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This supplementary appendix contains auxiliary results and proofs for the main paper.

Section A contains a proof of Theorem 3.1 in the case where ℓ = dY = 1, which contains the

main technical ideas of the general result, but requires less notation. Section B proposes an

alternative way of obtaining critical values using the asymptotic distribution results in this

paper. Section C contains proofs of the results from the main text and from Section B.

A Proof of Theorem 3.1 with a Single Contact Point

This section presents a proof of Theorem 3.1 in the special case where the conditional mean

is minimized at a single point (ℓ = 1, so that X0 = {x1}) and the dimension of m(Wi, θ)

(dY ) is equal to one. Note that the dimension of Xi (dX) is still allowed to be greater than

one. This case contains the main technical aspects of the general proof, while requiring

less notation. Section C.1 gives a proof in the general case. To focus on the main ideas,

the proofs of some of the lemmas used in this section are omitted, with a reference to the

correspinding lemma in Section C.1.

For notational convenience, let Yi = m(Wi, θ) and d = dX throughout this section. Since

dY = ℓ = 1, we will always have j = k = 1 when referring to GP,xk,j and other quantities

indexed by k and j, so I drop these subscripts and use the notation GP (s, t) rather than

GP,x1,1(s, t), etc.

The asymptotic distribution comes from the behavior of the objective function EnYiI(s <

Xi < s + t) for s near x1 and t near 0. The bulk of the proof involves showing that the

objective function doesn’t matter for (s, t) outside of a neighborhood of x1 that shrinks at a

fast enough rate. First, I derive the limiting distribution over such shrinking neighborhoods

and the rate at which they shrink.
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Theorem A.1. Let hn = n−α for some 0 < α < 1/d. Let

Gn(s, t) =

√
n

h
d/2
n

(En − E)YiI(hns < Xi − x1 < hn(s+ t))

and

gn(s, t) =
1

hd+2
n

EYiI(hns < Xi − x1 < hn(s+ t)).

Then, for any finite M , Gn(s, t)
d→ GP (s, t) taken as a random process on ‖(s, t)‖ ≤ M

with the supremum norm and gn(s, t) → gP (s, t) uniformly in ‖(s, t)‖ ≤M where GP (s, t) =

GP,x1,1(s, t) and gP (s, t) = gP,x1,1(s, t) are defined as in Theorem 3.1 for m from 1 to ℓ.

Proof. The convergence in distribution in the first statement follows from verifying the con-

ditions of Theorem 2.11.22 in van der Vaart and Wellner (1996). To derive the covariance

kernel, note that

cov(Gn(s, t),Gn(s
′, t′))

= h−dn EY 2
i I {hn(s ∨ s′) < X − x1 < hn [(s+ t) ∧ (s′ + t′)]}

− h−dn {EYiI [hns < X − x1 < hn(s+ t)]} {EY ′
i I [hns

′ < X − x1 < hn(s
′ + t′)]} .

The second term goes to zero as n→ ∞. The first is equal to the claimed covariance kernel

plus the error term

h−dn

∫

hn(s∨s′)<x−x1<hn[(s+t)∧(s′+t′)]

[

E(Y 2
i |X = x)fX(x)− E(Y 2

i |X = x1)fX(x1)
]

dx,

which is bounded by

{

max
‖x−x1‖≤2hnM

[

E(Y 2
i |X = x)fX(x)− E(Y 2

i |X = x1)fX(x1)
]

}

× h−dn

∫

hn(s∨s′)<x−x1<hn[(s+t)∧(s′+t′)]

dx

=

{

max
‖x−x1‖≤2hnM

[

E(Y 2
i |X = x)fX(x)− E(Y 2

i |X = x1)fX(x1)
]

}

×
∫

(s∨s′)<x−x1<(s+t)∧(s′+t′)

dx.
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This goes to zero as n→ ∞ by continuity of E(Y 2
i |X = x) and fX(x).

For the claim regarding gn(s, t), first note that the assumptions imply that the first

derivative of x 7→ E(Yi|X = x) at x = x1 is 0, and that this function has a second order

Taylor expansion:

E(Yi|X = x) =
1

2
(x− x1)

′V (x1)(x− x1) +Rn(x)

where

Rn(x) =
1

2
(x− x1)

′V (x∗(x))(x− x1)−
1

2
(x− x1)

′V (x1)(x− x1)

and V (x∗) is the second derivative matrix evaluated at some x∗(x) between x1 and x.

We have

gn(s, t) =
1

2hd+2
n

∫

hns<x−x1<hn(s+t)

(x− x1)
′V (x1)(x− x1)fX(x1) dx

+
1

2hd+2
n

∫

hns<x−x1<hn(s+t)

(x− x1)
′V (x1)(x− x1)[fX(x)− fX(x1)] dx

+
1

hd+2
n

∫

hns<x−x1<hn(s+t)

Rn(x)fX(x) dx.

The first term is equal to gP (s, t) by a change of variable x to hnx+ x1 in the integral. The

second term is bounded by gP (s, t) sup‖x−x1‖≤2hnM [fX(x) − fX(x1)]/fX(x1), which goes to

zero uniformly in ‖(s, t)‖ ≤ M by continuity of fX . The third term is equal to (using the

same change of variables)

1

2

∫

s<x<s+t

[x′V (x∗(hnx+ x1))x− x′V (x1)x]fX(hnx+ x1) dx.

This is bounded by a constant times sup‖x‖≤M |x′V (x∗(hnx+ x1))x− x′V (x1)x|, which goes

to zero as n→ ∞ by continuity of the second derivatives.

Thus, if we let hn be such that
√
n/h

d/2
n = 1/hd+2

n ⇐⇒ hn = n−1/(d+4) and scale up by
√
n/h

d/2
n = 1/hd+2

n = n(d+2)/(d+4), we will have

n(d+2)/(d+4)EnYiI(hns < X − x1 < hn(s+ t)) = Gn(s, t) + gn(s, t)
d→ GP (s, t) + gP (s, t)

taken as stochastic processes in {‖(s, t)‖ ≤M} with the supremum norm. From now on, let
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hn = n−1/(d+4) so that this will hold.

We would like to show that the infimum of Gn(s, t) process over all of R2d converges

to the infimum of the limiting process over all of R2d, but this does not follow immediately

since we only have uniform convergence on compact sets. Another way of thinking about this

problem is that convergence in distribution in {‖(s, t)‖ ≤ M} with the supremum norm for

any M implies convergence in distribution in R
2d with the topology of uniform convergence

on compact sets (see Kim and Pollard, 1990), but the infimum over all of R
2d is not a

continuous mapping on this space since uniform convergence on all compact sets does not

imply convergence of the infimum over all of R2d. To get the desired result, the following

lemma will be useful. The idea is to show that values of (s, t) far away from zero won’t

matter for the limiting distribution, and then use convergence for fixed compact sets.

Lemma A.1. Let Hn and HP be random functions from R
d to R such that, (i) for all M ,

Hn
d→ HP when Hn and HP are taken as random processes on {t ∈ R

d|‖t‖ ≤ M} with the

supremum norm, (ii) for all r < 0, ε > 0, there exists anM such that P
(

inf‖t‖>M HP (t) ≤ r
)

<

ε and an N such that P
(

inf‖t‖>M Hn(t) ≤ r
)

< ε for all n ≥ N and (iii) inftHn(t) ≤ 0 and

inftHP (t) ≤ 0 with probability one. Then inft∈Rd Hn(t)
d→ inft∈Rd HP (t).

Proof. It suffices to show that for all r ∈ R, lim infn P (inft∈Rd Hn(t) < r) ≥ P (inft∈Rd HP (t) < r)

and lim supn P (inft∈Rd Hn(t) ≤ r) ≤ P (inft∈Rd HP (t) ≤ r) since, arguing along the lines of

the Portmanteau Lemma, when r is a continuity point of the limiting distribution, we will

have

P

(

inf
t∈Rd

HP (t) ≤ r

)

= P

(

inf
t∈Rd

HP (t) < r

)

≤ lim inf
n

P

(

inf
t∈Rd

Hn(t) < r

)

≤ lim inf
n

P

(

inf
t∈Rd

Hn(t) ≤ r

)

≤ lim sup
n

P

(

inf
t∈Rd

Hn(t) ≤ r

)

≤ P

(

inf
t∈Rd

HP (t) ≤ r

)

.

Given ε > 0, letM andN be as in the assumptions of the lemma. Then P
(

inf‖t‖≤M HP (t) < r
)

+

ε ≥ P (inft∈Rd HP (t) < r) and, for n ≥ N , P
(

inf‖t‖≤M Hn(t) ≤ r
)

+ε ≥ P (inft∈R Hn(t) ≤ r).

Thus, by convergence in distribution of the infima over ‖t‖ ≤M ,

lim inf
n

P

(

inf
t∈Rd

Hn(t) < r

)

≥ lim inf
n

P

(

inf
‖t‖≤M

Hn(t) < r

)

≥ P

(

inf
‖t‖≤M

HP (t) < r

)

≥ P

(

inf
t∈Rd

HP (t) < r

)

− ε
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and

lim sup
n

P

(

inf
t∈Rd

Hn(t) ≤ r

)

≤ lim sup
n

P

(

inf
‖t‖≤M

Hn(t) ≤ r

)

+ ε

≤ P

(

inf
‖t‖≤M

HP (t) ≤ r

)

+ ε ≤ P

(

inf
t∈Rd

HP (t) ≤ r

)

+ ε.

Since ε was arbitrary, this gives the desired result.

Part (i) of Lemma A.1 follows from Theorem A.1. Part (iii) follows since the processes

involved are equal to zero when t = 0. The main difficulty is in verifying part (ii).

The next two lemmas provide bounds that will be used to verify condition (ii) of Lemma

A.1 for Gn(s, t) + gn(s, t) and GP (s, t) + gP (s, t). To do this, the bounds in the lemmas

are applied to sequences of sets of (s, t) where the norm of elements in the set increases

with the sequence. The idea is similar to the “peeling” argument of, for example, Kim and

Pollard (1990), but different arguments are required to deal with values of (s, t) for which,

even though ‖s‖ is large,
∏

i ti is small so that the objective function on average uses only a

few observations, which may happen to be negative. To get bounds on the suprema of the

limiting and finite sample processes where t may be small relative to s, the next two lemmas

bound the supremum by a maximum over s in a finite grid of suprema over t with s fixed,

and then use exponential bounds on suprema of the processes with fixed s.

Since some of the conditions only hold for Xi in a neighborhood of x1 (e.g. conditions on

the density of Xi), a different argument is used for Gn(s, t) + gn(s, t) where ‖(s, t)‖ ≤ η/hn

(which correspond to EnYiI(s < Xi < s + t) with ‖(s − x1, t)‖ ≤ η) and Gn(s, t) + gn(s, t)

with ‖(s, t)‖ > η/hn. The proof for the (ℓ = dY = 1) case given in this section focuses on

the former part of the argument (where ‖(s, t)‖ ≤ η/hn), with the results used for the latter

case (where ‖(s, t)‖ > η/hn) stated here, but proved in Section C.1.

Lemma A.2. For some C > 0 that depends only on d, fX(x1) and E(Y
2
i |X = x1), we have,

for any B ≥ 1, ε > 0, w > 0,

P

(

sup
‖(s,t)‖≤B,

∏
i ti≤ε

|GP (s, t)| ≥ w

)

≤ 2
{

3B[Bd/(ε ∧ 1)] + 2
}2d

exp

(

−Cw
2

ε

)

for w2

ε
greater than some constant that depends only on d, fX(xm) and E(Y

2
i,j|X = xm).
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Proof. We have, for any s0 ≤ s ≤ s+ t ≤ s0 + t0,

GP (s, t) = GP (s0, t+ s− s0)

+
∑

1≤j≤d

(−1)j
∑

1≤i1<i2<...<ij≤d

GP (s0, (t1 + s1 − s0,1, . . . , ti1−1 + si1−1 − s0,i1−1, si1 − s0,i1 , ti1+1 + si1+1 − s0,i1+1,

. . . , tij−1 + sij−1 − s0,ij−1, sij − s0,ij , tij+1 + sij+1 − s0,ij+1, . . . , td + sd − s0,d)).

Thus, since there are 2d terms in the above display, each with absolute value bounded by

supt≤t0 |GP (s0, t)|,

sup
s0≤s≤s+t≤s0+t0

|GP (s, t)| ≤ 2d sup
t≤t0

|GP (s0, t)| d
= 2d sup

t≤t0

|GP (0, t)|.

