.4

holds. Under this assumption, rates of convergence to the identified set depend on sequences

of parameters in which only the intercept parameter varies. This condition ensures that

varying the intercept parameter a small amount near the boundary of the identified set gives

an element that is still in the parameter space Θ.

Assumption 6.3. The subvector θ−1 of θ is bounded over θ ∈ Θ and, for any θ ∈ Θ,

(θ′1, θ−1) ∈ Θ for all θ′1 such that infP∈P infxEP (W
H
i |Xi = x)− x′θ−1 ≤ θ′1 ≤ θ1.

Theorem 6.1. Suppose that Assumptions 6.3 holds in the one sided linear regression model

and Xi has compact support for all P ∈ P. Then, if Assumption 6.1 holds, Assumptions 4.3

and 4.4 will hold for α specified in Assumption 6.1. If Assumption 6.2 holds, Assumptions

4.3 and 4.4 will hold for α = 2.

If the parameter space Θ is restricted so that all sequences of local alternatives corre-

sponded to rotating the regression line around a tangent point, Assumption 6.3 will fail and

the rate of convergence will be slower. The verification of the assumptions of Theorem 4.3

will not go through in this case because the first part of Assumption 4.4 will fail. As an exam-

ple, suppose EP (W
H
i |Xi = x) = x2. If the parameter space Θ does not restrict the intercept

parameter, the proof of Theorem 6.1 will go through. However, if Θ = {(0, θ1)|θ1 ∈ R} (that

is, we restrict the intercept to be 0), the rate of convergence will be determined by local al-

ternatives of the form (0, an). I show in Section A.4 of the appendix that the estimate of the
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identified set converges no faster than at a ((log n)/n)1/5 rate, rather than the ((log n)/n)2/5

rate for the case where the parameter space is unrestricted, and that the estimate based on

bounded weights has an even slower rate of convergence.

These issues also make it more difficult to state primitive conditions that lead to As-

sumption 4.4 in the case of two sided interval regression, in which we add the conditional

moment inequality m2(Wi, θ) = θ1 +X ′
iθ−1 −WL

i . As with restricting the parameter space,

adding the second conditional moment inequality can lead to the rate of convergence being

determined by sequences of local alternatives that correspond to rotating the regression line

around a tangent point. One example that leads to this is when EP (W
H
i |Xi = x) = x2

and EP (W
L
i |Xi = x) = −x2. Adding the moment inequality on WL

i has the same effect as

restricting the intercept to be zero in the example above. The rate of convergence to the

identified set is determined by local alternatives of the form (0, an), which leads to a slower

rate of convergence. The argument in Section A.4 applies here as well, leading to a slower

((log n)/n)1/5 rate of convergence.

For the case where Xi is a scalar, these cases can be ruled out in the interval regression

model by placing conditions on certain tangency points. I go through this argument in the

next section. However, higher dimensions appear to require further conditions.

6.2 Interval Regression with a Scalar Regressor

In what follows, I consider an interval regression model in which, in addition to WH
i defined

as in Section 6.1, we observe WL
i that is known to satisfy WL

i ≤ W ∗
i , so that EP (W

L
i |Xi) ≤

θ1+X
′
iθ−1. This fits into the framework of this paper withm(Wi, θ) = (WH

i −θ1−X ′
iθ−1, θ1+

X ′
iθ−1 −WL

i ). I restrict attention to the case where dX = 1, so that θ−1 = θ2 is a scalar.

In addition to the assumptions used in Section 6.1, I impose the following assumption,

which rules out cases like the one described above in which local alternatives correspond

to rotating the regression line around a tangent point. For the following condition, let

(θu1 (P ), θ2(P )) ∈ Θ0(P ) and (θℓ1(P ), θ2(P )) ∈ Θ0(P ) be such that θ2(P ) = supθ∈Θ0(P ) θ2

and θ2(P ) = infθ∈Θ0(P ) θ2. Define xu0,1(P ) = max{x|EP (WH
i |Xi = x) = θu1 (P ) + θ2(P )x},

xu0,2(P ) = min{x|EP (WL
i |Xi = x) = θu1 (P ) + θ2(P )x}, xℓ0,1(P ) = max{x|EP (WL

i |Xi = x) =

θℓ1(P ) + θ2(P )x} and xℓ0,2(P ) = min{x|EP (WH
i |Xi = x) = θℓ1(P ) + θ2(P )x}.

Assumption 6.4. (i) The support of Xi is bounded uniformly in P ∈ P. (ii) The absolute

value of the slope parameter θ2 is bounded uniformly on the identified sets Θ0(P ) of P ∈ P.

(iii) xu0,1(P )−xu0,2(P ) and xℓ0,1(P )−xℓ0,2(P ) are bounded from below away from zero uniformly

over P ∈ P.
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Theorem 6.2. In the interval regression model with dX = 1, suppose that Assumption 6.4

holds. Then, if Assumption 6.1 holds as stated and with WH
i replaced by WL

i , Assumptions

4.3 and 4.4 will hold for α specified in Assumption 6.1 (and dX = 1). If Assumption 6.2

holds as stated and with WH
i replaced with WL

i , Assumptions 4.3 and 4.4 will hold for α = 2

(and dX = 1).

Part (iii) of Assumption 6.4 ensures that the tangent points for x for the largest and

smallest values of the slope parameter in the identified set are bounded away from each

other. If this does not hold, the rate of convergence can be slower, as shown in Section A.4.

A sufficient condition for part (iii) of Assumption 6.4 is that the slope parameter is bounded

uniformly over the parameter space and that EP (W
H
i |Xi = x)−EP (WL

i |Xi = x) is bounded

away from zero uniformly over x and P ∈ P . However, Assumption 6.4 also allows for point

identified cases or “nearly” point identified cases in which EP (W
H
i |Xi = x)− EP (W

L
i |Xi =

x) is small (or zero), so long as the two conditional means are not only close at a single

point. In particular, Assumption 6.4 allows EP (W
H
i |Xi = x) and EP (W

L
i |Xi = x) to be

equal on a positive probability set (leading to point identification). In this case, the results

in Theorem 6.2 still apply, but are conservative, since local alternatives will violate the

conditional moment inequalities on a set with nonvanishing probability. Since Theorem 6.2

gives the minimax rate of convergence over a class of underlying distributions that includes

both regular point identified and set identified cases, the resulting rate corresponds to the

slower of the two cases, which turns out to be the set identified case.

7 Monte Carlo

To examine the finite sample properties of the set estimates proposed in this paper, and to

illustrate their implementation, I perform a monte carlo study. I compare the weighted KS

statistic based set estimators to the other estimators in Section 5 in a quantile regression

model with missing data on the outcome variable, where no additional assumptions are

imposed on the process generating the missing values. Letting W ∗
i be the true value of the

outcome variable, I simulate from a model where the median of W ∗
i given Xi = x is given by

θ1+θ2x, butW
∗
i is not always observed. This falls into the framework of the interval quantile

regression model described in Section B.2, withWH
i = WL

i = W ∗
i when the outcome variable

is observed, and WH
i = ∞ and WL

i = −∞ when the outcome variable is unobserved. The

identified set contains all values of (θ1, θ2) that are consistent with the median regression

model and some, possibly endogenous, censoring mechanism generating the missing values.
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I generate data as follows. For Xi and U∗
i generated as independent variables with

Xi ∼ unif(−3, 3) and U∗
i ∼ unif(−1, 1) and (θ1,∗, θ2,∗) = (1/4, 1/2), I set W ∗

i = θ1,∗ +

θ2,∗Xi+U∗
i . Then, I set W

∗
i to be missing (that is, (WL

i ,W
H
i ) = (−∞,∞)) with probability

1/5 − X2
i /20 + X4

i /200, and observed (WL
i = WH

i = W ∗
i ) with the remaining probability

1− (1/5−X2
i /20+X4

i /200). Note that, while the data are generated by taking a particular

point (θ1,∗, θ2,∗) in the identified set and using a censoring process that satisfies the missing

at random assumption (that the event of W ∗
i not being observed is independent of U∗

i

conditional on X∗
i ), the identified set for this model is larger than a single point, and contains

all values of (θ1, θ2) that are consistent with median regression and any form of censoring,

including those where the probability of not observingW ∗
i depends on the outcomeW ∗

i itself.

I generate monte carlo data sets with the data generating process described above and n

equal to 200, 500, and 1000 observations. I use 1000 replications for each monte carlo design.

For each monte carlo replication, I compute set estimates based on the weighted KS

statistics in this paper using various choices of the user defined parameters σn and ĉn. I also

compute set estimates based on a constant weighting, and kernel estimates, as described in

Section 5. For the weighted and unweighted KS statistics, the class of functions G is taken

to be the set of indicator functions for intervals {x 7→ I(s < x < s+ t)|t ≥ 0}. For the kernel
based estimators, the uniform kernel x 7→ I(−h/2 < x < h/2) is used, and the supremum is

taken over x such that the kernel function is positive only on the support of Xi. For each of

these estimators, I form ĉn has follows. Using monte carlo simulation with 1000 replications,

I compute the .95 quantile of the distribution of
√

n/ log n times the test statistic where

(m1(Wi, θ),m2(Wi, θ)) = (D∗
i −1/2, 1/2−D∗

i ), where {D∗
i }ni=1 are iid bernoulli(1/2) variables

independent of {Xi}ni=1 and Xi has the same distribution as in data generating process for

the monte carlos. This corresponds to a distribution where both moment inequalities are

binding for all x since, with probability one, no observations are missing. Letting c.95,n be

this value, I take the critical value to be c.95,n times a slowly increasing sequence, which I

take to be
√
log log n in most cases, except for the variance weighted KS statistic, for which

I also compute sets with the sequence taken to be
√
log n and 1 to assess the sensitivity of

the estimator to ĉn (by results in Armstrong and Chan, 2012, c.95,n converges to a positive

constant, so that, except for in the case where the increasing sequence is taken to be 1 for all

n, these critical values satisfy the conditions of Theorem 3.1; the case where the increasing

sequence taken to be 1 for all n is included to examine the performance of the estimator

when the sequence of critical values is smaller than what is allowed by the conditions of this

paper). For σn for the variance weighted KS statistics, I report results for σn = (1/2)n−1/6,
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σn = (1/2)n−1/10 and σn = (1/2)
√

(log n)(log log n)/n, which correspond to the slowest

possible rate for α = 1 and 2, and (a slowly increasing sequence multiplied by) the fastest

possible rate respectively (the 1/2 factor corresponds to the conditional standard deviation

of the moment function in the median regression model). For the kernel based estimators, I

report results with the bandwidth given by (x− x)n−1/3 and (x− x)n−1/5, where x = 3 and

x = −3 are the upper and lower endpoints of the support of Xi. These correspond to the

optimal rate for the bandwidth for α = 1 and α = 2 respectively.

Tables 1 and 2 report median Hausdorff distances for each estimator for the projection

of the set estimator onto each parameter, and for the parameter vector itself (comparisons

for other quantiles of the Hausdorff distance are similar). The monte carlo coverage proba-

bility is at least 99.9% in all cases, except for the case where the increasing sequence that

multiplies cn,.95 is taken to be 1 (first column of Table 2), for which the monte carlo coverage

probabilities are 99.5%, 98.2% and 99.3% for sample sizes 200, 500 and 1000 respectively.

For these data generating processes, the variance weighted statistics generally perform

better than the unweighted statistics for the slope parameter β1 and worse for the intercept

parameter β2. For the parameterization used here, this translates to the Hausdorff distance

for both parameters being larger for the weighted statistics, although it should be noted

that this depends on the parameterization and the units in which the covariate is measured

(e.g., if the outcome is yearly income in dollars and the covariate is years of education, β1

is measured in dollars, while β2 is measured in dollars per year of education; if one instead

measures education in months, β2 will be divided by 12, while β1 will remain the same;

in these monte carlos, reparameterizing so that β2 is multiplied by, say, 10, leads to the

Hausdorff distance being smaller for the weighted statistic).

The data generating process used here satisfies the conditions of this paper with α = 2

and dX = 1. The values of σn are all chosen so that the variance weighted KS statistic based

estimator achieves the same rate as the kernel based estimator with the optimal bandwidth

(which is proportional to n−1/5). Thus, according to the asymptotic results one should

expect that the kernel estimator with the optimal bandwidth should perform slightly better

than the variance weighted KS statistic based estimators, but that the variance weighted KS

statistic based estimators should not be too far behind, and should perform better than the

kernel estimator with the bandwidth chosen proportional to n−1/3. This holds for the slope

parameter β2, although the weighted KS statistic actually performs better for the intercept

parameter and for the Hausdorff distance of both parameters together.

Thus, the asymptotic power results of Theorem B.2 appear to provide a good description
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of the behavior of the estimates of the slope parameter for this case, while the asymptotic

power results for the intercept parameter appear to be better described by an asymptotic

approximation where the conditional moment inequality is violated on a set with nonshrink-

ing probability (as with Assumption B.7 or the local alternatives considered by Andrews

and Shi, 2009). A likely explanation for this is that, for this data generating process, the

conditional moment inequality is violated for all values of x on the support of Xi when the

intercept parameter is fixed at values in the identified set and the intercept parameter is

moved in the range of the median distances seen in these monte carlos. In any case, as both

of these asymptotic approximations predict, the weighted KS statistic based estimator does

close to as well as the best estimator in all cases, while each of the other estimators performs

worse in some case.

In the monte carlo results described above, the data generating process is designed so

that, according to asymptotic theory, the weighted statistic should perform better than

the unweighted statistic. To examine a setting where asymptotic theory predicts that the

unweighted statistic performs better, I perform a monte carlo analysis of a version of the

missing data model with a constant probability of missing outcomes given Xi, and with

the slope variable constrained so that all local alternatives violate the conditional moment

inequality on a nonshrinking set. The data generating process for Xi and U∗
i is the same

as above, but I set (θ1,∗, θ2,∗) = (0, 0), and set the W ∗
i to be missing with probability .1

independently of (Xi, U
∗
i ). For this model, I estimate the upper endpoint of the identified

set for θ1 with θ2 set to zero. This can be considered a quantile version of the selection model

with an exclusion restriction (the exclusion restriction being that θ2 = 0) in Section B.3,

with the data generating process satisfying the quantile version of Assumption B.7. Thus,

according to asymptotic theory, the weighted statistic should perform slightly worse than

the unweighted statistic. To assess how well this describes these data generating processes, I

compare the Hausdorff distance of estimators based on weighted and unweighted statistics.

The results of the monte carlos for this data generating process are reported in Table 3.

This table reports the median distance between the upper endpoint of the estimator of the

identified set and the upper endpoint of the identified set. The critical value ĉn is the same

as for the other data generating processes. As predicted, the unweighted statistic performs

better in this setting.
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8 Conclusion

This paper proposes estimates of the identified set in conditional moment inequality models

based on variance weighted KS statistics. I derive rates of convergence of these and other

set estimators to the identified set under conditions that apply to many models of practical

interest. In many settings, the rate of convergence of the set estimator I propose is the fastest

among those available, and, in settings where other estimators are better, the improvement

in rate of convergence is no more than a factor of log n. While, in most cases, there is some

other estimator that does slightly better, choosing the correct one requires knowledge of

smoothness and shape conditions on the data generating process, and guessing incorrectly

about these conditions can lead the researcher to use an estimator with a much slower rate

of convergence. The advantage of the estimator proposed in this paper is that it performs

well under a variety of conditions without prior knowledge of which of these conditions hold.

In settings where local alternatives violate the conditional moment inequalities on a

shrinking set, the weights I propose for KS statistics give the statistics more power against

local alternatives than bounded weights. The examples in Section 6 show that this situation

is common in practice. When sequences of local alternatives violate the conditional moment

inequalities on a fixed, positive probability set, the larger critical values required by the

increasing sequence of weight functions lead to a loss in power, but only by a factor of

(log n)1/2. This provides a theoretical justification for variance weighting in this context.

Under certain conditions, weighting the KS statistic objective function by a truncated inverse

of the estimated variance increases the rate of convergence of the corresponding estimator

of the identified set.

A Proofs and Auxiliary Results

This appendix collects several results not stated in the body of the paper. In Section A.1, I

state and prove uniform convergence results for classes of functions weighted by truncated

standard deviations. These results are used later in the appendix in proving some of the

results stated in the body of the paper. Section A.2 provides (conservative) bounds for the

critical values used in the paper that do not require arbitrary increasing sequences. In Section

A.3, I provide sufficient conditions for the rate of convergence to be strictly faster than
√
n.

In Section A.4, I provide an example of a data generating process for an interval regression

where low power against local alternatives when the slope parameter varies leads to a slower

rate of convergence to the identified set. In Section A.5, I state conditions under which
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Assumption 3.2 holds and verify them for the applications described in Section 6. Section

A.6 contains proofs of the theorems stated in the body of the paper and in Appendix B.

A.1 Uniform Convergence Lemma

The following lemma is useful in deriving some of these results. Applied to mean zero

functions, the lemma says that any sequence of classes of functions that is not too com-

plex converges uniformly at a
√

n/ log n rate when scaled by the standard deviation if the

minimum standard deviation does not go to zero too fast.

Lemma A.1. Let Z1, . . . , Zn be iid observations and let P be a set of probability distributions

and Fn,P a set of classes of functions indexed by n ∈ N and P ∈ P such that, for some f ,

f(Zi) ≤ f with P -probability one for P ∈ P and f ∈ Fn,P for each n. Let µ2,P (f) =

(EPf(Zi)
2)1/2 and let µ2,n be a sequence such that µ2,n

√

n/ log n is bounded away from zero.

Let Gn,P = {fµ2,n/(µ2,P (f) ∨ µ2,n)|f ∈ Fn,P} and suppose that

sup
P∈P

sup
n∈N

sup
Q
N(ε,Gn,P , L1(Q)) ≤ Aε−W

for 0 < ε < 1 where the supremum over Q is over all probability measures. Then for some

B that does not depend on N ,

sup
P∈P

P

( √
n√

log n
sup

f∈Fn,P

∣

∣

∣

∣

(En − EP )
f(Zi)

µ2,P (f) ∨ µ2,n

∣

∣

∣

∣

≥ B some n ≥ N

)

N→∞→ 0.

Proof. The result follows by applying the following theorem to the classes of functions

Gn,P . For g = fµ2,n/(µ2,P (f) ∨ µ2,n) ∈ Gn,P , EP g(Zi)2 = EPf(Zi)
2µ2

2,n/(µ2,P (f)
2 ∨ µ2

2,n) =

µ2,P (f)
2µ2

2,n/(µ2,P (f)
2 ∨ µ2

2,n) ≤ µ2
2,n, so the theorem applies with the same µ2,n.

Specialized to a class P of probability distributions with a single element P , this says

that the sequence in the probability statement in the last display of the lemma is bounded

by B with P -probability one. The conclusion of the lemma implies that this scaled sequence

is OP (1) uniformly in P ∈ P , but is slightly stronger.

The proof of the lemma uses the following theorem, which is a slightly stronger version

of Theorem 37 in Pollard (1984), with the conditions stated in a slightly different way. The

following theorem basically follows the arguments of the proof of Theorem 37 in Pollard

(1984), but changes a few things to get a slightly stronger result. Note that the notation

µ2
2,P is used for the raw second moment of functions rather than their variance, although the
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distinction is often not important since applications typically involve the raw second moment

going to zero at the same rate as the variance.

Theorem A.1. Let Z1, . . . , Zn be iid observations and let P be a set of probability measures

and Fn,P a set of classes of functions indexed by n ∈ N and P ∈ P such that, for some f ,

f(Zi) ≤ f P -a.s. for f ∈ Fn,P for P ∈ P for each n and, for some positive constants A and

W ,

sup
P∈P

sup
n∈N

sup
Q
N(ε,Fn,P , L1(Q)) ≤ Aε−W

for 0 < ε < 1 where the supremum over Q is over all probability measures. Suppose that,

for some sequence µ2,n, EPf(Zi)
2 ≤ µ2

2,n for all f ∈ Fn,P for all P ∈ P for all n. Then, if

µ2,n

√

n/ log n is bounded away from zero we will have, for some B that does not depend on

N ,

sup
P∈P

P

( √
n

µ2,n

√
log n

sup
f∈Fn,P

|(En − EP )f(Zi)| ≥ B some n ≥ N

)

N→∞→ 0.

Proof. The proof is a slight modification of the proof of Theorem 37 in Pollard (1984). The

sequence µ2,n corresponds to δn in that theorem, and, in contrast to the theorem from Pollard

(1984) which defines a sequence αn that must satisfy certain conditions, this theorem corre-

sponds to using the best αn sequence possible, and noting that αn need not be nonincreasing

as long as it is bounded.

Without loss of of generality, assume that f = 1. Fix B (conditions on how large B has

to be will be stated throughout the theorem) and set εn = Bµ2,n
√
logn

8
√
n

. Since varP ((En −
EP )f(Zi))/(4ε

2
n) ≤ (µ2

2,n/n)/(4B
2µ2

2,n(log n)/(64n)) = 16/(B2 log n) ≤ 1/2 for n greater

than some number that does not depend on P , the inequality (30) in Pollard (1984) will

eventually imply

P

( √
n

µ2,n

√
log n

sup
f∈Fn,P

|(En − E)f(Zi)| ≥ B

)

= P

(

sup
f∈Fn,P

|(En − E)f(Zi)| ≥ 8εn

)

≤ 4(P × ν)

(

sup
f∈Fn,P

|P◦
nf(Zi)| ≥ 2εn

)

for all P ∈ P where P◦
nf(Zi) =

1
n

∑n
i=1 f(Zi) · si and s1, . . . , sn are iid random variables that

take on values ±1 each with probability one half drawn independent of Z1, . . . , Zn and ν
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denotes the probability measure of s1, . . . , sn. Conditional on the data, this is bounded by

(P × ν)

(

sup
f∈Fn

|P◦
nf(Zi)| ≥ 2εn

∣

∣

∣

∣

Z1, . . . , Zn

)

≤ 2N(εn,Fn,P , L1(Pn)) exp



−1

2

nε2n
(

supf∈Fn,P
Enf(Zi)2

)



 .

For any constant a > 0, on the event that

sup
f∈Fn,P

Enf(Zi)
2 ≤ a2µ2

2,n, (5)

the previous display will be bounded by

2N(εn,Fn,P , L1(Pn)) exp

(

−1

2

nε2n
a2µ2

2,n

)

≤ 2Aε−Wn exp

(

−1

2

nε2n
a2µ2

2,n

)

= 2A exp

[

−1

2
· n ·

B2µ2
2,n log n

64n
· 1

a2µ2
2,n

−W log
Bµ2,n

√
log n

8
√
n

]

= 2A exp

[

−B
2 log n

128a2
−W log

B

8
−W log

µ2,n

√
log n√
n

]

(6)

The condition that µ2,n

√

n/ log n is bounded away from zero is more than enough to guar-

antee that the term in the last logarithm is bounded from below by a fixed power of n. Thus,

the expression in the last display can be made to go to zero at any polynomial rate for any

a by choosing B to be large enough (in a way that depends on a but not n or P ).

For any P ∈ P , the P -probability of (5) failing to hold can be bounded using Lemma 33

in Pollard (1984) with δn = aµ2,n/8 (the lemma holds for a ≥ 8):

P

(

sup
f∈Fn,P

Enf(Zi)
2 > a2µ2

2,n

)

= P

(

sup
f∈Fn,P

Enf(Zi)
2 > 64δ2n

)

≤ 4EP [N(δn,Fn,P , L2(Pn))] exp(−nδ2n)

≤ 4A(δn/2)
−W exp(−nδ2n) = 4 · 2WA exp(−nδ2n −W log δn)

= 4 · 2WA exp
[

−na2µ2
2,n/64−W log

a

8
−W log µ2,n

]

≤ 4 · 2WA exp

[

−na
2

64

c log n

n
−W log

a

8
− W

2
log

c log n

n

]

(7)

where
√
c is a lower bound for µ2,n

√

n/ log n. This can be made to go to zero at any

polynomial rate by choosing a large.

Thus, if we choose a andB large enough, supP∈P P
( √

n

µ2,n
√
logn

supf∈Fn,P
|(En − EP )f(Zi)| ≥ B

)
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will be summable over n, so that

sup
P∈P

P

( √
n

µ2,n

√
log n

sup
f∈Fn,P

|(En − EP )f(Zi)| ≥ B some n ≥ N

)

≤
∑

n≥N
sup
P∈P

P

( √
n

µ2,n

√
log n

sup
f∈Fn,P

|(En − EP )f(Zi)| ≥ B

)

N→∞→ 0.

With this lemma in hand, we can get rates of convergence for classes of functions weighted

by their standard deviation under additional conditions that allow the standard deviation

to be consistently estimated. In order to get results for functions weighted by the standard

deviation rather than the raw second moment, I apply the previous results to classes of

functions of the form f −EPf(Zi). Letting σ̂(f)
2 = En(f(Zi))

2 − (Enf(Zi))
2 and σP (f)

2 =

EP (f(Zi))
2 − (EPf(Zi))

2, rates of convergence for

sup
f∈Fn

∣

∣

∣

∣

(En − EP )
f(Zi)

σ̂(f) ∨ σn

∣

∣

∣

∣

will follow by applying the above results to the classes of functions f − EPf(Zi) once we

can bound σP (f)∨σn
σ̂(f)∨σn , and for this it is sufficient to show that σ̂(f)/σP (f) converges to one

uniformly over σP (f) ≥ σn. The following lemma gives sufficient conditions for this.

Lemma A.2. Let Z1, . . . , Zn be iid observations and let Fn be a sequence of classes of

functions and P a set of probability distributions such that, for some f , f(Zi) ≤ f with P -

probability one for P ∈ P and f ∈ Fn for each n. Let σP (f) = (EPf(Zi)
2 − (EPf(Zi))

2)1/2

and let σn be a sequence such that σn
√

n/ log n is bounded away from zero. Define G1
n,P =

{(f−EPf(Zi))σn/(σP (f)∨σn)} and G2
n,P = {(f−EPf(Zi))2σn/(µ2,P ([f−EPf(Zi)]2)∨σn)},

and suppose that, for some positive constants A and W ,

sup
P∈P

sup
n∈N

sup
Q
N(ε,Gin,P , L1(Q)) ≤ Aε−W

for 0 < ε < 1 and i = 1, 2, where the supremum over Q is over all probability measures.

Then, for every ε > 0, there exists a c such that, if σn
√

n/ log n ≥ c for all n,

sup
P∈P

P

(

sup
f∈Fn,σP (f)≥σn

∣

∣

∣

∣

σ̂(f)

σP (f)
− 1

∣

∣

∣

∣

≥ ε some n ≥ N

)

N→∞→ 0.
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Proof. We have

sup
f∈Fn,σP (f)≥σn

∣

∣

∣

∣

σ̂2(f)− σ2
P (f)

σ2
P (f)

∣

∣

∣

∣

= sup
f∈Fn,σP (f)≥σn

∣

∣

∣

∣

(En − EP )(f(Zi)− EPf(Zi))
2 − (Enf(Zi)− EPf(Zi))

2

σ2
P (f)

∣

∣

∣

∣

≤ sup
f∈Fn,σP (f)≥σn

∣

∣

∣

∣

(En − EP )(f(Zi)− EPf(Zi))
2

σ2
P (f)

∣

∣

∣

∣

+

∣

∣

∣

∣

[(En − EP )f(Zi)]
2

σ2
P (f)

∣

∣

∣

∣

. (8)

The first term is equal to

∣

∣

∣

∣

(En − EP )(f(Zi)− EPf(Zi))
2

µ2,P ([f − EPf(Zi)]2) ∨ σn

∣

∣

∣

∣

µ2,P ([f − EPf(Zi)]
2) ∨ σn

σ2
P (f)

.

We have µ2,P ([f − EPf(Zi)]
2)2 = EP [f(Zi) − EPf(Zi)]

4 ≤ 4f
2
EP [f(Zi) − EPf(Zi)]

2 =

4f
2
σP (f)

2 so that

µ2,P ([f − EPf(Zi)]
2) ∨ σn

σ2
P (f)

≤ [2fσP (f)] ∨ σn
σ2
P (f)

≤ 2f ∨ 1

σP (f)
≤ 2f ∨ 1

σn

where the last two inequalities hold for σP (f) ≥ σn. Thus, for any ε > 0,

sup
P∈P

P

(

sup
f∈Fn,σP (f)≥σn

∣

∣

∣

∣

(En − EP )(f(Zi)− EPf(Zi))
2

σ2
P (f)

∣

∣

∣

∣

≥ ε some n ≥ N

)

≤ sup
P∈P

P

(

sup
f∈Fn,σP (f)≥σn

2f ∨ 1

σn

∣

∣

∣

∣

∣

(En − EP )(f(Zi)− EPf(Zi))
2

{E[(f(Zi)− EPf(Zi))2]2}(1/2) ∨ σn

∣

∣

∣

∣

∣

≥ ε some n ≥ N

)

≤ sup
P∈P

P

(

sup
f∈Fn,σP (f)≥σn

√
n√

log n

∣

∣

∣

∣

∣

(En − EP )(f(Zi)− EPf(Zi))
2

{E[(f(Zi)− EPf(Zi))2]2}(1/2) ∨ σn

∣

∣

∣

∣

∣

≥ cε/(2f ∨ 1) some n ≥ N

)

where the last inequality holds for σn
√

n/ log n ≥ c. By Lemma A.1, this will go to zero if c

is large enough so that cε/(2f ∨ 1) is greater than the B for which the conclusion of Lemma

A.1 holds for the class G2
n,P .

The probability that the second term in the last line of Equation 8 is greater than

ε > 0 for some n ≥ N goes to zero uniformly in P ∈ P by Lemma A.1 with the class

{f − EPf(Zi)|f ∈ Fn} taking the place of Fn,P in that lemma.