Let A be a grid of meshwidth (ε∧1)/Bd covering [−B, 2B]d. For any (s, t) with ‖(s, t)‖ ≤
B and

∏

i ti ≤ ε, there are s0 and t0 with s0, s0 + t0 ∈ A such that s0 ≤ s ≤ s+ t ≤ s0 + t0,

and
∏

i t0,i ≤
∏

i(ti + (ε ∧ 1)/Bd) =
∑d

j=0[(ε ∧ 1)/Bd]j
∑

I∈{1,...,d},|I|=d−j

∏

i∈I ti ≤
∏

i ti +
∑d

j=1[(ε ∧ 1)/Bd]j
(

d
d−j

)

Bd−j ≤ ε+ ε
∑d

j=1B
−dj
(

d
d−j

)

Bd−j ≤ 2dε. For this s0, t0, we will then

have, by the above display, |GP (s, t)| ≤ 2d supt≤t0 |GP (s0, t)|.
This gives

sup
‖(s,t)‖≤B,

∏
i ti≤ε

|GP (s, t)| ≤ 2d max
s0,s0+t0∈A,

∏
i t0,i≤2dε

sup
t≤t0

|GP (s0, t)|,

so that

P

(

sup
‖(s,t)‖≤B,

∏
i ti≤ε

|GP (s, t)| ≥ w

)

≤ |A|2 max
s0,s0+t0∈A,

∏
i t0,i≤2dε

P

(

2d sup
t≤t0

|GP (s0, t)| ≥ w

)

= |A|2 max
s0,s0+t0∈A,

∏
i t0,i≤2dε

P



2d sup
t≤1

(

∏

i

t0,i

)1/2

|GP (0, t)| ≥ w





≤ |A|2P
(

sup
t≤1

|GP (0, t)| ≥
w

2d2d/2ε1/2

)

.

The result then follows using the fact that |A| ≤
{

3B[Bd/(ε ∧ 1)] + 2
}d

and using Theorem

2.1 (p.43) in Adler (1990) to bound the probability in the last line of the display (the

theorem in Adler (1990) shows that the probability in the above display is bounded by

2 exp(−K1w
2/ε+K2w/ε

1/2+K3) for some constantsK1,K2, andK3 withK1 > 0 that depend
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only on d, fX(xm) and E(Y
2
i,j|X = xm) and this expression is less than 2 exp(−(K1/2)w

2/ε)

for w2/ε greater than some constant that depends only on K1, K2, and K3).

Lemma A.3. For some C > 0 that depends only on the distribution of (X, Y ) and some

η > 0, we have, for any 1 ≤ B ≤ h−1
n η, w > 0 and ε ≥ n−4/(d+4)(1 + log n)2,

P

(

sup
‖(s,t)‖≤B,

∏
i ti≤ε

|Gn(s, t)| ≥ w

)

≤ 2
{

3B[Bd/(ε ∧ 1)] + 2
}2d

exp
(

−C w

ε1/2

)

.

Proof. By the same argument as in the previous lemma with G replaced by Gn, we have

sup
s0≤s≤s+t≤s0+t0

|Gn(s, t)| ≤ 2d sup
t≤t0

|Gn(s0, t)|.

As in the previous lemma, let A be a grid of meshwidth (ε ∧ 1)/Bd covering [−B, 2B]d.

Arguing as in the previous lemma, we have, for any (s, t) with ‖(s, t)‖ ≤ B and
∏

i ti ≤
ε, there exists some s0, t0 with s0, s0 + t0 ∈ A such that Πit0,i ≤ 2dε and |Gn(s, t)| ≤
2d supt≤t0 |Gn(s0, t)|. Thus,

sup
‖(s,t)‖≤B,

∏
i ti≤ε

|Gn(s, t)| ≤ 2d max
s0,s0+t0∈A,

∏
i t0,i≤2dε

sup
t≤t0

|Gn(s0, t)|

= 2d max
s0,s0+t0∈A,

∏
i t0,i≤2dε

sup
t≤t0

√
n

h
d/2
n

|(En − E)Yi,jI(hns0 ≤ Xi − xm ≤ hn(s0 + t))|.

This gives

P

(

sup
‖(s,t)‖≤B,

∏
i ti≤2dε

|Gn(s, t)| ≥ w

)

≤ |A|2 max
s0,s0+t0∈A,

∏
i t0,i≤2dε

P

(

2d sup
t≤t0

√
n

h
d/2
n

|(En − E)Yi,jI(hns0 ≤ Xi − xm ≤ hn(s0 + t))| ≥ w

)

.

We have, for some universal constant K and all n with ε ≥ n−4/(d+4)(1 + log n)2, letting

Fn = {(x, y) 7→ yI(hns0 ≤ x−xm ≤ hn(s0+ t))|t ≤ t0} and defining ‖ · ‖P,ψ1 to be the Orlicz
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norm defined on p.90 of van der Vaart and Wellner (1996) for ψ1(x) = exp(x)− 1,

‖2d sup
f∈Fn

|√n(En − E)f(Xi, Yi)|‖P,ψ1

≤ K

[

E sup
f∈Fn

|√n(En − E)f(Xi, Yi)|+ n−1/2(1 + log n)‖|Yi|I(hns0 ≤ Xi − x1 ≤ hn(s0 + t0))‖P,ψ1

]

≤ K
[

J(1,Fn, L
2)
{

E[|Yi|I(hns0 < Xi − x1 < hn(s0 + t0))]
2
}1/2

+ n−1/2(1 + log n)‖Y ‖P,ψ1

]

≤ K
[

J(1,Fn, L
2)f

1/2
Y hd/2n 2d/2ε1/2 + n−1/2(1 + log n)‖Yi‖P,ψ1

]

≤ K
[

J(1,Fn, L
2)f

1/2
Y 2d/2 + ‖Yi‖P,ψ1

]

hd/2n ε1/2.

The first inequality follows by Theorem 2.14.5 in van der Vaart and Wellner (1996). The

second uses Theorem 2.14.1 in van der Vaart and Wellner (1996). The fourth inequality uses

the fact that h
d/2
n ε1/2 = n−d/[2(d+4)]ε1/2 ≥ n−1/2(1 + log n) once ε1/2 ≥ n−1/2+d/[2(d+4)](1 +

log n) = n−2/(d+4)(1 + log n). Since each Fn is contained in the larger class F ≡ {(x, y) 7→
yjI(s < x− x1 < s+ t)|(s, t) ∈ R

2d}, we can replace Fn by F on the last line of this display.

Since J(1,F , L2) and ‖Yi‖ψ1 are finite (F is a VC class and Yi is bounded), the bound is

equal to C−1ε1/2h
d/2
n for a constant C that depends only on the distribution of (Xi, Yi).

This bound along with Lemma 8.1 in Kosorok (2008) implies

P

(

2d sup
t≤t0

√
n

h
d/2
n

|(En − E)YiI(hns0 ≤ Xi − x1 ≤ hn(s0 + t))| ≥ w

)

= P

(

2d sup
f∈Fn

|√n(En − E)f(Xi, Yi)| ≥ whd/2n

)

≤ 2 exp

(

− wh
d/2
n

‖2d supf∈Fn
|√n(En − E)f(Xi, Yi)|‖P,ψ1

)

≤ 2 exp

(

− wh
d/2
n

C−1h
d/2
n ε1/2

)

= 2 exp
(

−Cw/ε1/2
)

.

The result follows using this and the fact that |A| ≤
{

3B[Bd/(ε ∧ 1)] + 2
}d
.

The following theorem verifies the part of condition (ii) of Lemma A.1 concerning the

limiting process GP (s, t) + gP (s, t).
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Theorem A.2. For any r < 0, ε > 0 there exists an M such that

P

(

inf
‖(s,t)‖>M

GP (s, t) + gP (s, t) ≤ r

)

< ε.

Proof. Let Sk = {k ≤ ‖(s, t)‖ ≤ k+1} and let SLk = Sk ∩ {∏i ti ≤ (k+1)−δ} for some fixed

δ. By Lemma A.2,

P

(

inf
SL
k

GP (s, t) + gP (s, t) ≤ r

)

≤ P

(

sup
SL
k

|GP (s, t)| ≥ |r|
)

≤ 2
{

3(k + 1)[(k + 1)d/k−δ] + 2
}2d

exp
(

−Cr2(k + 1)δ
)

for k large enough where C depends only on d. This bound is summable over k.

For any α and β with α < β, let Sα,βk = Sk ∩ {(k+1)α <
∏

i ti ≤ (k+1)β}. We have, for

some C1 > 0 that depends only on d and V (x1), g(s, t) ≥ C1‖(s, t)‖2
∏

i ti. (To see this, note

that g(s, t) is greater than or equal to a constant times
∫ s1+t1
s1

· · ·
∫ sd+td
sd

‖x‖2dxd · · · dx1 =
(

Πd
i=1ti

)
∑d

i=1(s
2
i + t2i /3 + siti), and the sum can be bounded below by a constant times

‖(s, t)‖2 by minimizing over si for fixed ti using calculus. The claimed expression for the

integral follows from evaluating the inner integral to get an expression involving the integral

for d− 1, and then using induction.) Using this and Lemma A.2,

P

(

inf
Sα,β
k

GP (s, t) + gP (s, t) ≤ r

)

≤ P

(

sup
Sα,β
k

|GP (s, t)| ≥ C1k
2+α

)

≤ 2
{

3(k + 1)[(k + 1)d/((k + 1)β ∧ 1)] + 2
}2d

exp

(

−CC2
1

k4+2α

(k + 1)β

)

.

This is summable over k if 4 + 2α− β > 0.

Now, note that, since
∏

i ti ≤ (k + 1)d on Sk, we have, for any −δ < α1 < α2 < . . . <

αℓ−1 < αℓ = d, Sk = SLk ∪ S−δ,α1

k ∪ Sα1,α2

k ∪ . . . ∪ S
αℓ−1,αℓ

k . If we choose δ < 3/2 and

αi = i for i ∈ {1, . . . , d}, the arguments above will show that the probability of the infimum

being less than or equal to r over SLk , S
−δ,α1

k and each S
αi,αi+1

k is summable over k, so that

P (infSk
G(s, t) + g(s, t) ≤ r) is summable over k, so setting M so that the tail of this sum

past M is less than ε gives the desired result.

The following theorem verifies condition (ii) of Lemma A.1 for the sequence of finite

sample processes Gn(s, t)+gn(s, t) with η/hn ≥ ‖(s, t)‖. As explained above, the case where

η/hn ≤ ‖(s, t)‖ is handled by a separate argument.
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Theorem A.3. There exists an η > 0 such that for any r < 0, ε > 0, there exists an M

and N such that, for all n ≥ N ,

P

(

inf
M<‖(s,t)‖≤η/hn

Gn(s, t) + gn(s, t) ≤ r

)

< ε.

Proof. Let η be small enough that the assumptions hold for ‖x − xm‖ ≤ 2η and that, for

some constant C2, E(Yi|Xi = x) ≥ C2‖x − x1‖2 for ‖x − x1‖ ≤ 2η. This implies that, for

‖(s, t)‖ ≤ h−1
n η,

gn(s, t) ≥
C2

hd+2
n

∫

hns<x−x1<hn(s+t)

‖x− x1‖2fX(x) dx

≥
C2f

hd+2
n

∫

hns<x−x1<hn(s+t)

‖x− x1‖2 dx = C2f

∫

s<x<s+t

‖x‖2 dxd · · · dx1 ≥ C3‖(s, t)‖2
∏

i

ti

where C3 is a constant that depends only on f and d and the last inequality follows from

bounding the integral as explained in the proof of the previous theorem.

As in the proof of the previous theorem, let Sk = {k ≤ ‖(s, t)‖ ≤ k + 1} and let

SLk = Sk ∩ {∏i ti ≤ (k + 1)−δ} for some fixed δ. We have, using Lemma C.3,

P

(

inf
SL
k

Gn(s, t) + gn(s, t) ≤ r

)

≤ P

(

sup
SL
k

|Gn(s, t)| ≥ |r|
)

≤ 2
{

3(k + 1)[(k + 1)d/k−δ] + 2
}2d

exp

(

−C |r|
(k + 1)−δ/2

)

for (k + 1)−δ ≥ n−4/(d+4)(1 + log n)2 ⇐⇒ k + 1 ≤ n4/[δ(d+4)](1 + log n)−2/δ so, if δ < 4, this

will hold eventually for all (k + 1) ≤ h−1
n η (once h−1

n η ≤ n4/[δ(d+4)](1 + log n)−2/δ ⇐⇒ η ≤
n(4/δ−1)/(d+4)(1 + log n)−2/δ). The bound is summable over k for any δ > 0.

Again following the proof of the previous theorem, for α < β, define Sα,βk = Sk ∩ {(k +
1)α <

∏

i ti ≤ (k + 1)β}. We have, again using Lemma C.3,

P

(

inf
Sα,β
k

Gn(s, t) + gn(s, t) ≤ r

)

≤ P

(

sup
Sα,β
k

|Gn(s, t)| ≥ C3k
2+α

)

≤ 2
{

3(k + 1)[(k + 1)d/(kα ∧ 1)] + 2
}2d

exp

(

−C C3k
2+α

(k + 1)β/2

)

for (k + 1)β ≥ n−4/(d+4) (which will hold once the same inequality holds for δ for −δ < β)
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and k + 1 ≤ h−1
n η. The bound is summable over k for any α, β with 4 + 2α− β > 0.

Thus, noting as in the previous theorem that, for any −δ < α1 < α2 < . . . < αℓ−1 < αℓ =

d, Sk = SLk ∪S−δ,α1

k ∪Sα1,α2

k ∪ . . .∪Sαℓ−1,αℓ

k , if we choose δ < 3/2 and αi = i for i ∈ {1, . . . , d}
the probability of the infimum being less than or equal to r over the sets indexed by k

for any k ≤ h−1
n η is bounded uniformly in n by a sequence that is summable over k (once

η ≤ n(4/δ−1)/(d+4)(1 + log n)−2/δ). Thus, if we choose M such that the tail of this sum past

M is less than ε and let N be large enough so that η ≤ N (4/δ−1)/(d+4)(1+ logN)−2/δ, we will

have the desired result.