Combining these lemmas gives a consistency result for classes of functions weighted by

their standard deviations. The conditions are the same as those for Lemma A.2.
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Lemma A.3. Let Z1, . . . , Zn be iid observations and let Fn be a sequence of classes of

functions and P a set of probability distributions such that, for some f , f(Zi) ≤ f with P -

probability one for P ∈ P and f ∈ Fn for each n. Let σP (f) = (EPf(Zi)
2 − (EPf(Zi))

2)1/2.

Define G1
n,P = {(f − EPf(Zi))σn/(σP (f) ∨ σn)} and G2

n,P = {(f − EPf(Zi))
2σn/(µ2,P ([f −

EPf(Zi)]
2) ∨ σn)}, and suppose that, for some positive constants A and W ,

sup
P∈P

sup
n∈N

sup
Q
N(ε,Gin,P , L1(Q)) ≤ Aε−W

for 0 < ε < 1 and i = 1, 2, where the supremum over Q is over all probability measures.

Then, for some B and c that do not depend on N or P , if σn
√

n/ log n ≥ c for all n,

sup
P∈P

P

(

sup
f∈Fn

√
n√

log n

∣

∣

∣

∣

f(Zi)− EP (f(Zi))

σ̂(f) ∨ σn

∣

∣

∣

∣

≥ B some n ≥ N

)

N→∞→ 0.

Proof. We have

P

(

sup
f∈Fn

√
n√

log n

∣

∣

∣

∣

f(Zi)− EP (f(Zi))

σ̂(f) ∨ σn

∣

∣

∣

∣

≥ B some n ≥ N

)

= P

(

sup
f∈Fn

√
n√

log n

∣

∣

∣

∣

f(Zi)− EP (f(Zi))

σP (f) ∨ σn

∣

∣

∣

∣

σP (f) ∨ σn
σ̂(f) ∨ σn

≥ B some n ≥ N

)

≤ P

(

sup
f∈Fn

√
n√

log n

∣

∣

∣

∣

f(Zi)− EP (f(Zi))

σP (f) ∨ σn

∣

∣

∣

∣

≥ B/2 some n ≥ N

)

+ P

(

inf
f∈Fn

σ̂(f) ∨ σn
σP (f) ∨ σn

≤ 1/2 some n ≥ N

)

.

The second to last line goes to zero uniformly in P ∈ P by Lemma A.1 applied to the classes

{f −EP (f)|f ∈ Fn, P ∈ P} (here, B must be chosen large enough so that the conclusion of

this lemma holds with B replaced by B/2). Since σ̂(f)∨σn
σP (f)∨σn ≥ 1 > 1/2 when σP (f) < σn, the

last line is bounded by

P

(

inf
f∈Fn,σP (f)≥σn

σ̂(f)

σP (f)
≤ 1/2 some n ≥ N

)

,

which goes to zero uniformly in P ∈ P if σn
√

n/ log n ≥ c for c large enough by Lemma A.2.
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A.2 Constants in the Rate Bounds

The constant B in Theorem A.1 can be calculated using a careful inspection of the arguments

in the proof. If µ2,n

√

n/ log n goes to infinity, the bound (7) will go to zero for a = 8 (its

minimum value). Then, with this value of a, (6) will be bounded by a constant times

exp(−[(B2/(128 · 64) −W ] log n). For our purposes, it will suffice to have this converge to

zero at any rate, and for this it will suffice that W < B2/(128 · 64), which can be rearranged

as B > 64
√
2W . This bound can be applied throughout the arguments of the previous

section to obtain the following.

Lemma A.4. Suppose that the conditions of Lemma A.3 hold with σn
√

n/ log n→ ∞. Then

sup
P∈P

P

(

sup
f∈Fn

√
n√

log n

∣

∣

∣

∣

f(Zi)− EPf(Zi)

σ̂(f) ∨ σn

∣

∣

∣

∣

≥ 64
√
2W + η

)

n→∞→ 0.

Proof. The result with σ̂(f) replaced by σ(f) follows by replacing B = 64
√
2W in the

arguments of Theorem A.1 as discussed above. With σn
√

n/ log n → ∞, σ̂(f)/σ(f) will

converge to one uniformly over σ̂(f) ≥ σn by Lemma A.2, which then gives the result.

This lemma can be used to obtain a feasible critical value for the variance weighted KS

statistic, which is stated in the following theorem.

Theorem A.2. Suppose that the conditions of Theorem 3.1 hold with S(t) = ‖t‖−, and that

σn
√

n/ log n→ ∞. Then the critical value ĉn in Theorem 3.1 can be taken to be 64
√
2V + ε

for any ε > 0:

inf
P∈P

P (Θ0(P ) ⊆ Cn(64
√
2V + ε))

n→∞→ 1

where V is the covering number index in Assumption 3.2.

While this result gives a feasible critical value for the procedure proposed in this paper,

the resulting critical value will typically be very conservative. For example, for pointwise

inference (fixing a point in Θ rather than taking the supremum over θ) using the class of

functions {I(s < Xi < s + t)|s, t ∈ RdX}, the class of functions Fj,1 in Assumption 3.2 has

covering number 2 · (2dX + 2) (the class G is VC subgraph with VC index 2dX and, by the

properties of VC classes this means that the class Fj,1 with θ fixed is VC subgraph with index

2dX + 2, which translates to an exponent of 2(2dX + 2) in the covering number by Lemma

25 in Pollard (1984)). This gives a critical value of 64
√

2 · 2 · (2dX + 2) = 128
√
2dX + 1
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plus a small constant. Under additional conditions, Armstrong and Chan (2012) obtain an

asymptotic distribution result with a critical value that is asymptotically no greater than√
2dX at this scaling. Thus, in this case, the bound obtained using the methods in this paper

is conservative by a factor of just over 128.

A.3 Upper Bounds for the Rate of Convergence

If σn is fixed, we will have a
√
n rate of uniform convergence for the KS statistic. The

√

n/ log n rate of convergence results used in Theorem 3.1 do not rule this out for the case

where σn goes to zero, but another argument shows that the rate of convergence will be

strictly slower than
√
n in many situations. See also the recent results of Armstrong and

Chan (2012), which imply that the
√

n/ log n rate derived in the present paper is exact for

a particular choice of G.

Assumption A.1. For some θ ∈ Θ0(P ), some j, and some open set X , the following hold.

(i) EP (mj(Wi, θ)|Xi) = 0 a.s. on X and Xi has a density fX(x) on X that is bounded

from above and from below away from zero. (ii) var(m(Wi, θ)|Xi = x) is continuous as a

function of x and bounded away from zero and infinity on X . (iii) G contains the function

t 7→ k((t − x)/h) for all x and all h less than some fixed positive constant where k satisfies

Assumption 5.2 and is continuous at zero.

The assumption on the set of functions G covers many commonly used cases, including

indicator sets for dX dimensional rectangles or boxes.

Theorem A.3. If Assumption A.1 holds and S satisfies Assumption 3.3, then, if σn → 0,
√
nTn(θ) will diverge to ∞.

Proof. Fix any points x1, . . . , xℓ ∈ X . For k from 1 to ℓ, let gn,k(t) = k((t− xk)/hn)

Zn,k =
1

σ̂n,j(θ, gn,k) ∨ σn
Enmj(Wi, θ)k((Xi − xk)/hn)

where hn is a sequence going to zero such that h
dX/2
n /σn goes to infinity and hdXn ≥ n−α for

some α < 1. By the assumption on S,
√
nTn(θ) will diverge to∞ if infx,h,j

1
σ̂n,j(θ,x,h)∨σnEnmj(Wi, θ)k((Xi−

x)/h) diverges to −∞, and, for this, it is sufficient to show that mink Zn,k can be made

arbitrarily small asymptotically by making ℓ large enough. Using standard arguments,

it can be shown that σ̂n,j(θ, gn,k)/σP,j(θ, gn,k) converges in probability to one, and, since
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σP,j(θ, gn,k)/h
d/2
n converges to a constant under these assumptions, we also have that

Zn,k =
1

σ̂n,j(θ, gn,k)
Enmj(Wi, θ)k((Xi − xk)/hn)

with probability approaching one. By the Lindeberg central limit theorem, defining

Z̃n,k ≡
1

σP,j(θ, gn,k)
Enmj(Wi, θ)k((Xi − xk)/hn)

(
√
nZ̃n,1, . . . ,

√
nZ̃n,ℓ) converges to a vector of independent standard normal variables, so,

since each Zn,k is eventually equal to Z̃n,k times something that converges to one, (
√
nZn,1, . . . ,

√
nZn,ℓ)

also converges to a vector of independent standard normal variables. Thus, mink
√
nZn,k

converges to the minimum of ℓ independent standard normal variables, which can be made

arbitrarily small by making ℓ large.

A.4 Rates of Convergence for Slope Parameters

In this section of the appendix, I present a counterexample that shows that a condition

along the lines of part (iii) of Assumption 6.4 is necessary to obtain the rate of convergence

in Theorem 6.2. As discussed below, a similar counterexample shows that a condition on

the parameter space Θ such as Assumption 6.3 is necessary in Theorem 6.1. These coun-

terexamples also show that the first display in Assumption 4.4 cannot be replaced with an

assumption that only takes into account the magnitude of the derivative vector.

In the counterexample considered in this section, both the weighted KS statistic based

estimator and the estimator based on the KS statistic with bounded weights converge at

a slower rate. While both rates are slower than they are under Assumption 4.4, the rate

for the weighted KS statistic based estimator is still faster than the rate for the estimator

based on bounded weights. This suggests that, while different conditions are needed to

derive rates power results for local alternatives typified by this counterexample, these types

of alternatives still favor weighting by a truncated estimate of the variance.

Consider an example where EP (W
H
i |Xi = x) = x2, EP (W

L
i |Xi = x) = −x2, var(WH

i |Xi) =

var(WL
i |Xi) = 1, and Xi is has a uniform distribution on [−1/2, 1/2]. Suppose that we use

the set of functions {I(s < Xi < s + t)|s ∈ R, t ≥ 0}. In this case, the identified set is a

single point (0, 0). Consider the sequence of local alternatives given by θn = (0, bn). We
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have, for all s, t with −1/2 ≤ s ≤ s+ t ≤ 1/2,

EP [(W
H
i − bnXi)I(s < Xi < s+ t)] = EP [(X

2
i − bnXi)I(s < Xi < s+ t)]

=

∫ s+t

s

(x2 − bnx) dx =

∫ s+t

s

[(x− bn/2)
2 − b2n/4] dx

≥
∫ t/2

−t/2
[u2 − b2n/4] du = 2

[

1

3
u3 − b2n

4
u

]t/2

u=0

= 2t

[

1

24
t2 − b2n

8

]

and

varP [(W
H
i − bnXi)I(s < Xi < s+ t)] ≥ EP{varP [(WH

i − bnXi)I(s < Xi < s+ t)|Xi]}
= EP [I(s < Xi < s+ t)] = t.

Thus, for s, t such that EP [(W
H
i − bnXi)I(s < Xi < s+ t)] is negative,

∣

∣

∣

∣

EP [(W
H
i − bnXi)I(s < Xi < s+ t)]

{varP [(WH
i − bnXi)I(s < Xi < s+ t)]}1/2

∣

∣

∣

∣

≤ 2t1/2
∣

∣

∣

∣

1

24
t2 − b2n

8

∣

∣

∣

∣

−
≤ 31/4

4
b1/2n b2n.

A symmetric argument applies to moments based onWL
i . For some constantK, this sequence

of local alternatives will be in Cn(ĉn) if b5/2n ≤ K((log n)/n)1/2 iff. bn ≤ K((log n)/n)1/5. In

contrast, convergence to the identified set for one sided regression will be at a ((log n)/n)2/5

rate if the parameter space Θ is restricted so that the absolute value of the slope parameter

cannot be too large.

Using similar arguments, it can be shown that the set estimator with bounded weights

will converge at an even slower rate. To see this, note that, by the calculations above,

∣

∣EP [(W
H
i − bnXi)I(s < Xi < s+ t)]

∣

∣

− = 2t

∣

∣

∣

∣

1

24
t2 − b2n

8

∣

∣

∣

∣

−
≤ 31/2

4
b3n,

so this sequence of alternatives will be in Cn,ω(ĉn) as long as, for a small enough constant C,

b3n ≤ Cĉn/n
1/2, which can be rewritten as bn ≤ Cĉ

1/3
n /n1/6. Thus, the set estimator based on

a KS statistic with bounded weights will converge at the even slower n−1/6 rate, in contrast

to the n−1/3 rate achieved when Assumption 4.4 holds.

Now consider the one sided regression model of Section 6.1 with EP (W
H
i |Xi = x) = x2

and the parameter space Θ given by [0,∞)×R. That is, the parameter space Θ incorporates

the prior knowledge that the intercept is nonnegative. Again, the identified set is the point

(0, 0), and the Hausdorff distance between the set estimate Cn(ĉn) and the identified set will
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be at least bn if Cn(ĉn) contains the point (0, bn). By the same argument used above, (0, bn)

will be in Cn(ĉn) for some sequence bn going to zero at a ((log n)/n)1/5 rate, so that the rate

of convergence of Cn(ĉn) to the identified set will be no faster than ((log n)/n)1/5, which is

slower than the ((log n)/n)2/5 rate given by Theorem 6.1 when the intercept is not restricted.

Note that, in the case where the intercept parameter is not restricted a priori, the sequence

of local alternatives (0, bn) will still be in the estimate Cn(ĉn), but the distance of these points
to the identified set will no longer be equal to bn, since the identified set will contain a point

(θ′(bn), bn) for some θ′(bn) that is smaller in magnitude than bn.

A.5 Covering Number Conditions

In this section, I state some simple sufficient conditions under which Assumption 3.2 holds.

I first prove that Assumption 3.2 holds under individual bounds on the complexity of the

classes G and {w 7→ m(w, θ)|θ ∈ Θ}. The proof of this result uses Lemma A.5, stated and

proved at the end of the section. I then provide examples of classes G that satisfy these

bounds, and show that the class {w 7→ m(w, θ)|θ ∈ Θ} satisfies these bounds in each of the

applications covered in Section 6. Throughout this section, I define Fm ≡ {w 7→ m(w, θ)|θ ∈
Θ} to be the class of moment functions indexed by θ.

The following theorem translates bounds on the covering numbers of the classes G and

{w 7→ m(w, θ)|θ ∈ Θ} to the conditions of Assumption 3.2.

Theorem A.4. Suppose that the classes Fm ≡ {w 7→ m(w, θ)|θ ∈ Θ} and G are uniformly

bounded and satisfy supQN(ε,Fm, L1(Q)) ≤ Aε−W and supQN(ε,G, L1(Q)) ≤ Aε−W for

some A,W > 0 where the supremum is over all probability measures Q. Then Assumption

3.2 holds.

Proof. The result follows immediately from Lemma A.5, since the classes of functions in

Assumption 3.2 are sums and products of these bounded classes and bounded classes of

constant functions, which also have polynomial uniform covering numbers.