To complete the proof, we need to show that

inf
‖(s,t)‖≥ηh−1

n

Gn(s, t) + gn(s, t) = n(dX+2)/(dX+4) inf
‖(s−x1,t)‖≥η

EnYiI(s < Xi < s+ t)
p→ 0.

Since some of the conditions of the theorem may not hold for x outside of a neighborhood

of x1 (e.g. Xi having a density bounded away from zero and infinity), we need a slightly

different argument to show this. The result follows from the following lemmas, which are

proved in the proof of the general result in Section C.1.

Lemma A.4. Under Assumptions 3.1 and 3.2, for any η > 0, there exists some B > 0 such

that EYiI(s < Xi < s+ t) ≥ BP (s < Xi < s+ t) for all (s, t) with ‖(s− x0, t)‖ > η.

Proof. See Lemma C.4 in Section C.1.

Lemma A.5. Let S be any set in R
2d such that, for some µ > 0 and all (s, t) ∈ S, EYiI(s <

Xi < s+ t) ≥ µP (s < Xi < s+ t). Then, under Assumption 3.2, for any sequence an → ∞
and r < 0,

inf
(s,t)∈S

n

an log n
EnYi,jI(s < Xi < s+ t) > r

with probability approaching 1.

Proof. See Lemma C.5 in Section C.1.

By Lemma A.4, {(s, t)|‖(s − x1, t)‖ > η} satisfies the conditions of Lemma A.5, so

EnYi,jI(s < Xi < s+ t) converges to zero at a n/(an log n) rate for any an → ∞, which can

be made faster than the n(d+2)/(d+4) rate needed for the result. This completes the proof of

Theorem 3.1 for the ℓ = dY = 1 case.
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B Alternative Method for Estimation of the Asymp-

totic Distribution

This section of the appendix describes a method for estimating the asymptotic distribution

by estimating the unknown quantities that determine the distribution. This method can be

used as an alternative to the subsampling based method described in the main text. Section

B.1 shows how the asymptotic distribution can be estimated when Assumption 3.1 is known

to hold, with known contact points {x1, . . . , xℓ}. Section B.2 embeds this estimate in a

procedure with a pre-test for Assumption 3.1 and estimation of the contact points. Proofs

are given in Section C.6.

B.1 Estimation of the Asymptotic Distribution Under Assump-

tion 3.1

As an alternative to subsampling based estimates, note that the asymptotic distribution in

Theorem 3.1 depends on the underlying distribution only through the set X0 and, for points

xk in X0, the density fX(xk), the conditional second moment matrix E(mJ(k)(Wi, θ)mJ(k)(Wi, θ)
′|X =

xk), and the second derivative matrix V (xk) of the conditional mean. Thus, with consistent

estimates of these objects, we can estimate the distribution in Theorem 3.1 by replacing these

objects with their consistent estimates and simulating from the corresponding distribution.

In order to accommodate different methods of estimating fX(xk), E(mJ(k)(Wi, θ)mJ(k)(Wi, θ)
′|X =

xk), and V (xk), I state the consistency of these estimators as a high level condition, and show

that the procedure works as long as these estimators are consistent. Since these objects only

appear as E(mJ(k)(Wi, θ)mJ(k)(Wi, θ)
′|X = xk)fX(x0) and fX(xk)V (xk) in the asymptotic

distribution, we actually only need consistent estimates of these objects.

Assumption B.1. The estimates M̂k(xk), f̂X(xk), and V̂ (xk) satisfy f̂X(xk)V̂ (xk)
p→ fX(xk)V (xk)

and M̂k(xk)f̂X(xk)
p→ E(mJ(k)(Wi, θ)mJ(k)(Wi, θ)

′|X = xk)fX(xk).

For k from 1 to ℓ, let ĜP,xk(s, t) and ĝP,xk(s, t) be the random process and mean function

defined in the same way as GP,xk(s, t) and gP,xk(s, t), but with the estimated quantities

replacing the true quantities. We estimate the distribution of Z defined to have jth element

Zj = min
m s.t. j∈J(k)

inf
(s,t)∈R2d

GP,xk,j(s, t) + gP,xk,j(s, t)

56



using the distribution of Ẑ defined to have jth element

Ẑj = min
k s.t. j∈J(k)

inf
‖(s,t)‖≤Bn

ĜP,xk,j(s, t) + ĝP,xk,j(s, t)

for some sequence Bn going to infinity. The convergence of the distribution Ẑ to the dis-

tribution of Z is in the sense of conditional weak convergence in probability often used in

proofs of the validity of the bootstrap (see, for example, Lehmann and Romano, 2005).

From this, it follows that tests that replace the quantiles of S(Z) with the quantiles of S(Ẑ)

are asymptotically exact under the conditions that guarantee the continuity of the limiting

distribution.

Theorem B.1. Under Assumption B.1, ρ(Ẑ, Z)
p→ 0 where ρ is any metric on probability

distributions that metrizes weak convergence.

Corollary B.1. Let q̂1−α be the 1−α quantile of S(Ẑ). Then, under Assumptions 3.1, 3.2,

3.3, 4.1, 4.2, and B.1, the test that rejects when n(dX+2)/(dX+4)S(Tn(θ)) > q̂1−α and fails to

reject otherwise is an asymptotically exact level α test.

If the set X0 is known, the quantities needed to compute Ẑ can be estimated consistently

using standard methods for nonparametric estimation of densities, conditional moments,

and their derivatives. However, typically X0 is not known, and the researcher will not

even want to impose that this set is finite. In Section B.2, I propose methods for testing

Assumption 3.1 and estimating the set X0 under weaker conditions on the smoothness of the

conditional mean. These conditions allow for both the n(dX+2)/(dX+4) asymptotics that arise

from Assumption 3.1 and the
√
n asymptotics that arise from a positive probability contact

set.

B.2 Pretest and Estimation with Unknown Contact Points

I make the following assumptions on the conditional mean and the distribution of Xi. These

conditions are used to estimate the second derivatives of m̄(θ, x) = E(mj(Wi, θ)|Xi = x),

and the results are stated for local polynomial estimates. The conditions and results here

are from Ichimura and Todd (2007). Other nonparametric estimators of conditional means

and their derivatives and conditions for uniform convergence of such estimators could be

used instead. The results in this section related to testing Assumption 3.1 are stated for

mj(Wi, θ) for a fixed index j. The consistency of a procedure that combines these tests for

each j then follows from the consistency of the test for each j.
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Assumption B.2. The third derivatives of m̄j(θ, x) with respect to x are Lipschitz contin-

uous and uniformly bounded.

Assumption B.3. Xi has a uniformly continuous density fX such that, for some compact

set D ∈ R
d, infx∈D fX(x) > 0, and E(mj(Wi, θ)|Xi) is bounded away from zero outside of

D.

Assumption B.4. The conditional density of Xi given mj(Wi, θ) exists and is uniformly

bounded.

Note that Assumption B.4 is on the density of Xi given mj(Wi, θ), and not the other way

around, so that, for example, count data for the dependent variable in an interval regression

is okay.

Let X j
0 be the set of minimizers of m̄j(θ, x) if this function is less than or equal to 0 for

some x and the empty set otherwise. In order to test Assumption 3.1, I first note that, if the

conditional mean is smooth, the positive definiteness of the second derivative matrix on the

contact set will imply that the contact set is finite. This reduces the problem to determining

whether the second derivative matrix is positive definite on the set of minimizers of m̄j(θ, x),

a problem similar to testing local identification conditions in nonlinear models (see Wright,

2003). I record this observation in the following lemma.

Lemma B.1. Under Assumptions B.2 and B.3, if the second derivative matrix of E(mj(Wi, θ)|Xi =

x) is strictly positive definite on X j
0 , then X j

0 must be finite.

According to Lemma B.1, once we know that the second derivative matrix of E(mj(Wi, θ)|Xi)

is positive definite on the set of minimizers E(mj(Wi, θ)|Xi), the conditions of Theorem 3.1

will hold. This reduces the problem to testing the conditions of the lemma. One simple way

of doing this is to take a preliminary estimate of X j
0 that contains this set with probability

approaching one, and then test whether the second derivative matrix of E(mj(Wi, θ)|Xi) is

positive definite on this set. In what follows, I describe an approach based on local poly-

nomial regression estimates of the conditional mean and its second derivatives, but other

methods of estimating the conditional mean would work under appropriate conditions. The

methods require knowledge of a set D satisfying Assumption B.3. This set could be chosen

with another preliminary test, an extension which I do not pursue.

Under the conditions above, we can estimate m̄j(θ, x) and its derivatives at a given point

x with a local second order polynomial regression estimator defined as follows. For a kernel

function K and a bandwidth parameter h, run a regression of mj(Wi, θ) on a second order
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polynomial of Xi, weighted by the distance of Xi from x by K((X−x)/h). That is, for each

j and any x, define ˆ̄mj(θ, x), β̂j(x), and V̂j(x) to be the values of m, β, and V that minimize

En

{

[

mj(Wi, θ)−
(

m+ (Xi − x)′β +
1

2
(Xi − x)′V (Xi − x)

)]2

×K((Xi − x)/h)

}

.

The pre-test uses ˆ̄mj(θ, x) as an estimate of m̄j(θ, x) and V̂j(x) as an estimate of Vj(x).

The following theorem, taken from Ichimura and Todd (2007, Theorem 4.1), gives rates

of convergence for these estimates of the conditional mean and its second derivatives that

will be used to estimate X j
0 and Vj(x) as described above. The theorem uses an additional

assumption on the kernel K.

Assumption B.5. The kernel function K is bounded, has compact support, and satisfies,

for some C and for any 0 ≤ j1 + · · ·+ jr ≤ 5, |uj11 · · · ujrr K(u)− vj11 · · · vjrr K(v)| ≤ C‖u− v‖.

Theorem B.2. Under iid data and Assumptions 3.2, B.2, B.3, B.4, and B.5,

sup
x∈D

∣

∣

∣
V̂j,rs(x)− Vj,rs(x)

∣

∣

∣
= Op((log n/(nh

dX+4))1/2) +Op(h)

for all r and s, where Vj,rs is the r, s element of Vj, and

sup
x∈D

∣

∣ ˆ̄mj(θ, x)− m̄j(θ, x)
∣

∣ = Op((log n/(nh
dX ))1/2) +Op(h

3).

For both the conditional mean and the derivative, the first term in the asymptotic order

of convergence is the variance term and the second is the bias term. The optimal choice of

h sets both of these to be the same order, and is hn = (log n/n)1/(dX+6) in both cases. This

gives a (log n/n)1/(dX+6) rate of convergence for the second derivative, and a (log n/n)3/(dX+6)

rate of convergence for the conditional mean. However, any choice of h such that both terms

go to zero can be used.

In order to test the conditions of Lemma B.1, we can use the following procedure. For

some sequence an growing to infinity such that an[(log n/(nh
dX ))1/2 ∨ h3] converges to zero,

let X̂ j
0 = {x ∈ D| ˆ̄mj(θ, x)−(infx′∈D ˆ̄mj(θ, x

′)∧0)| ≤ [an(log n/(nh
dX ))1/2∨h3]}. By Theorem

B.2, X̂ j
0 will contain X j

0 with probability approaching one. Thus, if we can determine that

Vj(x) is positive definite on X̂ j
0 , then, asymptotically, we will know that Vj(x) is positive

definite on X j
0 . Note that X̂ j

0 is an estimate of the set of minimizers of mj(x, θ) over x if

the moment inequality binds or fails to hold, and is eventually equal to the empty set if the

moment inequality is slack.
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Since the determinant is a differentiable map from R
d2X to R, theOp((log n/(nh

dX+4))1/2)+

Op(h) rate of uniform convergence for V̂j(x) translates to the same (or faster) rate of conver-

gence for det V̂j(x). If, for some x0 ∈ X j
0 , Vj(x0) is not positive definite, then Vj(x0) will be

singular (the second derivative matrix at an interior minimum must be positive semidefinite

if the second derivatives are continuous in a neighborhood of x0), and detVj(x0) will be zero.

Thus, infx∈X̂ j
0
det V̂j(x) ≤ det V̂j(x0) = Op((log n/(nh

dX+4))1/2)+Op(h) where the inequality

holds with probability approaching one. Thus, letting bn be any sequence going to infinity

such that bn[(log n/(nh
dX+4))1/2 ∨ h] converges to zero, if Vj(x0) is not positive definite for

some x0 ∈ X j
0 , we will have infx∈X̂ j

0
det V̂j(x) ≤ bn[(log n/(nh

dX+4))1/2 ∨ h] with probability

approaching one (actually, since we are only dealing with the point x0, we can use results

for pointwise convergence of the second derivative of the conditional mean, so the log n term

can be replaced by a constant, but I use the uniform convergence results for simplicity).