With this result in hand, we can verify Assumption 3.2 for a particular model and choice

of G using results stated in Pollard (1984), van der Vaart and Wellner (1996) and other

sources. For convenience, I do this here for some choices of G.

Theorem A.5. Suppose that Fm ≡ {w 7→ m(w, θ)|θ ∈ Θ} and G are uniformly bounded

supQN(ε,Fm, L1(Q)) ≤ Aε−W . Then Assumption 3.2 will hold for the following classes of

functions G:
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(i) The class of indicator functions G = {x 7→ I(x ∈ V )|V ∈ V} for any VC class of sets

V.

(ii) The class of dilations of a kernel function k given by G = {x 7→ k((x − t)/h)|x ∈
RdX , h ∈ R+} for any kernel function k given by k(x) = r(‖x‖) for a decreasing,

bounded function r on R+.

Proof. The covering number bound for G in Theorem A.4 holds by Lemma 25 in Pollard

(1984) (since a VC class of sets has polynomial discrimination) for part (i), and by problem

18 in Chapter 2 of Pollard (1984) for part (ii).

See Pollard (1984) for the definition of a VC class and examples of VC classes of sets.

The class of all dX dimensional rectangles falls into this category. The condition that

the class of functions Fm = {w 7→ m(w, θ)|θ ∈ Θ} satisfy the covering number bound

supQN(ε,Fm, L1(Q)) ≤ Aε−W can be verified on a case by case basis using general results

such as those in Pollard (1984) and van der Vaart and Wellner (1996). I do this for the

examples in this paper in the next theorem.

Theorem A.6. The class of moment functions Fm = {w 7→ m(w, θ)|θ ∈ Θ} satisfies the

covering number bound supQN(ε,Fm, L1(Q)) ≤ Aε−W in all of the models of Section 6 as

long as the data are bounded and Θ is compact in the conditional mean models of Sections

6.1, 6.2 and B.3.

Proof. The class {w 7→ m(w, θ)|θ ∈ Θ} has VC subgraph for all of the models of Section 6,

so the result follows from Lemma 25 in Pollard (1984).

The proof of Theorem A.4 uses the following lemma, which modifies an argument from

van der Vaart and Wellner (1996).

Lemma A.5. Let F , G and H be classes of functions bounded by a fixed constant B, and

let F · G + H = {f · g + h|f ∈ F , g ∈ G, h ∈ H}. Suppose that, for some A,W > 0,

supQN(ε,F , L1(Q)) ≤ Aε−W , where the supremum is taken over all probability measures,

and that the same statement holds with F replaced by G and H. Then supQN(ε,F · G +

H, L1(Q)) ≤ A3(2B + 1)3W ε−3W , where the supremum is again taken over all probability

measures.

Proof. The result follows from an argument similar to the proof of Theorem 2.10.20 in

van der Vaart and Wellner (1996). Given ε > 0 and a probability measure Q, let kF ,Q =
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N(ε,F , L1(Q)) ≤ supQ′ N(ε,F , L1(Q
′)) and let f1,Q, . . . , fkF,Q,Q be such that, for all f ∈ F ,

there exists a fi,Q such that EQ|fi,Q(Zi) − f(Zi)| ≤ ε (here, the notation EQf(Zi) refers to

the expectation
∫

f(z) dQ(z) of f(Zi) for Zi a random variable with distribution Q). Define

kG,Q, kH,Q, g1,Q, . . . , gkG,Q,Q and h1,Q, . . . , hkH,Q,Q similarly. For any fg+h ∈ F ·G+H, there

is some jF , jG and jH such that EQ|fjF ,Q(Zi) − f(Zi)| ≤ ε, EQ|gjF ,Q(Zi) − g(Zi)| ≤ ε and

EQ|hjH,Q(Zi)− h(Zi)| ≤ ε. We have, for all z,

|f(z)g(z) + h(z)− (fjF ,Q(z)gjG ,Q(z) + hjH,Q(z))|
= |(f(z)− fjF ,Q(z))g(z) + (g(z)− gjG ,Q(z))fjF ,Q(z) + h(z)− hjH,Q(z))|
≤ |f(z)− fjF ,Q(z)| · |g(z)|+ |g(z)− gjG ,Q(z)| · |fjF ,Q(z)|+ |h(z)− hjH,Q(z))|
≤ |f(z)− fjF ,Q(z)| ·B + |g(z)− gjG ,Q(z)| · B + |h(z)− hjH,Q(z))|

so that

EQ|f(Zi)g(Zi) + h(Zi)− (fjF ,Q(Zi)gjG ,Q(Zi) + hjH,Q(Zi))|
≤ (EQ|f(Zi)− fjF ,Q(Zi)|+ EQ|g(Zi)− gjG ,Q(Zi)|)B + EQ|h(Zi)− hjH,Q(Zi))| ≤ (2B + 1)ε.

SinceQ was arbitrary, it follows that supQN((2B+1)ε,F·G+H, L1(Q)) ≤ (supQN(ε,F , L1(Q)))·
(supQN(ε,G, L1(Q))) · (supQN(ε,G, L1(Q))) ≤ A3ε−3W . Replacing ε with ε/(2B + 1) gives

the result.

A.6 Proofs

This section of the appendix contains proofs of the results stated in the body of the paper

and in Section B of the appendix.

proof of Theorem 3.1. If Θ0(P ) * Cn(ĉn), then, for some θ0 ∈ Θ0(P ),
√

n/ log nTn(θ0) ≥ ĉn

so that for some g ∈ G,

S

(

µ̂n,1(θ, g)

σ̂n,1(θ, g) ∨ σn
, . . . ,

µ̂n,dY (θ, g)

σ̂n,dY (θ, g) ∨ σn

)

≥ ĉn
√
log n√
n

so that, for some j,
µ̂n,j(θ,g)

σ̂n,j(θ,g)∨σn ≤ − ĉn
√
logn√
n

KS,1. Since θ0 ∈ Θ0(P ), EPm(Wi, θ0)g(Xi) ≥ 0,

so this implies that

√
n√

log n

(En − EP )m(Wi, θ0)g(Xi)

σ̂n,j(θ, g) ∨ σn
≤ −ĉnKS,1.
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Thus, Θ0(P ) * Cn(ĉn) implies that the above display holds for some θ0, g, and j. If K is

large enough so that the conclusion of Lemma A.3 holds for B = K ·KS,1. and c from that

lemma equal to K, the probability that there exist some θ0 ∈ Θ0(P ) and g ∈ G such that

this event holds and ĉn and σn
√

n/ log n are greater than K will be bounded by a sequence

that goes to zero uniformly in P ∈ P .

proof of Theorem 4.1. If dH(Θ0(P ), Cn(ĉn)) > ε and Θ0(P ) ⊆ Cn(ĉn), then there exists

some θ ∈ Cn(ĉn) such that dH(θ,Θ0(P )) > ε. Letting δ be such that, for all P ∈ P ,

EPmj(Wi, θ)gj(Xi) < −δ for some j and g ∈ G, this implies that, once σ̂n,j(θ
′, g) is bounded

uniformly in (θ′, g) by some σ̄ (this happens with probability approaching one uniformly in

P ∈ P by Lemma A.2),

−Tn(θ) ≤
1

KS,2σ̄
(Enmj(Wi, θ)gj(Xi) ∨ 0) ≤ − 1

KS,2σ̄

(

δ − sup
θ′,g,k

|(En − EP )mk(Wi, θ
′)gk(Xi)|

)

.

The probability that supθ′,g,k |(En − EP )mk(Wi, θ
′)gk(Xi)| ≤ δ/2 goes to one uniformly in

P ∈ P by Lemma A.1, and once this holds, the above display will imply Tn(θ) ≥ δ/(2KS,2σ̄).

This cannot hold for θ ∈ Cn(ĉn) for ĉn
√

(log n)/n ≤ δ/(2KS,2σ̄), and the probability of this

holding goes to zero uniformly in P ∈ P .

proof of Theorem 4.2. If dH(Θ0(P ), Cn(ĉn)) > B
(

ĉ2n logn
n

)γ/2

, Θ0(P ) ⊆ Cn(ĉn) and dH(Cn(ĉn,Θ0(P )) ≤
δ (the latter two events hold with probability approaching one uniformly in P ∈ P by Theo-

rems 3.1 and 4.1), then there exists some θ ∈ Cn(ĉn) such that dH(θ,Θ0(P )) > B
(

ĉ2n logn
n

)γ/2

.

For this θ (and P ), there will be, by Assumption 4.2, a g∗ ∈ G and j∗ such that

µP,j∗(θ, g
∗)

σP,j∗(θ, g∗) ∨
[

B1/γ
(

ĉ2n logn
n

)ψ/2
] ≤ −(C/2)B1/γ

(

ĉ2n log n

n

)1/2

(replacing C with C/2 takes care of the possibility that the infimum in the assumption is

not achieved) and, by part (ii), for some constant η > 0 that does not depend on P , this will

eventually imply

µP,j∗(θ, g
∗)

σP,j∗(θ, g∗) ∨ (ησn)
≤ −(C/2)B1/γ

(

ĉ2n log n

n

)1/2
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so that, letting C1 = (C/2)(η ∧ 1), we will have
µP,j∗ (θ,g

∗)

σP,j∗(θ,g
∗)∨σn ≤ −C1B

1/γ
(

ĉ2n logn
n

)1/2

. Since

θ ∈ Cn(ĉn), we will also have Tn(θ) ≤ ĉn
(

logn
n

)1/2
, so that, for all g ∈ G and all j,

µ̂n,j(θ,g)

σ̂n,j(θ,g)∨σn ≥
−KS,2ĉn

(

log n
n

)1/2
. By Lemma A.2, this will also imply

µ̂n,j(θ,g)

σP,j(θ,g)∨σn ≥ −KS,2ĉn
2

(

logn
n

)1/2
with

probability approaching one uniformly in P ∈ P . When these events all hold, we will have

µ̂n,j∗(θ, g
∗)

σP,j∗(θ, g∗) ∨ σn
− µP,j∗(θ, g

∗)

σP,j∗(θ, g∗) ∨ σn
≥ −KS,2ĉn

2

(

log n

n

)1/2

+ C1B
1/γ

(

ĉ2n log n

n

)1/2

so that

sup
θ∈Θ,g∈G,j∈{1,...,j}

√
n√

log n

∣

∣

∣

∣

µ̂n,j(θ, g)

σP,j(θ, g) ∨ σn
− µP,j(θ, g)

σP,j(θ, g) ∨ σn

∣

∣

∣

∣

≥ ĉn(B
1/γC1 −KS,2/2).

Since ĉn is bounded away from zero, we can choose B large so that ĉn(B
1/γC1 −KS,2/2) is

large enough so that the conclusion of Lemma A.1 holds with B from that lemma replaced

by ĉn(B
1/γC1 −KS,2/2). For this value of B, the probability of the last display holding will

go to zero uniformly in P ∈ P so that the desired conclusion will hold.

proof of Theorem 4.3. It is sufficient to find a C such that, given θ and P , there exists a

θ0(θ, P ), j0(θ, P ), and a g ∈ G such that

µP,j(θ, g)

σP,j(θ, g) ∨ d(θ, θ0(P ))ψ/γ
≤ −C‖θ − θ0(θ, P )‖1/γ .

Given θ and P , let θ0(θ, P ) and j0(θ, P ) be chosen as in Assumption 4.4. To avoid cumber-

some notation, I will use θ0 and j0 to denote θ0(θ, P ) and j0(θ, P ) when the dependence on

θ and P is clear. For this θ0 and j0, we will have, for ‖x− x0‖ < η,

m̄j0(θ, x, P ) = m̄j0(θ, x, P )− m̄j0(θ0, x0, P )

= [m̄j0(θ, x, P )− m̄j0(θ0, x, P )] + [m̄j0(θ0, x, P )− m̄j0(θ0, x0, P )]

≤ m̄θ,j0(θ
∗, x, P )(θ − θ0) + C‖x− x0‖α

for some θ∗ between θ and θ0. By Assumptions 4.3 and 4.4, for ‖θ−θ0‖ and ‖x−x0‖ smaller

than some constant that does not depend on P or θ, this will be less than or equal to

−(η/2) ‖θ − θ0‖+ C‖x− x0‖α.
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For ‖x − x0‖ ≤ [η/(4C)]1/α‖θ − θ0‖1/α, this is less than or equal to −(η/4)‖θ − θ0‖. Thus,

letting g ∈ G be as in Assumption 4.6 with s = x0 and t = [η/(4C)]1/α‖θ − θ0‖1/α so that

g(x) ≤ I(‖x− x0‖ ≤ [η/(4C)]1/α‖θ − θ0‖1/α) and g(x) ≥ CG,1I(‖x− x0‖ ≤ [η/(4C)]1/α‖θ −
θ0‖1/αCG,2), we will have

µP,j0(θ, g) = EP m̄j0(θ,Xi, P )g(Xi) ≤ −(η/4)‖θ − θ0‖EP g(Xi) (9)

and

σP,j0(θ, g) = {varP [mj0(Wi, θ)g(Xi)]}1/2 ≤
{

EP [mj0(Wi, θ)g(Xi)]
2
}1/2

≤ Y g1/2 {EP g(Xi)}1/2 .