Now, suppose Vj(x) is positive definite for all x ∈ X j
0 . By Lemma B.1, we will have,

for some B > 0, detVj(x) ≥ B for all x ∈ X j
0 . By continuity of Vj(x), we will also have,

for some ε > 0, detVj(x) ≥ B/2 for all x ∈ X j
0

ε
where X j

0

ε
= {x| infx′∈X j

0
‖x − x′‖ ≤ ε}

is the ε-expansion of X j
0 . Since X̂ j

0 ⊆ X j
0

ε
with probability approaching one, we will also

have infx∈X̂ j
0
detVj(x) ≥ B/2 with probability approaching one. Since det V̂j(x) → detVj(x)

uniformly over D, we will then have infx∈X̂ j
0
det V̂j(x) ≥ bn[(log n/(nh

dX+4))1/2 ∨ h] with

probability approaching one.

This gives the following theorem.

Theorem B.3. Let V̂j(x) and ˆ̄mj(θ, x) be the local second order polynomial estimates defined

with some kernel K with h such that the rate of convergence terms in Theorem B.2 go to

zero. Let X̂ j
0 be defined as above with an[(log n/(nh

dX ))1/2 ∨ h3] going to zero and an going

to infinity, and let bn be any sequence going to infinity such that bn[(log n/(nh
dX+4))1/2 ∨ h]

goes to zero. Suppose that Assumptions 3.2, B.2, B.3, B.4, and B.5, hold, and the null

hypothesis holds with E(m(Wi, θ)m(Wi, θ)
′|Xi = x) continuous and the data are iid. Then,

if Assumption 3.1 holds, we will have infx∈X̂ j
0
det V̂j(x) > bn[(log n/(nh

dX+4))1/2 ∨ h] for

each j with probability approaching one. If Assumption 3.1 does not hold, we will have

infx∈X̂ j
0
det V̂j(x) ≤ bn[(log n/(nh

dX+4))1/2 ∨ h] for some j with probability approaching one.

The purpose of this test of Assumption 3.1 is as a preliminary consistent test in a pro-

cedure that uses the asymptotic approximation in Theorem 3.1 if the test finds evidence in

favor of Assumption 3.1, and uses the methods that are robust to different types of contact

sets, but possibly conservative, such as those described in Andrews and Shi (2013), otherwise.

It follows from Theorem B.3 that such a procedure will have the correct size asymptotically.
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Consider the following test. For some bn → ∞ and h → 0 satisfying the conditions

of Theorem B.3, perform a pre-test that finds evidence in favor of Assumption 3.1 iff.

infx∈X̂0
det V̂j(x) ≥ bn[(log n/(nh

dX+4))1/2 ∨ h] for each j. If X̂0 = ∅, do not reject the

null hypothesis that θ ∈ Θ0. If infx∈X̂0
det V̂j(x) > bn[(log n/(nh

dX+4))1/2 ∨ h] for each j,

reject the null hypothesis that θ ∈ Θ0 if n(dX+2)/(dX+4)S(Tn(θ)) > q̂1−α where q̂1−α is an

estimate of the 1− α quantile of the distribution of S(Z) formed using one of the methods

in Section 4 or Section B.1. If infx∈X̂0
det V̂j(x) ≤ bn[(log n/(nh

dX+4))1/2 ∨ h] for some j,

perform any (possibly conservative) asymptotically level α test.

In the statement of the following theorem, it is understood that Assumptions 4.1 and

B.1, which refer to objects in Assumption 3.1, do not need to hold if the data generating

process is such that Assumption 3.1 does not hold.

Theorem B.4. Suppose that Assumptions 3.2, 3.3, 4.1, 4.2, B.2, B.3, B.4, and B.5 hold,

E(m(Wi, θ)m(Wi, θ)
′|Xi = x) is continuous, and the data are iid. Then the test given above

provides an asymptotically level α test of θ ∈ Θ0 if the subsampling procedure is used or

if Assumption B.1 holds and the procedure based on estimating the asymptotic distribution

directly is used. If Assumption 3.1 holds, this test is asymptotically exact.

The estimates used for this pre-test can also be used to construct estimates of the quanti-

ties in Assumption B.1 that satisfy the consistency requirements of this assumption. Suppose

that we have estimates M̂(x), f̂X(x), and V̂ (x) of E(m(Wi, θ)m(Wi, θ)
′|X = x), fX(x), and

V (x) that are consistent uniformly over x in a neighborhood of X0. Then, if we have es-

timates of X0 and J(k), we can estimate the quantities in Assumption B.1 using M̂k(xk),

f̂X(xk), and V̂ (xk) for each xk in the estimate of X0, where M̂k(xk) is a sparse version of

M̂(xk) with elements with indices not in the estimate of J(k) set to zero.

The estimate X̂0 contains infinitely many points, so it will not work for this purpose.

Instead, define the estimate X̃0 of X0 and the estimate Ĵ(k) of J(k) as follows. Let an be as

in Theorem B.3, and let ε2n → 0 more slowly than an[(log n/(nh
dX ))1/2 ∨ h3]. Let ℓ̂j be the

smallest number such that X̂ j
0 ⊆ ∪ℓ̂jk=1Bεn(x̂j,k) for some x̂j,1, . . . , x̂j,ℓ̂j . Define an equivalence

relation ∼ on the set {(j, k)|1 ≤ j ≤ dY , 1 ≤ k ≤ ℓ̂j} by (j, k) ∼ (j′, k′) iff. there is a sequence

(j, k) = (j1, k1), (j2, k2), . . . , (jr, kr) = (j′, k′) such that Bεn(x̂js,ks) ∩ Bεn(x̂js+1,ks+1) 6= ∅ for s

from 1 to r − 1. Let ℓ̂ be the number of equivalence classes, and, for each equivalence class,

pick exactly one (j, k) in the equivalence class and let x̃r = x̂j,k for some r between 1 and ℓ̂.

Define the estimate of the set X0 to be X̃0 ≡ {x̃1, . . . , x̃ℓ̂}, and define the estimate Ĵ(r) for

r from 1 to ℓ̂ to be the set of indices j for which some (j, k) is in the same equivalence class

as x̃r.
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Although these estimates of X0, ℓ, and J(1), . . . , J(ℓ) require some cumbersome notation

to define, the intuition behind them is simple. Starting with the initial estimates X̂j, turn

these sets into discrete sets of points by taking the centers of balls that contain the sets X̂j

and converge at a slower rate. This gives estimates of the points at which the conditional

moment inequality indexed by j binds for each j, but to estimate the asymptotic distribution

in Theorem 3.1, we also need to determine which components, if any, of m̄(θ, x) bind at the

same value of x. The procedure described above does this by testing whether the balls used

to form the estimated contact points for each index of m̄(θ, x) intersect across indices.

The following theorem shows that this is a consistent estimate of the set X0 and the

indices of the binding moments.

Theorem B.5. Suppose that Assumptions 3.1, B.2, B.3, B.4, and B.5 hold. For the esti-

mates X̃0, ℓ̂ and Ĵ(r), ℓ̂ = ℓ with probability approaching one and, for some labeling of the

indices of x̃1, . . . , x̃ℓ̂ we have, for k from 1 to ℓ, x̃k
p→ xk and, with probability approaching

one, Ĵ(k) = J(k).

An immediate consequence of this is that this estimate of X0 can be used in combination

with consistent estimates of E(m(Wi, θ)m(Wi, θ)
′|X = x), fX(x), and V (x) to form estimates

of these functions evaluated at points in X0 that satisfy the assumptions needed for the

procedure for estimating the asymptotic distribution described in Section 4.

Corollary B.2. If the estimates M̂k(x), f̂X(x), and V̂ (x) are consistent uniformly over x in

a neighborhood of X0, then, under Assumptions 3.1, B.2, B.3, B.4, and B.5, the estimates

M̂k(x̃k), f̂X(x̃k), and V̂j(x̃k) satisfy Assumption B.1.

C Proofs

This section of the appendix contains proofs of the theorems in this paper. The proofs are

organized into subsections according to the section containing the theorem in the body of the

paper. In cases where a result follows immediately from other theorems or arguments in the

body of the paper, I omit a separate proof. Statements involving convergence in distribution

in which random elements in the converging sequence are not measurable with respect to the

relevant Borel sigma algebra are in the sense of outer weak convergence (see van der Vaart

and Wellner, 1996). For notational convenience, I use d = dX throughout this section of the

appendix.
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C.1 Asymptotic Distribution of the KS Statistic

In this subsection of the appendix, I prove Theorem 3.1. This generalizes the proof for the

ℓ = dY = 1 case in Section A, and much of this proof is taken verbatim from the proof in that

section, with appropriate notational changes. For notational convenience, let Yi = m(Wi, θ)

and Yi,J(m) = mJ(m)(Wi, θ) and let d = dX and k = dY throughout this subsection.

The asymptotic distribution comes from the behavior of the objective function EnYi,jI(s <

Xi < s + t) for (s, t) near xm such that j ∈ J(m). The bulk of the proof involves show-

ing that the objective function doesn’t matter for (s, t) outside of neighborhoods of xm with

j ∈ J(m) where these neighborhoods shrink at a fast enough rate. First, I derive the limiting

distribution over such shrinking neighborhoods and the rate at which they shrink.

Theorem C.1. Let hn = n−α for some 0 < α < 1/d. Let

Gn,xm(s, t) =

√
n

h
d/2
n

(En − E)Yi,J(m)I(hns < Xi − xm < hn(s+ t))

and let gn,xm(s, t) have jth element

gn,xm,j(s, t) =
1

hd+2
n

EYi,jI(hns < Xi − xm < hn(s+ t))

if j ∈ J(m) and zero otherwise. Then, for any finite M , (Gn,x1(s, t), . . . ,Gn,xℓ(s, t))
d→

(GP,x1(s, t), . . . ,GP,xℓ(s, t)) taken as random processes on ‖(s, t)‖ ≤ M with the supremum

norm and gn,xm(s, t) → gP,xm(s, t) uniformly in ‖(s, t)‖ ≤M where GP,xm(s, t) and gP,xm(s, t)

are defined as in Theorem 3.1 for m from 1 to ℓ.

Proof. The convergence in distribution in the first statement follows from verifying the con-

ditions of Theorem 2.11.22 in van der Vaart and Wellner (1996). To derive the covariance

kernel, note that

cov(Gn,xm(s, t),Gn,xm(s
′, t′))

= h−dn EYi,J(m)Y
′
i,J(m)I {hn(s ∨ s′) < X − xm < hn [(s+ t) ∧ (s′ + t′)]}

− h−dn
{

EYi,J(m)I [hns < X − xm < hn(s+ t)]
}{

EY ′
i,J(m)I [hns

′ < X − xm < hn(s
′ + t′)]

}

.

The second term goes to zero as n→ ∞. The first is equal to the claimed covariance kernel
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plus the error term

h−dn

∫

hn(s∨s′)<x−xm<hn[(s+t)∧(s′+t′)]

[

E(Yi,J(m)Y
′
i,J(m)|X = x)fX(x)− E(Yi,J(m)Y

′
i,J(m)|X = xm)fX(xm)

]

dx,

which is bounded by

{

max
‖x−xm‖≤2hnM

[

E(Yi,J(m)Y
′
i,J(m)|X = x)fX(x)− E(Yi,J(m)Y

′
i,J(m)|X = xm)fX(xm)

]

}

× h−dn

∫

hn(s∨s′)<x−xm<hn[(s+t)∧(s′+t′)]

dx

=

{

max
‖x−xm‖≤2hnM

[

E(Yi,J(m)Y
′
i,J(m)|X = x)fX(x)− E(Yi,J(m)Y

′
i,J(m)|X = xm)fX(xm)

]

}

×
∫

(s∨s′)<x−xm<(s+t)∧(s′+t′)

dx.

This goes to zero as n→ ∞ by continuity of E(Yi,J(m)Y
′
i,J(m)|X = x) and fX(x). For m 6= r

and ‖(s, t)‖ ≤M , ‖(s′, t′)‖ ≤M , cov(Gn,xm(s, t),Gn,xr(s
′, t′)) is eventually equal to

−h−dn
{

EYi,J(m)I [hns < X − xm < hn(s+ t)]
}{

EY ′
i,J(r)I [hns

′ < X − xr < hn(s
′ + t′)]

}

,

which goes to zero, so the processes for different elements of X0 are independent as claimed.

For the claim regarding gn,xm(s, t), first note that the assumptions imply that, for j ∈
J(m), the first derivative of x 7→ E(Yi,j|X = x) at x = xm is 0, and that this function has a

second order Taylor expansion:

E(Yi,j|X = x) =
1

2
(x− xm)

′Vj(xm)(x− xm) +Rn(x)

where

Rn(x) =
1

2
(x− xm)

′Vj(x
∗(x))(x− xm)−

1

2
(x− xm)

′Vj(xm)(x− xm)

and Vj(x
∗) is the second derivative matrix evaluated at some x∗(x) between xm and x.
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We have

gn,xm,j(s, t) =
1

2hd+2
n

∫

hns<x−xm<hn(s+t)

(x− xm)
′Vj(xm)(x− xm)fX(xm) dx

+
1

2hd+2
n

∫

hns<x−xm<hn(s+t)

(x− xm)
′Vj(xm)(x− xm)[fX(x)− fX(xm)] dx

+
1

hd+2
n

∫

hns<x−xm<hn(s+t)

Rn(x)fX(x) dx.

The first term is equal to gP,xm,j(s, t) by a change of variable x to hnx+ xm in the integral.

The second term is bounded by gP,xm,j(s, t) sup‖x−xm‖≤2hnM [fX(x)− fX(xm)]/fX(xm), which

goes to zero uniformly in ‖(s, t)‖ ≤M by continuity of fX . The third term is equal to (using

the same change of variables)

1

2

∫

s<x<s+t

[x′Vj(x
∗(hnx+ xm))x− x′Vj(xm)x]fX(hnx+ xm) dx.

This is bounded by a constant times sup‖x‖≤M |x′Vj(x∗(hnx+xm))x−x′Vj(xm)x|, which goes

to zero as n→ ∞ by continuity of the second derivatives.

Thus, if we let hn be such that
√
n/h

d/2
n = 1/hd+2

n ⇐⇒ hn = n−1/(d+4) and scale up by
√
n/h

d/2
n = 1/hd+2

n = n(d+2)/(d+4), we will have

n(d+2)/(d+4)(EnYi,J(1)I(hns < X − x1 < hn(s+ t)), . . . , EnYi,J(ℓ)I(hns < X − xℓ < hn(s+ t))

= (Gn,x1(s, t) + gn,x1(s, t), . . . ,Gn,xℓ(s, t) + gn,xℓ(s, t))

d→ (GP,x1(s, t) + gP,x1(s, t), . . . ,GP,xm(s, t) + gP,xm(s, t))

taken as stochastic processes in {‖(s, t)‖ ≤M} with the supremum norm. From now on, let

hn = n−1/(d+4) so that this will hold.

We would like to show that the infimum of these stochastic processes over all of R2d

converges to the infimum of the limiting process over all of R2d, but this does not follow

immediately since we only have uniform convergence on compact sets. Another way of

thinking about this problem is that convergence in distribution in {‖(s, t)‖ ≤ M} with the

supremum norm for any M implies convergence in distribution in R
2d with the topology of

uniform convergence on compact sets (see Kim and Pollard, 1990), but the infimum over all

of R2d is not a continuous mapping on this space since uniform convergence on all compact

sets does not imply convergence of the infimum over all of R2d. To get the desired result, the
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following lemma will be useful. The idea is to show that values of (s, t) far away from zero

won’t matter for the limiting distribution, and then use convergence for fixed compact sets.

Lemma C.1. Let Hn and HP be random functions from R
k1 to R

k2 such that, (i) for

all M , Hn
d→ HP when Hn and HP are taken as random processes on {t ∈ R

k1 |‖t‖ ≤
M} with the supremum norm, (ii) for all r < 0, ε > 0, there exists an M such that

P
(

inf‖t‖>M HP,j(t) ≤ r some j
)

< ε and an N such that P
(

inf‖t‖>M Hn,j(t) ≤ r some j
)

< ε

for all n ≥ N and (iii) inftHn,j(t) ≤ 0 and inftHP,j(t) ≤ 0 with probability one. Then

inft∈Rk1 Hn(t)
d→ inft∈Rk1 HP (t).

Proof. First, by the Cramer-Wold device, it suffices to show that, for all w ∈ R
k2 , w′ inft∈Rk1 Hn(t)

d→
w′ inft∈Rk1 HP (t). For this, it suffices to show that for all r ∈ R, lim infn P (w′ inft∈Rk1 Hn(t) < r) ≥
P (w′ inft∈Rk1 HP (t) < r) and lim supn P (w′ inft∈Rk1 Hn(t) ≤ r) ≤ P (w′ inft∈Rk1 HP (t) ≤ r)

since, arguing along the lines of the Portmanteau Lemma, when r is a continuity point of

the limiting distribution, we will have

P

(

w′ inf
t∈Rk1

HP (t) ≤ r

)

= P

(

w′ inf
t∈Rk1

HP (t) < r

)

≤ lim inf
n

P

(

w′ inf
t∈Rk1

Hn(t) < r

)

≤ lim inf
n

P

(

w′ inf
t∈Rk1

Hn(t) ≤ r

)

≤ lim sup
n

P

(

w′ inf
t∈Rk1

Hn(t) ≤ r

)

≤ P

(

w′ inf
t∈Rk1

HP (t) ≤ r

)

.

Given ε > 0, let M and N be as in the assumptions of the lemma, but with r replaced

by r/(k2 maxi |wi|). Then

P

(

w′ inf
‖t‖≥M

HP (t) < r

)

≤ P

(

(k2 max
i

|wi|) inf
‖t‖≥M

HP,j(t) < r some j

)

≤ ε

so that P
(

w′ inf‖t‖≤M HP (t) < r
)

+ ε ≥ P (w′ inft∈Rk1 HP (t) < r) and, for n ≥ N ,

P

(

w′ inf
‖t‖≥M

Hn(t) ≤ r

)

≤ P

(

(k2 max
i

|wi|) inf
‖t‖≥M

Hn,j(t) ≤ r some j

)

≤ ε

so that P
(

w′ inf‖t‖≤M Hn(t) ≤ r
)

+ ε ≥ P (w′ inft∈R Hn(t) ≤ r). Thus, by convergence in

distribution of the infima over ‖t‖ ≤M ,

lim inf
n

P

(

w′ inf
t∈Rk1

Hn(t) < r

)

≥ lim inf
n

P

(

w′ inf
‖t‖≤M

Hn(t) < r

)

≥ P

(

w′ inf
‖t‖≤M

HP (t) < r

)

≥ P

(

w′ inf
t∈Rk1

HP (t) < r

)

− ε
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and

lim sup
n

P

(

w′ inf
t∈Rk1

Hn(t) ≤ r

)

≤ lim sup
n

P

(

w′ inf
‖t‖≤M

Hn(t) ≤ r

)

+ ε

≤ P

(

w′ inf
‖t‖≤M

HP (t) ≤ r

)

+ ε ≤ P

(

w′ inf
t∈Rk1

HP (t) ≤ r

)

+ ε.

Since ε was arbitrary, this gives the desired result.

Technically, this lemma does not apply to

(Gn,x1(s, t) + gn,x1(s, t), . . . ,Gn,xℓ(s, t) + gn,xℓ(s, t))

since, for m 6= r, Gn,xm(s, t) + gn,xm(s, t) evaluated at some increasing values of (s, t) may

actually be equal to Gn,xr(s
′, t′) + gn,xr(s

′, t′) for some small values of (s′, t′), since, once the

local indices are large enough, the original indices overlap. Instead, noting that, for any

η > 0,

n(d+2)/(d+4) inf
s,t
EnYiI(s < Xi < s+ t)

=

(

min
m s.t. 1∈J(m)

inf
‖(s,t)‖≤η/hn

Gn,xm,1(s, t) + gn,xm,1(s, t)), . . . ,

min
m s.t. k∈J(m)

inf
‖(s,t)‖≤η/hn

Gn,xm,k(s, t) + gn,xm,k(s, t)

)

∧
(

n(d+2)/(d+4) inf
‖(s−xm,t)‖>η all m s.t. 1 ∈ J(m)

EnYi,1I(s < Xi < s+ t), . . . ,

n(d+2)/(d+4) inf
‖(s−xm,t)‖>η all m s.t. k ∈ J(m)

EnYi,kI(s < Xi < s+ t)

)

≡ Zn,1 ∧ Zn,2,

I show that, for some η > 0, Zn,2
p→ 0 using a separate argument, and use Lemma C.1 to

show that, for the same η,

(inf
s,t
[Gn,x1(s, t) + gn,x1(s, t)]I(‖(s, t)‖ ≤ η/hn), . . . , inf

s,t
[Gn,xℓ(s, t) + gn,xℓ(s, t)]I(‖(s, t)‖ ≤ η/hn))

d→ (inf
s,t

GP,x1(s, t) + gP,x1(s, t), . . . , inf
s,t

GP,xℓ(s, t) + gP,xℓ(s, t)),

from which it follows that Zn,1
d→ Z for Z defined as in Theorem 3.1 by the continuous
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mapping theorem.

Part (i) of Lemma C.1 follows from Theorem C.1 (the I(‖(s, t)‖ ≤ η/hn) term does not

change this, since it is equal to one for ‖(s, t)‖ ≤M eventually). Part (iii) follows since the

processes involved are equal to zero when t = 0. To verify part (ii), first note that it suffices

to verify part (ii) of the lemma for Gn,xm,j(s, t) + gn,xm,j(s, t) and GP,xm,j(s, t) + gP,xm,j(s, t)

for each m and j individually. Part (ii) of the lemma holds trivially for m and j such that

j /∈ J(m), so we need to verify this part of the lemma for m and j such that j ∈ J(m).

The next two lemmas provide bounds that will be used to verify condition (ii) of Lemma

C.1 for Gn,xm,j(s, t) + gn,xm,j(s, t) and GP,xm,j(s, t) + gP,xm,j(s, t) for m and j with j ∈ J(m).

To do this, the bounds in the lemmas are applied to sequences of sets of (s, t) where the

norm of elements in the set increases with the sequence. The idea is similar to the “peeling”

argument of, for example, Kim and Pollard (1990), but different arguments are required

to deal with values of (s, t) for which, even though ‖s‖ is large,
∏

i ti is small so that the

objective function on average uses only a few observations, which may happen to be negative.

To get bounds on the suprema of the limiting and finite sample processes where t may be

small relative to s, the next two lemmas bound the supremum by a maximum over s in a

finite grid of suprema over t with s fixed, and then use exponential bounds on suprema of

the processes with fixed s.

Lemma C.2. Fix m and j with j ∈ J(m). For some C > 0 that depends only on d, fX(xm)

and E(Y 2
i,j|X = xm), we have, for any B ≥ 1, ε > 0, w > 0,

P

(

sup
‖(s,t)‖≤B,

∏
i ti≤ε

|GP,xm,j(s, t)| ≥ w

)

≤ 2
{

3B[Bd/(ε ∧ 1)] + 2
}2d

exp

(

−Cw
2

ε

)

for w2

ε
greater than some constant that depends only on d, fX(xm) and E(Y

2
i,j|X = xm).

Proof. Let G(s, t) = GP,xm,j(s, t). We have, for any s0 ≤ s ≤ s+ t ≤ s0 + t0,

G(s, t) = G(s0, t+ s− s0)

+
∑

1≤j≤d

(−1)j
∑

1≤i1<i2<...<ij≤d

G(s0, (t1 + s1 − s0,1, . . . , ti1−1 + si1−1 − s0,i1−1, si1 − s0,i1 , ti1+1 + si1+1 − s0,i1+1,

. . . , tij−1 + sij−1 − s0,ij−1, sij − s0,ij , tij+1 + sij+1 − s0,ij+1, . . . , td + sd − s0,d)).

Thus, since there are 2d terms in the above display, each with absolute value bounded by
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supt≤t0 |G(s0, t)|,

sup
s0≤s≤s+t≤s0+t0

|G(s, t)| ≤ 2d sup
t≤t0

|G(s0, t)| d
= 2d sup

t≤t0

|G(0, t)|.

Let A be a grid of meshwidth (ε∧1)/Bd covering [−B, 2B]d. For any (s, t) with ‖(s, t)‖ ≤
B and

∏

i ti ≤ ε, there are s0 and t0 with s0, s0 + t0 ∈ A such that s0 ≤ s ≤ s+ t ≤ s0 + t0,

and
∏

i t0,i ≤
∏

i(ti + (ε ∧ 1)/Bd) =
∑d

j=0[(ε ∧ 1)/Bd]j
∑

I∈{1,...,d},|I|=d−j

∏

i∈I ti ≤
∏

i ti +
∑d

j=1[(ε ∧ 1)/Bd]j
(

d
d−j

)

Bd−j ≤ ε+ ε
∑d

j=1B
−dj
(

d
d−j

)

Bd−j ≤ 2dε. For this s0, t0, we will then

have, by the above display, |G(s, t)| ≤ 2d supt≤t0 |G(s0, t)|.
This gives

sup
‖(s,t)‖≤B,

∏
i ti≤ε

|G(s, t)| ≤ 2d max
s0,s0+t0∈A,

∏
i t0,i≤2dε

sup
t≤t0

|G(s0, t)|,

so that

P

(

sup
‖(s,t)‖≤B,

∏
i ti≤ε

|G(s, t)| ≥ w

)

≤ |A|2 max
s0,s0+t0∈A,

∏
i t0,i≤2dε

P

(

2d sup
t≤t0

|G(s0, t)| ≥ w

)

= |A|2 max
s0,s0+t0∈A,

∏
i t0,i≤2dε

P



2d sup
t≤1

(

∏

i

t0,i

)1/2

|G(0, t)| ≥ w





≤ |A|2P
(

sup
t≤1

|G(0, t)| ≥ w

2d2d/2ε1/2

)

.

The result then follows using the fact that |A| ≤
{

3B[Bd/(ε ∧ 1)] + 2
}d

and using Theorem

2.1 (p.43) in Adler (1990) to bound the probability in the last line of the display (the

theorem in Adler (1990) shows that the probability in the above display is bounded by

2 exp(−K1w
2/ε+K2w/ε

1/2+K3) for some constantsK1,K2, andK3 withK1 > 0 that depend

only on d, fX(xm) and E(Y
2
i,j|X = xm) and this expression is less than 2 exp(−(K1/2)w

2/ε)

for w2/ε greater than some constant that depends only on K1, K2, and K3).