The lower bound on g implies that {EP g(Xi)}1/2 is greater than some constant that does

not depend on P times ‖θ− θ0‖dX/(2α) ≥ d(θ, θ0(P ))
dX/(2α). Thus, for some constant K that

does not depend on P , σP,j0(θ, g) ∨ d(θ, θ0(P ))dX/(2α) ≤ K{EP g(Xi)}1/2. Thus,

µP,j0(θ, g)

σP,j0(θ, g) ∨ d(θ, θ0(P ))dX/(2α)
≤ −(η/4)

K
‖θ − θ0‖[EP g(Xi)]

1/2

≤ −(η/4)

K
‖θ − θ0‖C1/2

G,1P
{

‖x− x0‖ ≤ [η/(4C)]1/α‖θ − θ0‖1/αCG,2
}1/2

≤ −(η/4)

K
‖θ − θ0‖C1/2

G,1 η
1/2
{

[η/(4C)]1/α‖θ − θ0‖1/αCG,2
}dX/2

where the second inequality follows from the lower bound on g. This is equal to a negative

constant that does not depend on P times ‖θ− θ0‖(dX+2α)/(2α), so that Assumption 4.2 holds

with γ = 2α/(dX + 2α) and ψ = dX/(dX + 2α).

proof of Theorem 6.1. Assumption 4.3 holds because m̄(θ, x) is linear, so it remains to verify

Assumption 4.4. Given θ ∈ Θ and P ∈ P , let x0(θ, P ) minimize EP (W
H
i |Xi = x) −

θ1 − x′θ−1 over the support of Xi, and let t(θ, P ) be the minimum (the minimum is taken

since E(WH
i |Xi = x) − θ1 − x′θ−1 is continuous). Let θ0(θ, P ) = (θ1 + t(θ, P ), θ−1). Then

m̄(θ0(θ, P ), x, P ) = E(WH
i |Xi = x) − θ1 − t(θ, P ) − x′θ−1 so that θ0(θ, P ) ∈ Θ0(P ) and

m̄(θ0(θ, P ), x0(θ, P ), P ) = 0. We have

m̄θ(θ0(θ, P ), x0(θ, P ), P )(θ − θ0(θ, P )) = −(1, x0(θ, P )
′)(−t(θ, P ), 0, . . . , 0)′

= t(θ, P ) = −‖(t(θ, P ), 0, . . . , 0)′‖ = −‖θ − θ0(θ, P )‖
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where the second to last equality holds because t(θ, P ) is negative by definition of the identi-

fied set. The Hölder continuity part of Assumption 4.4 is immediately implied by Assumption

6.1. Under Assumption 6.2, x0(θ, P ) must be on the interior of the support of Xi by part

(ii) of this assumption. Thus, x0(θ, P ) is an interior minimum of the twice differentiable

function x 7→ EP (W
H
i |Xi = x)−θ1−x′θ−1, so the first derivative of this function at x0(θ, P )

is zero. This and a second order mean value expansion of this function around x0(θ, P ) imply

the Hölder continuity part of Assumption 4.4 with C a bound on the norm of the second

derivative matrix.

proof of Theorem 6.2. Everything is the same as in the proof of Theorem 6.1 except for

the verification of the first part of Assumption 4.4. For any θ, either (θ′1, θ2) is in Θ0(P )

for some θ′, in which case the same argument to verify Assumption 4.4 goes through, or

θ2 > θ2(P ) or θ2 < θ2(P ). Let (θ′1, θ2) = (θu1 (P ), θ2(P )), x0,1 = xu0,1(P ) and x0,2 = xu0,2(P )

(using the notation defined before Assumption 6.4). so that x0,2 < x0,1 and E(WH
i |Xi =

x0,1) = θ′1 + x0,1θ2 and E(WL
i |Xi = x0,2) = θ′1 + x0,2θ2. We have m̄θ,1(θ, x, P ) = −(1, x) and

m̄θ,2(θ, x, P ) = (1, x), so that

m̄θ,1(θ, x0,1, P )(θ − (θ′1, θ2)) = −(1, x0,1)(θ − (θ′1, θ2))

and

m̄θ,2(θ, x0,2, P )(θ − (θ′1, θ2)) = (1, x0,2)(θ − (θ′1, θ2)).

If the sum of the expressions in these two displays is less than −2η‖θ− (θ′1, θ2)‖, at least one
of them must be less than −η‖θ − (θ′1, θ)‖, so it suffices to bound

[(1, x0,2)− (1, x0,1)](θ − (θ′1, θ2))/‖θ − (θ′1, θ2)‖ = − (x0,1 − x0,2)(θ2 − θ2)
[

(θ1 − θ′1)
2 + (θ2 − θ2)2

]1/2
.

For this, it suffices to bound x0,1 − x0,2 away from zero and |θ1 − θ′1|/|θ2 − θ2| away from

infinity.

x0,1 − x0,2 is bounded away from zero by part (iii) of Assumption 6.4. For parameter
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values where |θ1 − θ′1|/|θ2 − θ2| is large, we can use another argument. Note that

−(1, x0,1)(θ − (θ′1, θ2))

‖θ − (θ′1, θ2)‖
= −(θ1 − θ′1) + x0,1(θ2 − θ2)

‖θ − (θ′1, θ2)‖
= − (θ1 − θ′1)/(θ2 − θ2) + x0,1

[

(θ1 − θ′1)
2/(θ2 − θ2)2 + 1

]1/2

and, similarly,

(1, x0,2)(θ − (θ′1, θ2))

‖θ − (θ′1, θ2)‖
=

(θ1 − θ′1)/(θ2 − θ2) + x0,2
[

(θ1 − θ′1)
2/(θ2 − θ2)2 + 1

]1/2
.

For |θ1 − θ′1|/|θ2 − θ2| > 2max{|x0,1|, |x0,2|, 1}, one of these displays will be less than −1/4.

proof of Theorem B.1. For Assumption 4.3, note that

m̄θ(θ, x, P ) =
d

dθ
EP [τ − I(WH

i ≤ θ1 +X ′
iθ−1)|Xi = x] = − d

dθ
P (WH

i ≤ θ1 +X ′
iθ−1|Xi = x)

= −fWH
i |Xi

(θ1 + x′θ−1|x)(1, x′).

This is continuous as a function of θ uniformly in (θ, x, P ) by Assumption B.3 and the bound

on the support of Xi.

To verify the first part of Assumption 4.4, let x0(θ, P ), t(θ, P ) and θ0(θ, P ) be defined as

in the proof of Theorem 6.1, but with EP (W
H
i |Xi = x) replaced by qτ,P (W

H
i |Xi = x). Then

θ0(θ, P ) ∈ Θ0(P ) and

m̄(θ0(θ, P ), x0(θ, P ), P ) = τ − P (WH
i ≤ θ1 + t(θ, P ) +X ′

iθ−1|Xi = x0(θ, P )) = 0

since qτ,P (W
H
i |Xi = x0(θ, P )) = θ1 + t(θ, P ) + x0(θ, P )

′θ−1. We also have

mθ(θ0(θ, P ), x0(θ, P ), P )(θ − θ0(θ, P )) = −fWH
i |Xi

(θ1 + x′θ−1|x)(1, x′)(−t(θ, P ), 0, . . . , 0)′

= fWH
i |Xi

(θ1 + x′θ−1|x)t(θ, P ) = −fWH
i |Xi

(θ1 + x′θ−1|x)‖θ − θ0(θ, P )‖ ≤ −f‖θ − θ0(θ, P )‖.
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For the second part of Assumption 4.4, note that, since θ0 = θ0(θ, P ) ∈ Θ0(P ),

m̄(θ0, x, P ) = τ − P (WH
i ≤ θ0,1 +X ′

iθ0,−1|Xi = x)

= τ − P (WH
i ≤ qτ,P (W

H
i |Xi = x)|Xi = x)

+ P (θ0,1 +X ′
iθ0,−1 ≤ WH

i ≤ qτ,P (W
H
i |Xi = x)|Xi = x)

= P (θ0,1 +X ′
iθ0,−1 ≤ WH

i ≤ qτ,P (W
H
i |Xi = x)|Xi = x).

For ‖x− x0‖ small enough, the distance between θ0,1 + x′θ0,−1 and qτ,P (W
H
i |Xi = x) will be

less than the η in Assumption B.3. For x such that this holds,

|m̄(θ0, x, P )− m̄(θ0, x0, P )| = m̄(θ0, x, P )

= P (θ0,1 +X ′
iθ0,−1 ≤ WH

i ≤ qτ,P (W
H
i |Xi = x)|Xi = x)

≤ f [qτ,P (W
H
i |Xi = x)− θ0,1 − x′θ0,−1]

= f{[qτ,P (WH
i |Xi = x)− θ0,1 − x′θ0,−1]− [qτ,P (W

H
i |Xi = x0)− θ0,1 − x′0θ0,−1]}.

Under Assumption B.1, the second part of Assumption 4.4 then follows immediately since, for

α ≤ 1 and ‖x−x0‖ small enough, ‖(x−x0)′θ0,−1‖ ≤ ‖θ0,−1‖‖x−x0‖ ≤ ‖θ0,−1‖‖x−x0‖α so that
the expression in the above display is bounded by f(C+‖θ0,−1‖)‖x−x0‖α. Under Assumption

B.2, Assumption 4.4 follows from a second order mean value expansion of qτ,P (W
H
i |Xi = x0)

since x0 is on the interior of the support of Xi.

proof of Theorem B.2. Everything is the same as in the proof of Theorem B.1 except for

the verification of the first part of Assumption 4.4. Verifying this condition uses a similar

argument to the one in Theorem 6.2 for mean regression. For any θ, either (θ′1, θ2) ∈ Θ0(P )

for some θ′, in which case the same argument to verify Assumption 4.4 goes through, or θ2 >

θ2(P ) or θ2 < θ2(P ), where θ2(P ) and θ2(P ) are defined as in the assumptions of Theorem 6.2

(θ2(P ) ≡ sup{θ2|(θ1, θ2) ∈ Θ0(P ) some θ1} and θ2(P ) ≡ inf{θ2|(θ1, θ2) ∈ Θ0(P ) some θ1}).
If θ2 > θ2(P ) (a symmetric argument applies when θ2 < θ2(P )), then, for (θ′1, θ2) =

(θu1 (P ), θ2(P )), x0,1 = xu,q0,1(P ) and x0,2 = xu,q0,2(P ), we have x0,2 < x0,1 and qτ,P (W
H
i |Xi =

x0,1) = θ′1 + x0,1θ2 and qτ,P (W
L
i |Xi = x0,2) = θ′1 + x0,2θ2. We have m̄θ,1(θ, x0,1, P ) =

−fWH
i |Xi

(θ1 + x′0,1θ2|x0,1)(1, x0,1) and m̄θ,2(θ, x0,2, P ) = fWL
i |Xi

(θ1 + x′0,2θ2|x0,1)(1, x0,1), so

m̄θ,1(θ, x0,1, P )(θ − (θ′1, θ2)) = −fWH
i |Xi

(θ1 + x′0,1θ2|x0,1)(1, x0,1)(θ − (θ′1, θ2))
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and

m̄θ,2(θ, x0,2, P )(θ − (θ′1, θ2)) = fWL
i |Xi

(θ1 + x′0,2θ2|x0,1)(1, x0,2)(θ − (θ′1, θ2)).

Letting a1 be the expression in the first display above, and a2 the expression in the second

display above, note that, if

[fWH
i |Xi

(θ1 + x′0,1θ2|x0,1)]−1 · a1 + [fWL
i |Xi

(θ1 + x′0,2θ2|x0,1)]−1 · a2 ≤ −2η

f
‖θ − (θ′1, θ2)‖,

then either a1 ≤ −η‖θ − (θ′1, θ2)‖ or a2 ≤ −η‖θ − (θ′1, θ2)‖. Thus, it suffices to bound the

expression on the left hand side of the above display divided by ‖θ− (θ′1, θ2)‖ away from zero

from above. The left hand side of the above display divided by ‖θ − (θ′1, θ2)‖ is equal to

[(1, x0,2)− (1, x0,1)](θ − (θ′1, θ2))/‖θ − (θ′1, θ2)‖ = − (x0,1 − x0,2)(θ2 − θ2)

[(θ1 − θ′1)
2 + (θ2 − θ′2)

2]1/2
.

By the same argument as in the proof of Theorem 6.2, this is bounded away from zero from

above for |θ1 − θ′1|/|θ2 − θ2| bounded away from infinity since x0,1 − x0,2 is bounded away

from zero, and, for |θ1 − θ′1|/|θ2 − θ2| large enough, either m̄θ,1(θ, x0,1, P )(θ − (θ′1, θ2)) or

m̄θ,2(θ, x0,2, P )(θ − (θ′1, θ2)) will be less than the same negative constant for all P ∈ P .

proof of Theorem B.3. The result follow immediately from Theorem 3.1.

proof of Theorem B.4. For the case where Assumption B.7 holds, the result follows by ver-

ifying the conditions of Theorem 4.2 with g a function that is positive only on [x, x]. For

the other cases, the result will follow by verifying the conditions of Theorem 4.3 once we

show that these models can be transformed so that Assumption B.6 holds with φx in the

transformed model equal to zero and, under Assumption B.6 on the original model, φm in

the transformed model equal to φm/(φx + 1) and, under Assumption B.5 (and dX = 1) on

the original model, φm in the transformed model equal to φm/(φx − 1). (Assumption 4.6

is invariant to taking the same invertible monotonic transformation of each element of Xi,

since we can replace ‖ · ‖ in that assumption with the supremum norm, and then the sets

involved are dX dimensional boxes, and the set of all dX-dimensional boxes is invariant to

such transformations. This holds even for the transformations used under Assumption B.5

in which infinity is taken to a finite support point by taking t in Assumption 4.6 to be large
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enough so that the largest value of any component of Xi in the sample is contained in the

dX-dimensional box.)

Suppose that Assumption B.6 holds for some φm and φx. Then, for any t ∈ R with each

element less than ηX

P (0 < x0,k −Xi,k < tk all k) = P (x0 − t < Xi < x0)

≥ 1

C

∫ x0

x0,1−t1
· · ·
∫ x0

x0,dX−tdX

d
∏

k=1

|x0,k − xk|φx dx1 · · · dxdX =
1

C

d
∏

k=1

tφx+1
k

φx + 1

so that

P (x0,k − tk < x0,k − (x0,k −Xi,k)
(φx+1) < x0,k all k) = P (0 < x0,k −Xi,k < t

1/(φx+1)
k all k)

≥ 1

C

d
∏

k=1

tk
φx + 1

.

Thus, the random variable Vi defined to have kth element x0,k − (x0,k − Xi,k)
(φx+1) for

x0−ηX < Xi < x0 and Xi,k otherwise will satisfy part (ii) of Assumption B.6 (for a different

value of ηX) with φx equal to zero for the transformed variable. To get the conditional mean

of the transformed model, note that, for x0 − ηX < Xi < x0,

EP (W
H
i |Vi = v) = EP (W

H
i |x0,k − (x0,k −Xi,k)

(φx+1) = vk all k)

= EP (W
H
i |x0,k −Xi,k = (x0,k − vk)

1/(φx+1) all k) = EP (W
H
i |Xi,k = x0,k − (x0,k − vk)

1/(φx+1) all k)

≤ C‖((x0,1 − v1)
1/(φx+1), . . . , (x0,dX − vdX )

1/(φx+1))‖φm ≤ CdφmX ‖x0 − v‖φm/(φx+1).

Thus, Assumption B.6 will hold for the transformed model with Xi replaced with Vi and φm

in the transformed model equal to φm/(φx + 1) and φx in the transformed model equal to

zero.