Lemma C.3. Fix m and j with j ∈ J(m). For some C > 0 that depends only on the

distribution of (X, Y ) and some η > 0, we have, for any 1 ≤ B ≤ h−1
n η, w > 0 and
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ε ≥ n−4/(d+4)(1 + log n)2,

P

(

sup
‖(s,t)‖≤B,

∏
i ti≤ε

|Gn,xm,j(s, t)| ≥ w

)

≤ 2
{

3B[Bd/(ε ∧ 1)] + 2
}2d

exp
(

−C w

ε1/2

)

.

Proof. Let Gn(s, t) = Gn,xm,j(s, t). By the same argument as in the previous lemma with G

replaced by Gn, we have

sup
s0≤s≤s+t≤s0+t0

|Gn(s, t)| ≤ 2d sup
t≤t0

|Gn(s0, t)|.

As in the previous lemma, let A be a grid of meshwidth (ε ∧ 1)/Bd covering [−B, 2B]d.

Arguing as in the previous lemma, we have, for any (s, t) with ‖(s, t)‖ ≤ B and
∏

i ti ≤
ε, there exists some s0, t0 with s0, s0 + t0 ∈ A such that Πit0,i ≤ 2dε and |Gn(s, t)| ≤
2d supt≤t0 |Gn(s0, t)|. Thus,

sup
‖(s,t)‖≤B,

∏
i ti≤ε

|Gn(s, t)| ≤ 2d max
s0,s0+t0∈A,

∏
i t0,i≤2dε

sup
t≤t0

|Gn(s0, t)|

= 2d max
s0,s0+t0∈A,

∏
i t0,i≤2dε

sup
t≤t0

√
n

h
d/2
n

|(En − E)Yi,jI(hns0 ≤ Xi − xm ≤ hn(s0 + t))|.

This gives

P

(

sup
‖(s,t)‖≤B,

∏
i ti≤2dε

|Gn(s, t)| ≥ w

)

≤ |A|2 max
s0,s0+t0∈A,

∏
i t0,i≤2dε

P

(

2d sup
t≤t0

√
n

h
d/2
n

|(En − E)Yi,jI(hns0 ≤ Xi − xm ≤ hn(s0 + t))| ≥ w

)

.

We have, for some universal constant K and all n with ε ≥ n−4/(d+4)(1 + log n)2, letting

Fn = {(x, y) 7→ yjI(hns0 ≤ x − xm ≤ hn(s0 + t))|t ≤ t0} and defining ‖ · ‖P,ψ1 to be the
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Orlicz norm defined on p.90 of van der Vaart and Wellner (1996) for ψ1(x) = exp(x)− 1,

‖2d sup
f∈Fn

|√n(En − E)f(Xi, Yi)|‖P,ψ1

≤ K

[

E sup
f∈Fn

|√n(En − E)f(Xi, Yi)|+ n−1/2(1 + log n)‖|Yi,j|I(hns0 ≤ Xi − xm ≤ hn(s0 + t0))‖P,ψ1

]

≤ K
[

J(1,Fn, L
2)
{

E[|Yi,j|I(hns0 < Xi − xm < hn(s0 + t0))]
2
}1/2

+ n−1/2(1 + log n)‖Y ‖P,ψ1

]

≤ K
[

J(1,Fn, L
2)f

1/2
Y hd/2n 2d/2ε1/2 + n−1/2(1 + log n)‖Yi,j‖P,ψ1

]

≤ K
[

J(1,Fn, L
2)f

1/2
Y 2d/2 + ‖Yi,j‖P,ψ1

]

hd/2n ε1/2.

The first inequality follows by Theorem 2.14.5 in van der Vaart and Wellner (1996). The

second uses Theorem 2.14.1 in van der Vaart and Wellner (1996). The fourth inequality uses

the fact that h
d/2
n ε1/2 = n−d/[2(d+4)]ε1/2 ≥ n−1/2(1 + log n) once ε1/2 ≥ n−1/2+d/[2(d+4)](1 +

log n) = n−2/(d+4)(1 + log n). Since each Fn is contained in the larger class F ≡ {(x, y) 7→
yjI(s < x−xm < s+ t)|(s, t) ∈ R

2d}, we can replace Fn by F on the last line of this display.

Since J(1,F , L2) and ‖Yi,j‖ψ1 are finite (F is a VC class and Yi,j is bounded), the bound is

equal to C−1ε1/2h
d/2
n for a constant C that depends only on the distribution of (Xi, Yi).

This bound along with Lemma 8.1 in Kosorok (2008) implies

P

(

2d sup
t≤t0

√
n

h
d/2
n

|(En − E)Yi,jI(hns0 ≤ Xi − xm ≤ hn(s0 + t))| ≥ w

)

= P

(

2d sup
f∈Fn

|√n(En − E)f(Xi, Yi)| ≥ whd/2n

)

≤ 2 exp

(

− wh
d/2
n

‖2d supf∈Fn
|√n(En − E)f(Xi, Yi)|‖P,ψ1

)

≤ 2 exp

(

− wh
d/2
n

C−1h
d/2
n ε1/2

)

= 2 exp
(

−Cw/ε1/2
)

.

The result follows using this and the fact that |A| ≤
{

3B[Bd/(ε ∧ 1)] + 2
}d
.

The following theorem verifies the part of condition (ii) of Lemma C.1 concerning the

limiting process GP,xm,j(s, t) + gP,xm,j(s, t).

Theorem C.2. Fix m and j with j ∈ J(m). For any r < 0, ε > 0 there exists an M such

71



that

P

(

inf
‖(s,t)‖>M

GP,xm,j(s, t) + gP,xm,j(s, t) ≤ r

)

< ε.

Proof. Let G(s, t) = GP,xm,j(s, t) and g(s, t) = gP,xm,j(s, t). Let Sk = {k ≤ ‖(s, t)‖ ≤ k + 1}
and let SLk = Sk ∩ {∏i ti ≤ (k + 1)−δ} for some fixed δ. By Lemma C.2,

P

(

inf
SL
k

G(s, t) + g(s, t) ≤ r

)

≤ P

(

sup
SL
k

|G(s, t)| ≥ |r|
)

≤ 2
{

3(k + 1)[(k + 1)d/k−δ] + 2
}2d

exp
(

−Cr2(k + 1)δ
)

for k large enough where C depends only on d. This bound is summable over k.

For any α and β with α < β, let Sα,βk = Sk ∩ {(k+1)α <
∏

i ti ≤ (k+1)β}. We have, for

some C1 > 0 that depends only on d and Vj(xm), g(s, t) ≥ C1‖(s, t)‖2
∏

i ti. (To see this, note

that g(s, t) is greater than or equal to a constant times
∫ s1+t1
s1

· · ·
∫ sd+td
sd

‖x‖2dxd · · · dx1 =
(

Πd
i=1ti

)
∑d

i=1(s
2
i + t2i /3 + siti), and the sum can be bounded below by a constant times

‖(s, t)‖2 by minimizing over si for fixed ti using calculus. The claimed expression for the

integral follows from evaluating the inner integral to get an expression involving the integral

for d− 1, and then using induction.) Using this and Lemma C.2,

P

(

inf
Sα,β
k

G(s, t) + g(s, t) ≤ r

)

≤ P

(

sup
Sα,β
k

|G(s, t)| ≥ C1k
2+α

)

≤ 2
{

3(k + 1)[(k + 1)d/((k + 1)β ∧ 1)] + 2
}2d

exp

(

−CC2
1

k4+2α

(k + 1)β

)

.

This is summable over k if 4 + 2α− β > 0.

Now, note that, since
∏

i ti ≤ (k + 1)d on Sk, we have, for any −δ < α1 < α2 < . . . <

αℓ−1 < αℓ = d, Sk = SLk ∪ S−δ,α1

k ∪ Sα1,α2

k ∪ . . . ∪ S
αℓ−1,αℓ

k . If we choose δ < 3/2 and

αi = i for i ∈ {1, . . . , d}, the arguments above will show that the probability of the infimum

being less than or equal to r over SLk , S
−δ,α1

k and each S
αi,αi+1

k is summable over k, so that

P (infSk
G(s, t) + g(s, t) ≤ r) is summable over k, so setting M so that the tail of this sum

past M is less than ε gives the desired result.

The following theorem verifies condition (ii) of Lemma C.1 for the sequence of finite

sample processes Gn,xm,j(s, t) + gn,xm,j(s, t) with η/hn ≥ ‖(s, t)‖. As explained above, the

case where η/hn ≤ ‖(s, t)‖ is handled by a separate argument.
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Theorem C.3. Fix m and j with j ∈ J(m). There exists an η > 0 such that for any r < 0,

ε > 0, there exists an M and N such that, for all n ≥ N ,

P

(

inf
M<‖(s,t)‖≤η/hn

Gn,xm,j(s, t) + gn,xm,j(s, t) ≤ r

)

< ε.

Proof. Let Gn(s, t) = Gn,xm,j(s, t) and gn(s, t) = gn,xm,j(s, t). Let η be small enough that

the assumptions hold for ‖x − xm‖ ≤ 2η and that, for some constant C2, E(Yi,j|Xi = x) ≥
C2‖x− xm‖2 for ‖x− xm‖ ≤ 2η. This implies that, for ‖(s, t)‖ ≤ h−1

n η,

gn(s, t) ≥
C2

hd+2
n

∫

hns<x−xm<hn(s+t)

‖x− xm‖2fX(x) dx

≥
C2f

hd+2
n

∫

hns<x−xm<hn(s+t)

‖x− xm‖2 dx = C2f

∫

s<x<s+t

‖x‖2 dxd · · · dx1 ≥ C3‖(s, t)‖2
∏

i

ti

where C3 is a constant that depends only on f and d and the last inequality follows from

bounding the integral as explained in the proof of the previous theorem.

As in the proof of the previous theorem, let Sk = {k ≤ ‖(s, t)‖ ≤ k + 1} and let

SLk = Sk ∩ {∏i ti ≤ (k + 1)−δ} for some fixed δ. We have, using Lemma C.3,

P

(

inf
SL
k

Gn(s, t) + gn(s, t) ≤ r

)

≤ P

(

sup
SL
k

|Gn(s, t)| ≥ |r|
)

≤ 2
{

3(k + 1)[(k + 1)d/k−δ] + 2
}2d

exp

(

−C |r|
(k + 1)−δ/2

)

for (k + 1)−δ ≥ n−4/(d+4)(1 + log n)2 ⇐⇒ k + 1 ≤ n4/[δ(d+4)](1 + log n)−2/δ so, if δ < 4, this

will hold eventually for all (k + 1) ≤ h−1
n η (once h−1

n η ≤ n4/[δ(d+4)](1 + log n)−2/δ ⇐⇒ η ≤
n(4/δ−1)/(d+4)(1 + log n)−2/δ). The bound is summable over k for any δ > 0.

Again following the proof of the previous theorem, for α < β, define Sα,βk = Sk ∩ {(k +
1)α <

∏

i ti ≤ (k + 1)β}. We have, again using Lemma C.3,

P

(

inf
Sα,β
k

Gn(s, t) + gn(s, t) ≤ r

)

≤ P

(

sup
Sα,β
k

|Gn(s, t)| ≥ C3k
2+α

)

≤ 2
{

3(k + 1)[(k + 1)d/(kα ∧ 1)] + 2
}2d

exp

(

−C C3k
2+α

(k + 1)β/2

)

for (k + 1)β ≥ n−4/(d+4) (which will hold once the same inequality holds for δ for −δ < β)
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and k + 1 ≤ h−1
n η. The bound is summable over k for any α, β with 4 + 2α− β > 0.

Thus, noting as in the previous theorem that, for any −δ < α1 < α2 < . . . < αℓ−1 < αℓ =

d, Sk = SLk ∪S−δ,α1

k ∪Sα1,α2

k ∪ . . .∪Sαℓ−1,αℓ

k , if we choose δ < 3/2 and αi = i for i ∈ {1, . . . , d}
the probability of the infimum being less than or equal to r over the sets indexed by k

for any k ≤ h−1
n η is bounded uniformly in n by a sequence that is summable over k (once

η ≤ n(4/δ−1)/(d+4)(1 + log n)−2/δ). Thus, if we choose M such that the tail of this sum past

M is less than ε and let N be large enough so that η ≤ N (4/δ−1)/(d+4)(1+ logN)−2/δ, we will

have the desired result.

To complete the proof of Theorem 3.1, we need to show that

Zn,2 ≡
(

n(d+2)/(d+4) inf
‖(s−xm,t)‖>η all m s.t. 1 ∈ J(m)

EnYi,1I(s < Xi < s+ t), . . . ,

n(d+2)/(d+4) inf
‖(s−xm,t)‖>η all m s.t. k ∈ J(m)

EnYi,kI(s < Xi < s+ t)

)

p→ 0.

This follows from the next two lemmas.

Lemma C.4. Under Assumptions 3.1 and 3.2, for any η > 0, there exists some B > 0 such

that EYi,jI(s < Xi < s+ t) ≥ BP (s < Xi < s+ t) for all (s, t) with ‖(s− xm, t)‖ > η for all

m with j ∈ J(m).