If Assumption B.5 holds for some φm and φx, then, for t greater than KX (here dX = 1),

P (Xi ≥ t) ≥ 1

C

∫ ∞

t

x−φx dx =
1

C(φx − 1)
t1−φx .
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Thus,

P (KX + 1− 1/(Xi −KX + 1) ≥ KX + 1− t) = P (−1/(Xi −KX + 1) ≥ −t)
= P (1/(Xi −KX + 1) ≤ t) = P (1/t ≤ Xi −KX + 1)

= P (KX − 1 + 1/t ≤ Xi) ≥
1

C(φx − 1)
(KX − 1 + 1/t)1−φx ≥ 21−φx

C(φx − 1)
tφx−1

where the last inequality holds for t small enough so that 1/t ≥ KX − 1. It follows that

part (ii) of Assumption B.6 holds with φx in that assumption replaced by φx − 2 for the

transformed random variable Vi given by Vi = KX + 1− 1/(Xi −KX + 1) for Xi > KX and

Vi = Xi otherwise. Here, x0 from Assumption B.6 is equal to KX + 1 in the transformed

model. As for the conditional mean of the transformed model, we have, for v close enough

to KX + 1,

EP (W
H
i |Vi = v) = EP (W

H
i |KX + 1− 1/(Xi −KX + 1) = v)

= EP (W
H
i | − 1/(Xi −KX + 1) = v − 1−KX) = EP (W

H
i |Xi −KX + 1 = −1/(v − 1−KX))

= EP (W
H
i |Xi = −1/(v − 1−KX) +KX − 1) ≤ C(−1/(v − 1−KX) +KX − 1)−φm

≤ 2C(1/(1 +KX − v))−φm = 2C(1 +KX − v)φm

so that part (i) of Assumption B.6 holds with the same φm.

proof of Theorem 5.1. Let θn be a sequence converging to θ0 such that, for some ε > 0,

dH(θn,Θ0(P )) = n−α/(2dX+2α)ε, for large enough n, (conditions on how small ε is will be

stated below). Such a sequence exists by part (iv) of Assumption 5.1. For each n, let

θ′0(n) ∈ δΘ0(P ) be such that dH(θn, θ
′
0(n)) ≤ 2n−α/(2dX+2α)ε (doubling the distance to the

identified set covers the possibility that the infimum is not achieved). For each j, we have,

for some x0 ∈ X0(θ
′
0(n)) and some θ∗n between θn and θ′0(n),

m̄j(θn, x, P ) = m̄j(θn, x, P )− m̄j(θ
′
0(n), x0, P )

= [m̄j(θn, x, P )− m̄j(θ
′
0(n), x, P )] + [m̄j(θ

′
0(n), x, P )− m̄j(θ

′
0(n), x0, P )]

= m̄θ,j(θ
∗
n, x, P )(θn − θ′0(n)) + [m̄j(θ

′
0(n), x, P )− m̄j(θ

′
0(n), x0, P )]

≥ −2Kn−α/(2dX+2α)ε+ η min
x0∈X0(θ′0(n))

(‖x− x0‖α ∧ η) (10)

where K is a bound on the derivative. For n large enough, the last line of the above display
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is negative only for x such that, for some x0 ∈ X0(θ
′
0(n)), ‖x− x0‖ <

(

2Kε
η

)1/α

n−1/(2dX+2α).

This will imply, letting g be an upper bound for functions in G and K1 an upper bound for

the number of elements in X0(θ
′
0(n)),

µP,j(θn, g) = EP m̄j(θn, Xi, P )g(Xi) ≥ −2Kn−α/(2dX+2α)εgP (m̄j(θn, Xi, P ) < 0)

≥ −2Kn−α/(2dX+2α)εg
∑

x0∈X0(θ′0(n))

P

(

‖Xi − x0‖ <
(

2Kε

η

)1/α

n−1/(2dX+2α)

)

≥ −2Kn−α/(2dX+2α)εK1gf2
dX

(

2Kε

η

)dX/α

n−dX/(2dX+2α)

= −2KεK1gf2
dX

(

2Kε

η

)dX/α

n−1/2.

Here, the first inequality follows for large enough n since m̄j(θn, x, P ) ≥ −2Kn−α/(2dX+2α)ε

eventually by the argument above.

If dH(Cn,ω(ĉn),Θ0(P )) < εn−α/(2dX+2α), then θn /∈ Cn,ω(ĉn), so that Tn,ω(θn) > ĉnn
−1/2 ≥

cn−1/2 where c is a lower bound for ĉn. Then, for some j and g, we will have, letting

KS,1 be as in Assumption 3.3, ωn(θn, g)µ̂n,j(θn, g) ≤ −KS,1cn
−1/2 so that, letting ω be an

upper bound for ωn(θ, g), n
1/2µ̂n,j(θn, g) ≤ −KS,1c/ω. For large enough n, we will also have

n1/2µP,j(θn, g) ≥ −2KεK1gf2
dX

(

2Kε
η

)dX/α

. This will imply

n1/2 {µ̂n,j(θn, g)− [µP,j(θn, g) ∧ 0]} ≤ −KS,1c/ω + 2KεK1gf2
dX

(

2Kε

η

)dX/α

so that n1/2 {µ̂n,j(θn, g)− [µP,j(θn, g) ∧ 0]} is bounded away from zero from above by a neg-

ative constant when this event holds for small enough ε. Thus, it suffices to show that, for

any δ > 0, n1/2 infg∈G {µ̂n,j(θn, g)− [µP,j(θn, g) ∧ 0]} > −δ with probability approaching one.

We have, for any r > 0,

n1/2 inf
g∈G

{µ̂n,j(θn, g)− [µP,j(θn, g) ∧ 0]}

≥ n1/2 inf
g∈G

µ̂n,j(θn, g)I(µP,j(θn, g) > r) + n1/2 inf
g∈G

{µ̂n,j(θn, g)− µP,j(θn, g)} I(µP,j(θn, g) ≤ r).

The first term is greater than zero with probability approaching one since µ̂n,j(θ, g) converges

to µP,j(θ, g) at a root-n rate uniformly over (θ, g) by standard arguments (e.g. Theorem 2.5.2

in van der Vaart and Wellner (1996)).
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As for the second term, note that, for any δ1, δ2 > 0 with δα1 ≤ η, m̄j(θn, x, P ) will be

greater than or equal to −δ2I(dH(x,X0(θ
′
0(n))) < δ1)+(ηδα1 −δ2)I(dH(x,X0(θ

′
0(n))) ≥ δ1) for

large enough n by (10). To simplify notation, define the sets An,δ1 = {x|dH(x,X0(θ
′
0(n))) <

δ1}. Using this notation, the above observation implies that, for n greater than some constant

that depends on δ1,

µP,j(θn, g) = EP m̄j(θn, Xi, P )g(Xi) ≥ −δ2EP g(Xi)I(Xi ∈ An,δ1) + (ηδα1 − δ2)EPg(Xi)I(Xi /∈ An,δ1).

If µP,j(θn, g) ≤ r, then this means that

(ηδα1 − δ2)EPg(Xi)I(Xi /∈ An,δ1) ≤ δ2EP g(Xi)I(Xi ∈ An,δ1) + r

where, as above, K1 is an upper bound for the number of elements in X0(θ
′
0(n)). Thus, for

µP,j(θn, g) ≤ r, and n larger than some constant that depends only on δ1, letting g be a

bound for g(Xi) and M a bound for mj(Wi, θ),

EP [mj(Wi, θn)g(Xi)]
2 ≤ gM2EP g(Xi) = gM2[EP g(Xi)I(Xi /∈ An,δ1) + EPg(Xi)I(Xi ∈ An,δ1)]

≤ gM2{[δ2EPg(Xi)I(Xi ∈ An,δ1) + r]/(ηδα1 − δ2) + EPg(Xi)I(Xi ∈ An,δ1)}

= gM2

[(

δ2
ηδα1 − δ2

+ 1

)

EPg(Xi)I(Xi ∈ An,δ1) +
r

ηδα1 − δ2

]

≤ gM2

[(

δ2
ηδα1 − δ2

+ 1

)

gK1(2δ1)
dX +

r

ηδα1 − δ2

]

By choosing r, δ1, and δ2 so that δ1, r/(ηδ
α
1 − δ2) and δ2/(ηδ

α
1 − δ2) are small, we can make

the last line of the display less than any δ3 > 0. Then, for n large enough, µP,j(θn, g) ≤ r

will imply varP [m(Wi, θn)g(Xi)] ≤ δ3, so that

n1/2 inf
g∈G

{µ̂n,j(θn, g)− µP,j(θn, g)} I(µP,j(θn, g) ≤ r).

≥ n1/2 inf
g∈G

{µ̂n,j(θn, g)− µP,j(θn, g)} I(varP [m(Wi, θn)g(Xi)] ≤ δ3).

This can be made arbitrarily small in magnitude by the stochastic asymptotic equicontinuity

of n1/2(En−EP )m(Wi, θ)g(Xi) with respect to the covariance semimetric ρ((θ, g), (θ′, g′)) =

varP [m(Wi, θ)g(Xi)−m(Wi, θ
′)g′(Xi)] as a sequence of processes indexed by (θ, g). Letting

g̃(x) = 0 be the zero function and θ̃ an arbitrary value in Θ, the last line of the above display
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is equal to

n1/2 inf
g∈G

{

(En − E)mj(Wi, θn)gj(Xi)− (En − E)mj(Wi, θ̃)g̃j(Xi)
}

I(ρ((θn, g), (θ̃, g̃)) ≤ δ3).

By making δ3 small, the probability of this being less than any negative constant can be

made arbitrarily small by equicontinuity of n1/2(En − E)mj(Wi, θn)gj(Xi) in ρ.

proof of Theorem 5.2. By the same argument that gives (9) in the proof of Theorem 4.3,

we will have, for θ with dH(θ,Θ0(P )) smaller than some constant that does not depend on

P , there exists a θ0 ∈ Θ0(P ), j0 and g ∈ G with g(x) ≥ CG,1I(‖x − x0‖ ≤ [η/(4C)]1/α‖θ −
θ0‖1/αCG,2) such that

µP,j0(θ, g) = EP m̄j0(θ,Xi, P )g(Xi) ≤ −(η/4)‖θ − θ0‖EP g(Xi).

This, and the lower bound on g gives

µP,j0(θ, g) ≤ −(η/4)‖θ − θ0‖CG,1
{

[η/(4C)]1/α‖θ − θ0‖1/αCG,2
}dX

η

= −(η/4)‖θ − θ0‖(α+dX)/αCG,1
{

[η/(4C)]1/αCG,2
}dX

η

≤ −(η/4)dH(θ,Θ0(P ))
(α+dX)/αCG,1

{

[η/(4C)]1/αCG,2
}dX

η.

Thus, the conditions of Lemma A.6 hold with γ = α/(dX + α).

The proof of Theorem 5.2 uses the following lemma, which is analogous to Theorem 4.2

for set estimates based on variance weighted KS statistics.

Lemma A.6. Suppose that, for some positive constants C, γ, and δ, we have, for all P ∈ P
and θ with dH(θ,Θ0(P )) < δ,

inf
g,j
µP,j(θ, g) ≤ −CdH(θ,Θ0(P ))

1/γ

where the infimum is taken over g ∈ G and j ∈ {1, . . . , dY }. Suppose that Assumptions 3.1,

3.2, 3.3, and 4.1 hold, and that the weight function ωn(θ, g) satisfies ω ≤ ωn(θ, g) ≤ ω for

some 0 < ω ≤ ω <∞, and suppose that ĉn → ∞ with ĉn/
√
n→ 0. Then,

inf
P∈P

P (Θ0(P ) ⊆ Cn,ω(ĉn)) n→∞→ 1
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and, for some large B,

sup
P∈P

P
(

(

n/ĉ2n
)γ/2

dH(Cn(ĉn),Θ0(P )) > B
)

n→∞→ 0.

Proof. First, note that, for all j, supθ,g
√
n|(En − E)mj(Wi, θ)gj(Xi)| = OP (1) uniformly

in P by Theorem 2.14.1 in van der Vaart and Wellner (1996) (the constant function equal

to Y does not depend on P and can be used as an envelope function). This, along with

Assumption 3.3 and the bound on the weight function, implies the first claim.

For the second claim, once Θ0(P ) ⊆ Cn,ω(ĉn), if (n/ĉ2n)
γ/2

dH(Cn(ĉn),Θ0(P )) > B, there

will be a θ ∈ Cn,ω(ĉn) such that dH(θ,Θ0(P )) > B ĉγn
nγ/2 . If dH(Cn,ω(ĉn),Θ0(P )) < δ, which

happens with probability approaching one uniformly in P ∈ P by arguments similar to

the proof of Theorem 4.1, then, for this θ and P , there will be a g∗ and j∗ such that, for n

greater than some constant that does not depend on P , µP,j∗(θ, g
∗) ≤ −(C/2) (ĉ2n/n)

1/2
B1/γ .

Since θ ∈ Cn,ω(ĉn), we will also have Tn,ω(θ) ≤ ĉnn
−1/2, so that µ̂n,j∗(θ, g

∗)ωn,j∗(θ, g
∗) ≥

−ĉnn−1/2KS,2. By the lower bound on the weight function, this implies µ̂n,j∗(θ, g
∗) ≥

−ĉnn−1/2KS,2/ω. Thus,

√
n[µ̂n,j∗(θ, g

∗)− µP,j∗(θ, g
∗)] ≥ ĉn

[

−KS,2/ω + (C/2)B1/γ
]

.

For B large enough, the right hand side will go to infinity. Since the left hand side is OP (1)

uniformly in P ∈ P , this gives the desired result.

proof of Theorem 5.3. Let θn and θ
′
0(n) be as in the proof of Theorem 5.1, but with dH(θn,Θ0(P )) =

ε

( √
logn√
nh

dX
n

∨ hαn
)

.

If dH(Ckern
n (ĉn),Θ0(P )) < ε

( √
logn√
nh

dX
n

∨ hαn
)

, then θn /∈ Ckern
n (ĉn) so that T kern

n,k,hn
(θn) ≥ ĉn.

Then, lettingKS,1 be as in Assumption 3.3, we will have, for some j and x,

√
nh

dX
n√

logn
ˆ̄mj(x, θn) ≤

−KS,1ĉn. By Lemmas A.7 and A.8, for large enough a we will have, for some constant K,

sup
x∈RdX ,θ∈Θ

√

nhdXn√
log n

∣

∣

∣

∣

(En − EP )mj(Wi, θ)k((Xi − x)/hn)

Enk((Xi − x)/hn)

∣

∣

∣

∣

≤ K (11)

with probability approaching one (Lemma A.7 allows EPk((Xi − x)/hn) to be replaced by
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its sample analogue in Lemma A.8). When T kern
n,k,hn

(θn) ≥ ĉn, we will have

√

nhdXn√
log n

[

(En − EP )mj(Wi, θn)k((Xi − x)/hn)

Enk((Xi − x)/hn)
+
EPmj(Wi, θn)k((Xi − x)/hn)

Enk((Xi − x)/hn)

]

=

√

nhdXn√
log n

ˆ̄mj(x, θn) ≤ −KS,1ĉn,

so that, when (11) holds, we will have

√

nhdXn√
log n

EPmj(Wi, θn)k((Xi − x)/hn)

Enk((Xi − x)/hn)
≤ −KS,1ĉn +K.

Appealing again to Lemma A.7, if a is large enough, this will imply

√

nhdXn√
log n

EPmj(Wi, θn)k((Xi − x)/hn)

EPk((Xi − x)/hn)
≤ −KS,1ĉn +K

2
.

Letting η be as in Assumption 4.5 letting ε1 > 0 and ε2 > 0 be such that k(t) ≥ ε1 for

‖t‖ ≤ ε2 and defining K1 = ηε1ε
dX
2 , we have EPk((Xi − x)/hn) ≥ ε1P (‖Xi − x‖ ≤ hnε2) ≥

ηε1ε
dx
2 h

dX
n = K1h

dX
n by Assumption 4.5, so that the above display implies

EPmj(Wi, θn)k((Xi − x)/hn) ≤ K1h
dX
n

−KS,1ĉn +K

2

√
log n

√

nhdXn
=
K1 (−KS,1ĉn +K)

2

√

hdXn
√
log n√
n

.

Let ĉn be large enough so that K1 (−KS,1ĉn +K) /2 ≤ −δ for some fixed constant δ > 0.

Then the above display implies

EPmj(Wi, θn)k((Xi − x)/hn) ≤ −δ
√

hdXn
√
log n√
n

. (12)

When this holds, the right hand side will be negative, so that, by Lemma A.9, hn ≤
B[dH(θn,Θ0(P ))]

1/α. If hαn ≥
√
logn√
nh

dX
n

, this will imply hn ≤ ε1/αBhn, which is a contradiction

for ε small enough.

Now suppose hαn ≤
√
logn√
nh

dX
n

. By the same argument as in the proof of Theorem 5.1, we

have, for some constant K2 that does not depend on n, m̄j(θn, x) ≥ −K2dH(θn,Θ0(P )) so

that, if hαn ≤
√
logn√
nh

dX
n

, m̄j(θn, x) ≥ −εK2

√
logn√
nh

dX
n

so that the left hand side of (12) is greater
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than or equal to

−εK2

√
log n

√

nhdXn
EPk((Xi − x)/hn) ≥ −εK2

√
log n

√

nhdXn
fhdXn = −εfK2

√

hdXn
√
log n√
n

so that (12) implies εfK2 ≥ δ, a contradiction for ε small enough.

The proof of Theorem 5.3 uses the lemmas stated and proved below.

Lemma A.7. Suppose that Assumption 5.2 holds, and that Assumption 4.5 and part (iii) of

Assumption 5.1 hold, with the upper bound on the density in the latter assumption uniform

in P ∈ P. Then, for any ε, there exists an a such that, if hdXn n/ log n ≥ a eventually,

sup
P∈P

P

(

sup
x∈suppP (Xi)

∣

∣

∣

∣

Enk((Xi − x)/h)

EPk((Xi − x)/h)
− 1

∣

∣

∣

∣

> ε

)

n→∞→ 0

for all ε > 0.

Proof. We have

∣

∣

∣

∣

Enk((Xi − x)/hn)

EPk((Xi − x)/hn)
− 1

∣

∣

∣

∣

=
{EP [k((Xi − x)/hn)]

2}1/2
EPk((Xi − x)/hn)

∣

∣

∣

∣

(En − EP )k((Xi − x)/hn)

{EP [k((Xi − x)/hn)]2}1/2
∣

∣

∣

∣

≤ k
1/2
∣

∣

∣

∣

(En − EP )k((Xi − x)/hn)

{EP [k((Xi − x)/hn)]2}1/2
∣

∣

∣

∣

· 1

[EPk((Xi − x)/hn)]1/2

where k is an upper bound for the kernel function k. By Theorem A.1,

sup
P∈P

P

(

sup
x∈suppP (Xi)

√
n√

log n

∣

∣

∣

∣

(En − EP )k((Xi − x)/hn)

{EP [k((Xi − x)/hn)]2}1/2
∣

∣

∣

∣

> K

)

→ 0

for large enough K (the lower bound on the denominator follows from Assumption 4.5),

so the result will follow if we can show that [EPk((Xi − x)/hn)]
1/2

√
n/

√
log n can be made

arbitrarily large by choosing a large in the assumptions of the lemma. By Assumptions 5.2

and 4.5, we have, for some δ > 0 and all x on the support of Xi under P ,

[n/(log n)]EPk((Xi − x)/hn) ≥ [n/(log n)]δhdXn ,

and taking the square root of this expression gives something that can be made arbitrarily

large by choosing a large.
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Lemma A.8. Suppose that Assumption 5.2 holds, and that Assumption 4.5 and part (iii) of

Assumption 5.1 hold, with the upper bound on the density in the latter assumption uniform

in P ∈ P. Then, if hdXn n/ log n ≥ a eventually for a large enough, we will have

sup
P∈P

P

(

sup
x∈suppP (Xi),θ∈Θ

√

nhdXn√
log n

∣

∣

∣

∣

(En − EP )mj(Wi, θ)k((Xi − x)/hn)

EPk((Xi − x)/hn)

∣

∣

∣

∣

> B

)

n→∞→ 0

for some B.

Proof. We have

√

nhdXn√
log n

∣

∣

∣

∣

(En − EP )mj(Wi, θ)k((Xi − x)/hn)

EPk((Xi − x)/hn)

∣

∣

∣

∣

=

√
n√

log n

∣

∣

∣

∣

∣

(En − EP )mj(Wi, θ)k((Xi − x)/hn)
√

varP [mj(Wi, θ)k((Xi − x)/hn)] ∨
√

hdXn

∣

∣

∣

∣

∣

·

√

hdXn
{

√

varP [mj(Wi, θ)k((Xi − x)/hn)] ∨
√

hdXn
}

EPk((Xi − x)/hn)

Since

varP [mj(Wi, θ)k((Xi − x)/hn)] ≤ Y EP [k((Xi − x)/hn)]
2 ≤ Y f

∫

t∈RdX

[k((t− x)/hn)]
2 dt

= hdXn

∫

u∈RdX

[k(u)]2 du,

the last line is bounded by a constant times

√
n√

log n

∣

∣

∣

∣

∣

(En − EP )mj(Wi, θ)k((Xi − x)/hn)
√

varP [mj(Wi, θ)k((Xi − x)/hn)] ∨
√

hdXn

∣

∣

∣

∣

∣

· hdXn
EPk((Xi − x)/hn)

.

By Assumptions 5.2 and 4.5, we have, for some δ > 0 and x on the support of Xi under P ,

EPk((Xi − x)/hn) ≥ δhdXn , so that this is bounded by

√
n√

log n

∣

∣

∣

∣

∣

(En − EP )mj(Wi, θ)k((Xi − x)/hn)
√

varP [mj(Wi, θ)k((Xi − x)/hn)] ∨
√

hdXn

∣

∣

∣

∣

∣

· (1/δ).

The claim now follows from Theorem A.1, with
√

hdXn playing the role of the cutoff point

σn.
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Lemma A.9. Suppose that Assumptions 4.5, 5.1 and 5.2 hold. Let θ0 be as in Assumption

5.1 and let θn be a sequence in Θ\Θ0(P ) converging to θ0. Then, for some constant B that

does not depend on n and some N ∈ N, EPmj(Wi, θn)k((Xi − x)/h) will be nonnegative for

hn ≥ B[dH(θn,Θ0(P ))]
1/α and n ≥ N for x on the support of Xi.

Proof. Let bn = dH(θn,Θ0(P )). By an argument similar to the one leading up to Equation

(10), we will have, for each j,

m̄j(θn, x, P ) ≥ −Cbn + η min
x0∈X0(θ′0(n))

(‖x− x0‖α ∧ η)

for some C that depends only on the bound on the derivative m̄θ,j(θ, x, P ) in Assumption

5.1 and some θ′0(n) ∈ Θ0(P ). Thus, for x such that m̄j(θn, x, P ) ≤ Cbn, we will have, for

some x0 ∈ X0(θ
′
0(n)), Cbn ≥ −Cbn + η(‖x− x0‖α ∧ η) so that 2Cbn ≥ η(‖x− x0‖α ∧ η). For

bn small enough, this implies that ‖x− x0‖ ≤ (2Cbn/η)
1/α. This means that, letting K be a

bound for the number of elements in X0(θ
′
0(n)) and f an upper bound for the density of Xi,

P (m̄j(θn, Xi, P ) ≤ Cbn) ≤ Kf(2Cbn/η)
dX/α. (13)

This, and the lower bound on m̄j(θn, x, P ) imply, letting k be an upper bound on the kernel

k,

EPmj(Wi, θn)k((Xi − x)/hn)I(m̄j(θn, Xi, P ) ≤ Cbn) ≥ −kCbnP (m̄θ,j(θ,Xi, P ) ≤ Cbn)

≥ −kCbn ·Kf(2Cbn/η)dX/α.

We also have, for x on the support of Xi, letting ε and K1 be such that k(t) ≥ K1 for

‖t‖ ≤ ε,

EPmj(Wi, θn)k((Xi − x)/hn)I(m̄j(θn, Xi, P ) > Cbn)

≥ CbnEPk((Xi − x)/hn)I(m̄j(θn, Xi, P ) > Cbn)

≥ K1CbnEP I(‖(Xi − x)/hn‖ ≤ ε)I(m̄j(θn, Xi, P ) > Cbn)

≥ K1Cbn[P (‖(Xi − x)/hn‖ ≤ ε)− P (m̄j(θn, Xi, P ) ≤ Cbn)]

≥ K1Cbn[ηε
dXhdXn −Kf(2Cbn/η)

dX/α].

The last inequality follows from Assumption 4.5 and from the inequality (13) above (here the

59



two ηs come from different conditions, but they can be chosen to be the same by decreasing

one). Combining this with the bound in the previous display gives

EPmj(Wi, θn)k((Xi − x)/hn) ≥ K1Cbn[ηε
dXhdXn −Kf(2Cbn/η)

dX/α]− kCbn ·Kf(2Cbn/η)dX/α

= bn(K2h
dX
n −K3b

dX/α
n )

where K2 = K1Cηε
dX and K3 = K1CKf(2C/η)

dX/α + kCKf(2C/η)dX/α are both positive

constants that do not depend on n. For hn ≥ (K3/K2)
1/dXb

1/α
n , this will be nonnegative.

B Additional Applications

This section of the appendix derives rates of convergence to the identified set for several

applications not considered in Section 6 by verifying the conditions of this paper. Section

B.1 considers a one sided quantile regression model. Section B.2 considers an interval quantile

regression model. Section B.3 considers bounds in a selection model. Proofs of the theorems

in this section are given in Section A.6.

B.1 One Sided Quantile Regression

In this and the next section, I treat quantile versions of the regression models considered

above. Here, we have a model for a conditional quantile of the unobserved variable W ∗
i

rather than the mean. The results are essentially the same, but, in addition to smoothness

conditions on the quantile itself, conditions are needed on the joint density of the observed

variables near the conditional quantile to translate these into the conditions on m̄(θ, x, P ).

First, consider the one sided case in which we observe (Xi,W
H
i ) with WH

i ≥ W ∗
i . For

a random variable Zi, define qτ,P (Zi|Xi) to be the τth quantile of Zi conditional on Xi

under P . Suppose that, for some known τ , the conditional τth quantile of W ∗
i satisfies

qτ,P (W
∗
i |Xi) = θ1 + X ′

iθ−1 for some θ. Then EP [τ − I(W ∗
i ≤ θ1 + X ′

iθ−1)|Xi] = 0 so that

EP [τ − I(WH
i ≤ θ1 +X ′

iθ−1)|Xi] ≥ 0. Thus, this fits into the framework of this paper with

Wi = (Xi,W
H
i ) and m(Wi, θ) = τ − I(WH

i ≤ θ1 +X ′
iθ−1).

In many situations, models for quantiles of an outcome variable given covariates can be

more informative under interval data than models for the conditional mean. If WH can

be infinite with positive probability conditional on any value of Xi, the identified set for a

conditional mean model will be the entire parameter space. If WH has a low probability of
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being large or infinite, and is usually close to W ∗
i , a model for conditional quantiles of the

unobserved variable will still give informative bounds with interval data.

Smoothness conditions that lead to Assumptions 4.3 and 4.4 for the quantile model are

similar to those for the conditional mean considered above, but with smoothness assump-

tions placed on the conditional quantile qτ,P (W
H
i |Xi) rather than the conditional mean, and

additional assumptions on the joint density of (Xi,W
H
i ). The first two assumptions are

exactly the same as Assumptions 6.1 and 6.2, but with the conditional mean replaced by the

conditional τth quantile.

Assumption B.1. For some C > 0 and α ≤ 1, ‖qτ,P (WH
i |Xi = x)− qτ,P (W

H
i |Xi = x′)‖ ≤

C‖x− x′‖α for x and x′ on the support of Xi for all P ∈ P.

Assumption B.2. (i) qτ,P (W
H
i |Xi = x) has a second derivative that is bounded uniformly

in P and x and (ii) for any P ∈ P, θ0 ∈ Θ0(P ), qτ,P (W
H
i |Xi = x) is bounded away from

θ0,1 + x′θ0,−1 on the boundary of the support of Xi.

The next assumption states that WH
i has a density near its τth quantile conditional

on Xi. One type of interval data that will frequently lead to this assumption holding is if

(Xi,W
∗
i ) has a well behaved joint density, and WH

i is equal to W ∗
i with high probability and

much larger than W ∗
i with some small probability. For example, suppose that (Xi,W

∗
i ) has

a joint density, and, WH
i is either equal to ∞ or W ∗

i , with P (W
H
i = ∞|Xi = x,W ∗

i = w)

a smooth function of (x, w) that is bounded from above by some constant strictly less than

1 − τ . Then (Xi,W
H
i ) will have a joint density near the τth conditional quantile of WH

i .

This type of situation arises naturally with missing data on an outcome variable. However,

other types of interval data will not lead to this assumption holding. If WH
i is the upper

end of an interval from a survey in which W ∗
i is always reported in the same interval, WH

i

will not have a density conditional on Xi.

Assumption B.3. For some η > 0, WH
i |Xi has a conditional density fWH

i |Xi
(w|x) on

{(x, w)|qτ,P (WH
i |Xi = x)− η ≤ w ≤ qτ,P (W

H
i |Xi = x) + η} that is continuous as a function

of w uniformly in (w, x, P ) and satisfies f ≤ fWH
i |Xi

(w|x) ≤ f for some 0 < f < f <∞.

Under these conditions, Assumptions 4.3 and 4.4 will hold for the one sided quantile

regression model. The proof is similar to the proof of Theorem 6.1 in the one sided regression

model. The only difference is that some additional steps are needed to translate smoothness

conditions on the τth quantile into smoothness conditions on the objective function using

the assumptions on the conditional density of WH
i given Xi.
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Theorem B.1. Suppose that the support of Xi is bounded uniformly in P ∈ P, and that As-

sumptions 6.3 and B.3 hold in the one sided quantile regression model, with EP (W
H
i |Xi = x)

replaced by qP (W
H
i |Xi = x) in assumption 6.3. Then, if Assumption B.1 holds, Assump-

tions 4.3 and 4.4 will hold for α specified in Assumption B.1. If Assumption B.2 holds,

Assumptions 4.3 and 4.4 will hold for α = 2.

B.2 Interval Quantile Regression with a Scalar Regressor

Now consider a quantile regression model with two sided interval data in which, in addition to

WH
i , we observe a variableWL

i that is known to satisfyWL
i ≤ W ∗

i . This leads to EP [I(W
L
i ≤

θ1 + X ′
iθ−1) − τ |Xi] ≥ EP [I(W

∗
i ≤ θ1 + X ′

iθ−1) − τ |Xi] = 0 so that the interval quantile

regression fits into the conditional moment inequality framework with Wi = (Xi,W
L
i ,W

H
i )

and m(Wi, θ) = (τ − I(WH
i ≤ θ1 +X ′

iθ−1), I(W
L
i ≤ θ1 +X ′

iθ−1)− τ).