Proof. Given η > 0, we can make η smaller without weakening the result, so let η be

small enough that ‖xm − xr‖∞ > 2η for all m 6= r with j ∈ J(m) ∩ J(r) and fX satisfies

0 < f ≤ fX(x) ≤ f < ∞ for some f and f on {x|‖x − xm‖∞ ≤ η}. If ‖(s − xm, t)‖ > η,

then ‖(s− xm, s+ t− xm)‖∞ > η/(4d), so it suffices to show that EYi,jI(s < Xi < s+ t) ≥
BP (s < Xi < s+ t) for all (s, t) with ‖(s− xm, s+ t− xm)‖∞ > η/(4d). Let µ > 0 be such

that E(Yi,j|Xi = x) > µ when ‖x − xm‖∞ ≥ η/(8d) for m with j ∈ J(m). For notational

convenience, let δ = η/(4d).

For m with j ∈ J(m), let B(xm, δ) = {x|‖x − xm‖∞ ≤ δ} and B(xm, δ/2) = {x|‖x −
xm‖∞ ≤ δ/2}. First, I show that, for any (s, t) with ‖(s−xm, s+t−xm)‖∞ ≥ δ, P ({s < Xi <

s + t} ∩ B(xm, δ)\B(xm, δ/2)) ≥ (1/3)(f/f)P ({s < Xi < s + t} ∩ B(xm, δ/2)). Intuitively,

this holds because, taking any box with a corner outside of B(xm, δ), this box has to intersect

with a substantial proportion of B(xm, δ)\B(xm, δ/2) in order to intersect with B(xm, δ/2).

Formally, we have {s < x < s+ t}∩B(xm, δ) = {s∨ (xm−δ) < x < (s+ t)∧ (xm+δ)}, so
that, letting λ be the Lebesgue measure on R

d, λ({s < x < s+ t}∩B(xm, δ)) =
∏

i[(si+ ti)∧
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(xm,i+ δ)−si∨ (xm,i− δ)]. Similarly, λ({s < x < s+ t}∩B(xm, δ/2)) =
∏

i[(si+ ti)∧ (xm,i+

δ/2)−si∨(xm,i−δ/2)]. For all i, [(si+ti)∧(xm,i+δ/2)−si∨(xm,i−δ/2)] ≤ [(si+ti)∧(xm,i+

δ)−si∨(xm,i−δ)]. For some r, we must have sr ≤ xm,r−δ or sr+tr ≥ xm,r+δ. For this r, we

will have [(sr+tr)∧(xm,r+δ/2)−sr∨(xm,r−δ/2)] ≤ 2[(sr+tr)∧(xm,r+δ)−sr∨(xm,r−δ)]/3.
Thus, λ({s < x < s+ t} ∩ B(xm, δ/2)) ≤ 2λ({s < x < s+ t} ∩ B(xm, δ))/3. It then follows

that λ({s < x < s + t} ∩ B(xm, δ)\B(xm, δ/2)) ≥ (1/3)λ({s < x < s + t} ∩ B(xm, δ)), so

that P ({s < x < s+ t}∩B(xm, δ)\B(xm, δ/2)) ≥ (1/3)(f/f)P ({s < x < s+ t}∩B(xm, δ)).

Now, we use the fact that E(Yi,j|Xi) is bounded away from zero outside of B(xm, δ/2),

and that the proportion of {s < x < s + t} that intersects with B(xm, δ/2) can’t be too

large. We have, for any (s, t) with ‖(s− xm, s+ t− xm)‖∞ ≥ δ,

EYi,jI(s < Xi < s+ t) ≥ µP ({s < Xi < s+ t}\[∪mB(xm, δ/2)])

= µP ({s < Xi < s+ t}\[∪mB(xm, δ)]) + µ
∑

m

P ({s < Xi < s+ t} ∩ B(xm, δ)\B(xm, δ/2))

≥ µP ({s < Xi < s+ t}\[∪mB(xm, δ)]) + µ
∑

m

(1/3)(f/f)P ({s < Xi < s+ t} ∩ B(xm, δ))

≥ µ(1/3)(f/f)P (s < Xi < s+ t)

where the unions are taken over m such that j ∈ J(m). The equality in the second line

follows because the sets B(xm, δ) are disjoint.

Lemma C.5. Let S be any set in R
2d such that, for some µ > 0 and all (s, t) ∈ S,EYi,jI(s <

Xi < s+ t) ≥ µP (s < Xi < s+ t). Then, under Assumption 3.2, for any sequence an → ∞
and r < 0,

inf
(s,t)∈S

n

an log n
EnYi,jI(s < Xi < s+ t) > r

with probability approaching 1.
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Proof. For (s, t) ∈ S,

n

an log n
EnYi,jI(s < Xi < s+ t) ≤ r

=⇒ n

an log n
(En − E)Yi,jI(s < Xi < s+ t) ≤ r − n

an log n
EYi,jI(s < Xi < s+ t)

≤ r − n

an log n
µP (s < Xi < s+ t) ≤ −

{

|r| ∨
[

n

an log n
µP (s < Xi < s+ t)

]}

=⇒
[

an log n
n

an log n
n

∨ P (s < Xi < s+ t)

]1/2

|(En − E)Yi,jI(s < Xi < s+ t)|

≥
[

an logn
n

an logn
n

∨ P (s < Xi < s+ t)

]1/2
{[

an log n

n
|r|
]

∨
[

µP (s < Xi < s+ t)
]

}

.

If an logn
n

≥ P (s < Xi < s + t), then the last line is greater than or equal to an logn
n

|r|. If

an logn
n

≤ P (s < Xi < s+ t), the last line is greater than or equal to
[ an logn

n

P (s<Xi<s+t)

]1/2

µP (s <

Xi < s+ t) =
(

an log n
n

)1/2
µ
√

P (s < Xi < s+ t) ≥ µan logn
n

. Thus,

P

(

inf
(s,t)∈S

n

an log n
EnYi,jI(s < Xi < s+ t) ≤ r

)

≤ P



 sup
(s,t)∈S

[

an logn
n

an logn
n

∨ P (s < Xi < s+ t)

]1/2

|(En − E)Yi,jI(s < Xi < s+ t)| ≥ (|r| ∧ µ)an log n
n



 .

This converges to zero by Theorem 37 in Pollard (1984) with, in the notation of that theorem,

Fn the class of functions of the form

[

an logn
n

Y
2 an logn

n
∨ P (s < Xi < s+ t)

]1/2

Yi,jI(s < Xi < s+ t)

with (s, t) ∈ S, δn =
(

n
an logn

)1/2

and αn = 1. To verify the conditions of the lemma, the

covering number bound holds because each Fn is contained in the larger class F of functions

of the form wYi,jI(s < Xi < s + t) where (s, t) ranges over S and w ranges over R, and

this larger class is a VC subgraph class. The supremum bound on functions in Fn holds by
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Assumption 3.2. To verify the bound on the L2 norm of functions in Fn, note that

E







[

an logn
n

Y
2 an logn

n
∨ P (s < Xi < s+ t)

]1/2

Yi,jI(s < Xi < s+ t)







2

≤
an log n

n
an log n

n
∨ P (s < Xi < s+ t)

P (s < Xi < s+ T ) ≤ an log n

n
= δ2n

since ab/(a ∨ b) ≤ a for any a, b > 0.

By Lemma C.4, {‖(s−xm, t)‖ > η all m s.t. j ∈ J(m)} satisfies the conditions of Lemma

C.5, so EnYi,jI(s < Xi < s + t) converges to zero at a n/(an log n) rate for any an → ∞,

which can be made faster than the n(d+2)/(d+4) rate needed to show that Zn,2
p→ 0. This

completes the proof of Theorem 3.1.

C.2 Inference

I use the following lemma in the proof of Theorem 4.1

Lemma C.6. Let H be a Gaussian random process with sample paths that are almost surely

in the set C(T,Rk) of continuous functions with respect to some semimetric on the index set

T with a countable dense subset T0. Then, for any set A ∈ R
k with Lebesgue measure zero,

P (inft∈T H(t) ∈ A) ≤ P (inft∈T,det var(H(t))<εH(t) ∈ A for all ε > 0).

Proof. First, note that, if the infimum over T is in A, then, since {t ∈ T| det var(H(t)) ≥ ε}
and {t ∈ T| det var(H(t)) < ε} partition T , the infimum over one of these sets must be in

A. By Proposition 3.2 in Pitt and Tran (1979), the infimum of H(t) over the former set

has a distribution that is continuous with respect to the Lebesgue measure, so the proba-

bility of the infimum of H(t) over this set being in A is zero. Thus, P (inft∈T H(t) ∈ A) ≤
P
(

inft∈T,det var(H(t))<εH(t) ∈ A
)

. Taking ε to zero along a countable sequence gives the result.

Proof of Theorem 4.1. For m from 1 to ℓ, let {jm,1, . . . , jm,|J(m)|} = J(m). Then, letting

Z̃ ≡(inf
s,t

GP,x1,j1,1(s, t) + gP,x1,j1,1(s, t), . . . , inf
s,t

GP,x1,j1,|J(1)|
(s, t) + gP,x1,j1,|J(1)|

(s, t), . . . ,

inf
s,t

GP,xℓ,jℓ,1(s, t) + gP,xℓ,jℓ,1(s, t), . . . , infs,t
GP,xℓ,jℓ,|J(ℓ)|

(s, t) + gP,xℓ,jℓ,|J(ℓ)|
(s, t)),
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each element of Z is the minimum of the elements of some subvector of Z̃, where the subvec-

tors corresponding to different elements of Z do not overlap. Thus, it suffices to show that

Z̃ has an absolutely continuous distribution. For this, it suffices to show that, for each m,

(inf
s,t

GP,xm,jm,1(s, t) + gP,xm,jm,1(s, t), . . . , inf
s,t

GP,xm,jm,|J(m)|
(s, t) + gP,xm,jm,|J(m)|

(s, t))

has an absolutely continuous distribution, since these are independent across m.

To this end, fixm and letH(s, t) be the random process with sample paths in C(R2d,R|J(m)|)

defined by

H(s, t) = (GP,xm,jm,1(s, t) + gP,xm,jm,1(s, t), . . . ,GP,xm,jm,|J(m)|
(s, t) + gP,xm,jm,|J(m)|

(s, t)).

By Assumption 4.1 var(H(s, t)) = M
∏

i ti for some positive definite matrix M , so that

det var(H(s, t)) = (detM) (
∏

i ti)
|J(m)|. Thus, inf(s,t)∈R2d,det var(H(s,t))<εH(s, t) ∈ A for all ε > 0

iff. inf(s,t)∈R2d,
∏

i ti<ε
H(s, t) ∈ A for all ε > 0 so, by Lemma C.6, P (inf(s,t)∈R2d H(s, t) ∈ A) ≤

P (inf(s,t)∈R2d,
∏

i ti<ε
H(s, t) ∈ A for all ε > 0). For each j,

∏

i ti is equal to var(Hj(s, t)) =

ρj(0, (s, t)) times some constant, where ρj is the covariance semimetric for component j

given by ρj((s, t), (s
′, t′)) = var(Hj(s, t) − Hj(s

′, t′)). Thus, there exists a constant C such

that
∏

i ti ≤ ε implies ρj(0, (s, t)) < Cε for all j, so that P (inf(s,t)∈R2d H(s, t) ∈ A) ≤
P (inf(s,t)∈R2d,ρj(0,(s,t))<Cε all j H(s, t) ∈ A for all ε > 0).

Since the sample paths of H are almost surely continuous with respect to the semimetric

maxj ρj((s, t), (s
′, t′)) on the set ‖(s, t)‖ ≤M for any finiteM , inf‖(s,t)‖≤M,ρj(0,(s,t))<Cε all j H(s, t) ∈

A for all ε > 0 implies that H(0) = 0 is a limit point of A on this probability one set. Thus,

for any set A that does not have zero as a limit point, P (inf‖(s,t)‖≤M H(s, t) ∈ A) = 0 for any

finite M . Applying this to A\Bη(0) where Bη(0) is the η-ball around 0 in R
|J(m)|, we have

P

(

inf
(s,t)∈R2d

H(s, t) ∈ A

)

= P

(

inf
(s,t)∈R2d

H(s, t) ∈ A ∩ Bη(0)

)

+ P

(

inf
(s,t)∈R2d

H(s, t) ∈ A\Bη(0)

)

≤ P

(

inf
(s,t)∈R2d

H(s, t) ∈ A ∩ Bη(0)

)

+ P

(

inf
‖(s,t)‖≤M

H(s, t) ∈ A\Bη(0)

)

+ P

(

inf
‖(s,t)‖>M

H(s, t) ∈ A\Bη(0)

)

= P

(

inf
(s,t)∈R2d

H(s, t) ∈ A ∩Bη(0)

)

+ P

(

inf
‖(s,t)‖>M

H(s, t) ∈ A\Bη(0)

)

.