As with the case of mean regression, the condition on the angle of the derivative and path

in Assumption 4.4 will not hold in general in the quantile regression model with two sided

interval data because of cases where alternatives are closest to a point in the identified set

where the regression line is rotated around a contact point. Sufficient conditions to rule this

out in the case of a scalar regressor are similar as well. Bounding the conditional quantiles

of the upper and lower endpoints of the interval away from each other rules out these cases

when the regressors include only a constant and a scalar. The next assumption is the same

as Assumption 6.4, but with conditional expectations replaced by conditional τth quantiles.

In the following, xu,q0,1(P ) is defined in the same way as xu0,1(P ) in Assumption 6.4, but with

EP (·|Xi = x) replaced by qτ,P (·|Xi = x), and similarly for xu,q0,2(P ), x
ℓ,q
0,1(P ) and x

ℓ,q
0,2(P ).

Assumption B.4. (i) The support of Xi is bounded uniformly in P ∈ P. (ii) The absolute

value of the slope parameter θ2 is bounded uniformly on the identified sets Θ0(P ) of P ∈ P.

(iii) xu,q0,1(P )−xu,q0,2(P ) and x
ℓ,q
0,1(P )−xℓ,q0,2(P ) are bounded from below away from zero uniformly

over P ∈ P.

The next theorem states that KS statistic based set estimators will have the same rate

of convergence as in the one sided model with a scalar regressor under these conditions, and

the assumption stated earlier on the density of the observed variables. The proof is similar

to the proof of the analogous result for mean regression, Theorem 6.2, but with additional

steps to translate conditions on quantiles and densities into conditions on the conditional

mean of the objective function.
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Theorem B.2. In the interval regression example with dX = 1, suppose that Assumptions

B.3 and B.4 hold, and that Assumption B.3 also holds with WH
i replaced by WL

i . Then, if

Assumption B.1 holds as stated and with WH
i replaced by WL

i , Assumptions 4.3 and 4.4 will

hold for α specified in Assumption B.1 (and dX = 1). If Assumption B.2 holds as stated and

with WH
i replaced with WL

i , Assumptions 4.3 and 4.4 will hold for α = 2 (and dX = 1).

B.3 Selection Model and Identification at the Boundary

In this section, I treat a class of models in which the conditional moment inequalities give the

most identifying information when conditioning on a set where Xi may not have a density

that is bounded away from zero and infinity. That is, as θ approaches the identified set, the

moment inequality EP (m(Wi, θ)|Xi = x) ≥ 0 is violated on a region in which the density

of Xi goes to zero or infinity, or in which Xi does not have a density with respect to the

Lebesgue measure. This covers cases of conditional moment inequalities leading to point

or set identification at infinity or at a finite boundary. While I motivate the conditions in

this section with a selection model, the results apply more generally to other cases of set

identification at the boundary.

The selection model is particularly interesting in that it leads naturally to different shapes

of the conditional mean of m(Wi, θ) and distribution of Xi, since set identification at the

boundary of the support ofXi appears to be a common case. For cases where the conditioning

variable has a density function that goes to zero or infinity near a (possibly infinite) support

point, a transformation of the conditioning variable leads to a model for which the smoothness

assumptions for rates of convergence given in this paper can be verified. The resulting value

of the Hölder constant α depends on the shape of both the density and the conditional mean.

This is related to cases of point identification at infinity, such as the estimator proposed by

Andrews and Schafgans (1998) for a selection model similar to the one treated in this section,

but under conditions that lead to point identification. As with the estimator proposed in that

paper, the estimators I consider based on KS statistics for conditional moment inequalities

and possible set identification have rates of convergence that depend on the tail behavior of

the random variables in the model. The behavior of distributions of random variables at the

tails determines which functions in G correspond to the region of the tail of the conditioning

variable with the most identifying power. The truncated variance weighting I propose allows

the KS statistic to automatically find these functions.

We are interested in the marginal distribution of a random variable Y ∗
i , but we do not

always observe this variable. Instead, we observe (Yi, Di) where Di is an indicator for being
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observed in the sample and Yi ≡ Y ∗
i · Di. For example, suppose we are interested in the

distribution of wage offers for a population of individuals, but we only observe wages of

people who decide to work. In this case, Y ∗
i is the wage individual i is offered, and Di is an

indicator for employment. In what follows, Yi and Di are scalars, but the results described

below can be extended to multiple partially observed outcomes. In the treatment effects

literature, potential outcomes under different treatment programs are typically modeled as

latent variables, with the observed variable being the actual treatment. In this case, we can

consider each possible treatment separately, each time defining Y ∗
i and Di to be potential

outcomes and indicators for the treatment group in question. Bounds on the marginal

distribution for each treatment will follow from methods described in this section, and these

bounds can be combined to give bounds on treatment effects defined as differences between

statistics of the unobserved distribution of each outcome.

If Y ∗
i is not independent of Di and Di = 0 with positive probability, the distribution of Yi

will be different from the distribution of Y ∗
i conditional on entry. However, it is often possible

to obtain informative bounds. Suppose that we observe a random variable Xi that shifts

participation in the sample, but is exogenous to outcomes in the sense that Y ∗
i is independent

of Xi. If Yi is known to lie in some interval [Y , Y ], we can bound the distribution of Y ∗
i

following Manski (1990). In this section, I consider estimation of bounds for the mean of

the distribution of Y ∗
i , but bounds on quantiles can be estimated using similar methods. For

the same reasons as those described in Section B.1, bounds on quantiles will often be tighter

than bounds on the mean when the difference between Y and Y is large or infinite.

To see how this model fits into the framework of this paper, note that Yi · Di + Y ·
(1 −Di) ≤ Y ∗

i ≤ Yi ·Di + Y · (1 −Di), so that, letting γ = EP (Y
∗
i ) = EP (Y

∗
i |X), we have

EP (Yi ·Di+Y ·(1−Di)|X) ≤ γ ≤ EP (Yi ·Di+Y ·(1−Di)|X). DefineWL
i = Yi ·Di+Y ·(1−Di)

and WH
i = Yi ·Di + Y · (1−Di). The problem of estimating the identified set for γ fits into

the framework of this paper with Wi = (WL
i ,W

H
i , Xi) and m(Wi, γ) = (γ −WL

i ,W
H
i − γ)′.

Typically, the best upper and lower bounds on γ will come from values of Xi for which the

probability of participation is high. If participation is monotonic, these points will be near

the boundary of the support of Xi. The support of Xi could be infinite or finite, and there

is typically no reason to impose any conditions on how the distribution of Xi behaves near

its support points (whether it has a density, whether the density approaches zero, infinity,

a positive constant, or oscillates wildly) or how EP (W
H
i |Xi) and EP (W

L
i |Xi) behave near

these points. In addition, while identification at the boundary of the support seems likely,

it is best not to impose this either.
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The results in this section show that estimates of the identified set using weighted KS

statistics defined above are robust to all of these types of set identification in the sense of

controlling the probability that the set estimate fails to contain the identified set uniformly

in a set of underlying distributions that contains these types of distributions and many more.

In addition, for a wide variety of shapes of the density and conditional mean, the weighted

KS statistic based set estimate obtains a better rate of convergence than estimates that do

not weight the KS statistic.

Uniform coverage of the identified set follows immediately from Theorem 3.1, and is

stated in the next theorem. Throughout this section, Θ0(P ) denotes the identified set for

γ in the selection model under P , and Cn(ĉn) denotes an estimate of this set as described

above.

Theorem B.3. Let P be any class of probability measures on the random variables in the

selection model described above such that WH
i and WL

i are bounded uniformly over P ∈ P.

If Assumptions 3.1, 3.2 and 3.3 hold and σn and ĉn are chosen so that the assumptions of

Theorem 3.1 hold, then

inf
P∈P

P (Θ0(P ) ⊆ Cn(ĉn)) n→∞→ 1.

Rates of convergence to the identified set will depend on the shape of the conditional

mean and the distribution of Xi. Note, however, that the set estimate based on the standard

deviation weighted KS statistic can be calculated in the same manner regardless of these

aspects of the data, so the researcher does not have to impose any restrictions on the shapes

of these objects when performing inference. In this sense, inference based on these statistics

adapts to the shapes of the conditional means of WH
i and WL

i and the distribution of Xi.

In what follows, I consider several alternative assumptions. These include different types of

set identification at the boundary, as well as set identification on a positive probability set.

In the following assumptions, [γ, γ] is the identified set for γ, so that it is implicitly

assumed that EP (W
H
i |Xi) ≥ γ and EP (W

L
i |Xi) ≤ γ with probability one. Here, γ and γ

could be equal, leading to point identification. This will be the case when the probability of

selection into the sample conditional on Xi = x converges to one as x approaches some point

on the support of Xi. These assumptions are stated so that the same type of identification

holds for the upper and lower support of the identified set, but the same results will hold (with

possibly different rates of convergence to the upper and lower support points) if different

types of identification hold for the upper and lower support. When these assumptions are
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invoked for a class of probability distributions P , the constants C, KX , and ηX are assumed

not to depend on P .

Assumption B.5 (Set Identification at Infinity with Polynomial Tails). dX = 1 and, for

some positive constants KX and C, we have, for all x ≥ KX , (i) EP (W
H
i |Xi = x) − γ ≤

Cx−φm and (ii) Xi has a density fX(x) such that fX(x) ≥ x−φx/C for some φm > 0 and

φx > 1. In addition, part (i) holds with WH
i − γ replaced by γ −WL

i .

Assumption B.6 (Set Identification at Finite Support with Polynomial Tails). For some

x0 ∈ RdX and ηX > 0, we have, for x0 − ηXι ≤ x ≤ x0 (where ι is a vector of ones and ≤
is elementwise if dX > 1) (i) EP (W

H
i |Xi = x)− γ ≤ C|x0 − x|φm and (ii) Xi has a density

fX(x) such that fX(x) ≥
∏dX

k=1 |x0,k − xk|φx/C for some φm > 0 and some φx > −1. In

addition, parts (i) and (ii) hold with WH
i − γ replaced by γ−WL

i for some possibly different

x0.

Assumption B.7 (Set Identification on a Positive Probability Set). For some interval [x, x],

EP (W
H
i |Xi) − γ = 0 P -a.s. for all P ∈ P and P (x ≤ Xi ≤ x) is bounded away from zero

uniformly in P ∈ P. In addition, the same assumption holds with WH
i − γ replaced by

γ −WL
i for some possibly different interval [x, x].

All cases of Assumption B.5 and B.6 can be transformed into Assumption B.6 with

φx = 0 and some φm by monotonic transformations of each element of Xi. The case where

Assumption B.6 holds with φx = 0 fits into the framework of Theorem 4.3, so this can be

applied to the transformed model.

Theorem B.4. Let P be any class of probability measures on the random variables in the

selection model described above such that WH
i and WL

i are bounded uniformly over P ∈
P. Suppose that Assumptions 3.1, 3.2 and 3.3 hold and σn and ĉn are chosen so that the

assumptions of Theorem 3.1 hold, and Assumption 4.6 holds.

If, in addition to these conditions, one of Assumptions B.5 or B.6 holds, then, for some

B,

sup
P∈P

P

(

(

n

ĉ2n log n

)α/(dX+2α)

dH(Cn(ĉn),Θ0(P )) > B

)

n→∞→ 0

where α = φm/(φx + 1) if Assumption B.6 holds and α = φm/(φx − 1) (and dX = 1) if
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Assumption B.5 holds. If Assumption B.7 holds, then, for some B,

sup
P∈P

P

(

(

n

ĉ2n log n

)1/2

dH(Cn(ĉn),Θ0(P )) > B

)

n→∞→ 0.

The rate of convergence in Theorem B.4 shows that, for a given selection process condi-

tional on Xi, the rate of convergence will be faster when Xi has more mass near the point x0

or region [x, x] where the conditional moment inequalities give the most identifiying infor-

mation. The rate of convergence is fastest (((log n)/n)1/2) under Assumption B.7, when this

region has a positive probability. Under identification at a finite point (Assumption B.6),

the rate of convergence depends on whether the density of Xi approaches infinity, zero, or

a finite nonzero value. If −1 < φx < 0, the density will approach infinity at a rate that is

faster when φx is closest to −1 (φx must be strictly greater than −1 in order for the density

to integrate to a finite number). For φx = 0, the density approaches a finite nonzero value,

and, for φx > 0 the density approaches zero at a rate that is faster for larger values of φx.

The rate of convergence under Assumption B.6 will always be slower than ((log n)/n)1/2, but

it will be arbitrarily close to this rate when φx is close to −1 (when the density approaches

infinity at close to the fastest possible rate). Under identification at infinity (Assumption

B.5), the rate of convergence will be faster for thicker tails (smaller φx), and will be close

to ((log n)/n)1/2 for φx close to 1 (in this case, φx must be greater than one in order for the

density to integrate to a finite number).
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statistic weighted weighted weighted unweighted kernel kernel

σn or hn
1
2
n−1/6 1

2
n−1/10 1

2

[

(logn)(log logn)
n

]1/2

- (x− x)n−1/3 (x− x)n−1/5

n = 200 0.48 0.45 0.49 0.44 0.7 0.53
(β1, β2) n = 500 0.34 0.32 0.37 0.29 0.52 0.37

n = 1000 0.28 0.26 0.3 0.23 0.42 0.3
n = 200 0.48 0.44 0.49 0.4 0.7 0.53

β1 n = 500 0.34 0.32 0.37 0.28 0.52 0.37
n = 1000 0.28 0.25 0.29 0.22 0.42 0.3
n = 200 0.3 0.31 0.31 0.41 0.34 0.31

β2 n = 500 0.21 0.2 0.23 0.27 0.24 0.2
n = 1000 0.16 0.15 0.18 0.2 0.19 0.15

Table 1: Median Distances for Set Estimators in Monte Carlos (ĉn = c.95,n ·
√
log log n)
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statistic weighted weighted

σn
1
2
n−1/6 1

2
n−1/6

ĉn c.95,n c.95,n ·
√
log n

n = 200 0.39 2.7
(β1, β2) n = 500 0.27 0.54

n = 1000 0.21 0.44
n = 200 0.39 0.96

β1 n = 500 0.27 0.54
n = 1000 0.21 0.44
n = 200 0.23 2.42

β2 n = 500 0.15 0.4
n = 1000 0.11 0.3

Table 2: Median Distances for Set Estimators Based on Variance Weighted Statistic (Other
Critical Values)

weighted unweighted

σn or hn
1
2
n−1/6 -

ĉn c.95,n ·
√
log log n c.95,n ·

√
log log n

n = 200 0.3186 0.2405
n = 500 0.2092 0.1467
n = 1000 0.1623 0.1155

Table 3: Median Distances for Flat Conditional Mean
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