Noting that P
(

inf‖(s,t)‖>M H(s, t) ∈ A\Bη(0)
)

can be made arbitrarily small by making M
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large, this shows that P
(

inf(s,t)∈R2d H(s, t) ∈ A
)

= P
(

inf(s,t)∈R2d H(s, t) ∈ A ∩Bη(0)
)

Tak-

ing η to zero along a countable sequence, this shows that P
(

inf(s,t)∈R2d H(s, t) ∈ A
)

≤
P
(

inf(s,t)∈R2d H(s, t) ∈ A ∩ {0}
)

so that inf(s,t)∈R2d H(s, t) has an absolutely continuous dis-

tribution with a possible atom at zero.

To show that there can be no atom at zero, we argue as follows. Fix j ∈ J(m). The

component ofH corresponding to this j isGP,xm,j(s, t)+gP,xm,j(s, t). For some constantK, for

any k ≥ 0, letting si,k = (i/k, 0, . . . , 0) and tk = (1/k, 1, . . . , 1), we will have gP,xm,j(si,k, tk) ≤
K/k for i ≤ k, so that

P

(

inf
(s,t)∈R2d

GP,xm,j(s, t) + gP,xm,j(s, t) = 0

)

= P

(

inf
(s,t)∈R2d

GP,xm,j(s, t) + gP,xm,j(s, t) ≥ 0

)

≤ P (GP,xm,j(si,k, tk) + gP,xm,j(si,k, tk) ≥ 0 all i ∈ {0, . . . , k})
≤ P (GP,xm,j(si,k, tk) +K/k ≥ 0 all i ∈ {0, . . . , k})

= P
(√

kGP,xm,j(si,k, tk) +K/
√
k ≥ 0 all i ∈ {0, . . . , k}

)

= P
(

GP,xm,j(si,1, t1) +K/
√
k ≥ 0 all i ∈ {0, . . . , k}

)

.

The final line is the probability of k+1 iid normal random variables each being greater than

or equal to −K/
√
k, which can be made arbitrarily small by making k large.

proof of Theorem 4.2. This follows immediately from the continuity of the asymptotic dis-

tribution (see Politis, Romano, and Wolf, 1999).

C.3 Other Shapes of the Conditional Mean

This section contains the proofs of the results in Section 5, which extend the results of

Section 3 to other shapes of the conditional mean. First, I show how Assumption 3.1 implies

Assumption 5.1 with γ = 2. Next, I prove Theorem 5.1, which gives an interpretation of

Assumption 5.2 in terms of conditions on the number of bounded derivatives in the one

dimensional case. Finally, I prove Theorem 5.2, which derives the asymptotic distribution

of the KS statistic under these assumptions. The proof is mostly the same as the proof of

Theorem 3.1, and I present only the parts of the proof that differ, referring to the proof of

Theorem 3.1 for the parts that do not need to be changed.

To see that, under part (ii) from Assumption 3.1, Assumption 5.1 will hold with γ = 2,
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note that, by a second order Taylor expansion, for some x∗(x) between x and xk,

m̄j(θ, x)− m̄j(θ, xk)

‖x− xk‖2
=

(x− xk)Vj(x
∗(x))(x− xk)

2‖x− xk‖2
=

1

2

x− xk
‖x− xk‖

Vj(x
∗(x))

x− xk
‖x− xk‖

.

Thus, letting ψj,k(t) =
1
2
tVj(xk)t we have

sup
‖x−xk‖≤δ

∥

∥

∥

∥

m̄j(θ, x)− m̄j(θ, xk)

‖x− xk‖2
− ψj,k

(

x− xk
‖x− xk‖

)∥

∥

∥

∥

= sup
‖x−xk‖≤δ

∥

∥

∥

∥

1

2

x− xk
‖x− xk‖

Vj(x
∗(x))

x− xk
‖x− xk‖

− 1

2

x− xk
‖x− xk‖

Vj(xk)
x− xk
‖x− xk‖

∥

∥

∥

∥

.

This goes to zero as δ → 0 by the continuity of the second derivative matrix.

The proof of Theorem 5.1 below shows that, in the one dimensional case, Assumption

3.1 follows more generally from conditions on higher order derivatives.

proof of Theorem 5.1. It suffices to consider the case where dY = 1. First, suppose that X0

has infinitely many elements. Let {xk}∞k=1 be a nonrepeating sequence of elements in X0.

Since X0 is compact, this sequence must have a subsequence that converges to some x̃ ∈ X0. If

m̄(θ, x) had a nonzero rth derivative at x̃ for some r < p, then, by Lemma C.7 below, m̄(θ, x)

would be strictly greater than m̄(θ, x̃) for x in some neighborhood of x̃, a contradiction.

Thus, a pth order taylor expansion gives, using the notation Dr(x) = δr/δxrm̄(θ, x) for

r ≤ p, m̄(θ, x)− m̄(θ, x̃) = Dp(x
∗(x))(x− x̃)p/p! ≤ D̄|x− x̃|p/p! where D̄ is a bound on the

pth derivative and x∗(x) is some value between x and x̃.

If X0 has finitely many elements, then, for each x0 ∈ X0, a pth order Taylor expansion

gives m̄(θ, x)− m̄(θ, x0) = D1(x0)(x− x0) +
1
2
D2(x0)(x− x0)

2 + · · ·+ 1
p!
Dp(x

∗(x))(x− x0)
p.

If, for some r < p, Dr(x0) 6= 0 and Dr′(x0) = 0 for r′ < r, then Assumption 5.1 will hold at

x0 with γ = r. If not, we will have m̄(θ, x)− m̄(θ, x0) ≤ D̄|x− x0|p/p! for all x.

Lemma C.7. Suppose that g : [x, x] ⊆ R → R is minimized at some x0. If the least nonzero

derivative of g is continuous at x0, then, for some ε > 0, g(x) > g(x0) for |x − x0| ≤ ε,

x 6= x0.

Proof. Let p be the least integer such that the pth derivative g(p)(x0) is nonzero. By a pth

order Taylor expansion, g(x) − g(x0) = g(p)(x∗(x))(x − x0)
p for some x∗(x) between x and

x0. By continuity of g(p)(x), |g(p)(x∗(x)) − g(p)(x0)| > |g(p)(x0)|/2 for x close enough to x0,

so that g(x) − g(x0) = g(p)(x∗(x))(x − x0)
p ≥ |g(p)(x0)|/2|x − x0|p > 0 (the pth derivative

must have the same sign as x− x0 if p is odd in order for g to be minimized at x0).
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I now prove Theorem 5.2. I prove the theorem under the assumption that γ(j, k) =

γ for all (j, k) with j ∈ J(k). The general case follows from applying the argument to

neighborhoods of each xk, and getting faster rates of convergence for (j, k) such that γ(j, k) <

γ. The proof is the same as the proof of Theorem 3.1 with the following modifications.

First, Theorem C.1 must be modified to the following theorem, with the new definition

of gP,xk,j(s, t).

Theorem C.4. Let hn = n−β for some 0 < β < 1/dX . Let

Gn,xm(s, t) =

√
n

h
d/2
n

(En − E)Yi,J(m)I(hns < Xi − xm < hn(s+ t))

and let gn,xm(s, t) have jth element

gn,xm,j(s, t) =
1

hdX+γ
n

EYi,jI(hns < Xi − xm < hn(s+ t))

if j ∈ J(m) and zero otherwise. Then, for any finite M , (Gn,x1(s, t), . . . ,Gn,xℓ(s, t))
d→

(GP,x1(s, t), . . . ,GP,xℓ(s, t)) taken as random processes on ‖(s, t)‖ ≤ M with the supremum

norm and gn,xm(s, t) → gP,xm(s, t) uniformly in ‖(s, t)‖ ≤M where GP,xm(s, t) and gP,xm(s, t)

are defined as in Theorem 3.1 for m from 1 to ℓ.

Proof. The proof of the first display is the same. For the proof of the claim regarding

gn,xm(s, t), we have

gn,xm,j(s, t) =
1

hdX+γ
n

∫

hns<x−xm<hn(s+t)

ψj,k

(

x− xm
‖x− xm‖

)

‖x− xm‖γfX(xm) dx

+
1

hdX+γ
n

∫

hns<x−xm<hn(s+t)

ψj,k

(

x− xm
‖x− xm‖

)

‖x− xm‖γ[fX(x)− fX(xm)] dx

+
1

hdX+γ
n

∫

hns<x−xm<hn(s+t)

[m̄j(θ, x)− m̄j(θ, xm)

−ψj,k
(

x− xm
‖x− xm‖

)

‖x− xm‖γ
]

fX(x) dx.

The first term is equal to gP,xm,j(s, t) by a change of variable x to hnx+ xm in the integral.

The second term is bounded by gP,xm,j(s, t) sup‖x−xm‖≤2hnM [fX(x)− fX(xm)]/fX(xm), which

goes to zero uniformly in ‖(s, t)‖ ≤M by continuity of fX . The third term is equal to (using
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the same change of variables)

∫

s<x<s+t

[

m̄j(θ, hnx+ xm)− m̄j(θ, xm)

hγn
− ψj,k

(

x

‖x‖

)

‖x‖γ
]

fX(x) dx

=

∫

s<x<s+t

‖x‖γ
[

m̄j(θ, hnx+ xm)− m̄j(θ, xm)

‖hnx‖γ
− ψj,k

(

x

‖x‖

)]

fX(x) dx.

For ‖(s, t)‖ ≤M , this is bounded by a constant times

sup
‖x‖≤2M

∥

∥

∥

∥

m̄j(θ, hnx+ xm)− m̄j(θ, xm)

‖hnx‖γ
− ψj,k

(

x

‖x‖

)∥

∥

∥

∥

,

which goes to zero as n→ ∞ by Assumption 5.1.

The drift term and the mean zero term will be of the same order of magnitude if
√
n/h

dX/2
n = 1/hdX+γ

n ⇔ hn = n−1/(dX+2γ), so that

n(dX+γ)/(d+2γ)(EnYi,J(1)I(hns < X − x1 < hn(s+ t)), . . . , EnYi,J(ℓ)I(hns < X − xℓ < hn(s+ t))

= (Gn,x1(s, t) + gn,x1(s, t), . . . ,Gn,xℓ(s, t) + gn,xℓ(s, t))

d→ (GP,x1(s, t) + gP,x1(s, t), . . . ,GP,xm(s, t) + gP,xm(s, t))

taken as stochastic processes in {‖(s, t)‖ ≤M} with the supremum norm. From now on, let

hn = n−1/(d+2γ) so that this will hold.

Lemmas C.2 and C.3 hold as stated, except for the condition in Lemma C.3 that ε ≥
n−4/(d+4)(1 + log n)2 must be replaced by ε ≥ n2γ/(d+2γ)(1 + log n)2 so that h

d/2
n 2d/2ε1/2 ≥

n−1/2(1 + log n), which implies the fourth inequality in the last display in the proof of this

lemma, holds for the sequence hn in the general case.

The next part of the proof that needs to be modified is the proofs of Theorems C.2 and

C.3. For this, note that, for some constants C1 and η > 0

gP,xm,j(s, t) ≥ C1‖(s, t)‖γ
∏

i

ti (2)

and, for ‖(s, t)‖ ≤ η/hn,

gn,xm,j(s, t) ≥ C1‖(s, t)‖γ
∏

i

ti (3)
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for all m and j. To see this, note that

gn,xm,j(s, t) = E
1

hdX+γ
n

EYi,jI(hns < Xi − xm < hn(s+ t))

=
1

hdX+γ
n

∫

hns<x−xm<hn(s+t)

m̄(θ, x)fX(x) dx =

∫

s<x<s+t

m̄(θ, hnx+ xm)

‖hnx‖γ
‖x‖γfX(hnx+ xm) dx

where the last equality follows from the change of variables x to hnx + xm. For small

enough η, this is greater than or equal to 1
2

∫

s<x<s+t
ψ‖x‖γfX(xm) dx for ‖(s, t)‖ ≤ η/hn by

Assumption 5.1 and the continuity of fX . By definition, gP,xm,j(s, t) is also greater than

or equal to a constant times
∫

s<x<s+t
‖x‖γ dx. To see that this is greater than or equal

to a constant times ‖(s, t)‖γ∏i ti, note that the Euclidean norm is equivalent to the norm

(s, t) 7→ maximax{|si|, |si+ti|} and let i∗ be an index such that |si∗ | = maximax{|si|, |si+ti|}
or |si∗ +ti∗| = maximax{|si|, |si+ti|}. In the former case, we will have ‖x‖ ≥ |si∗ |/2 for x on

the set {si∗ ≤ xi∗ ≤ si∗ + |si∗ |/2}∩{s < x < s+ t}, which has Lebesgue measure
(

∏

i 6=i∗ ti

)

·
|si∗ |/2 ≥

(

∏

i 6=i∗ ti

)

· ti∗/4, so that
∫

s<x<s+t
‖x‖γ dx ≥ (maximax{|si|, |si + ti|}/2)γ

∏

i ti/4,

and a symmetric argument holds in the latter case.

With these inequalities in hand, the modified proofs of Theorems C.2 and C.3 are as

follows.

proof of Theorem C.2 for general case. Let G(s, t) = GP,xm,j(s, t) and g(s, t) = gP,xm,j(s, t).

Let Sk = {k ≤ ‖(s, t)‖ ≤ k + 1} and let SLk = Sk ∩ {∏i ti ≤ (k + 1)−δ} for some fixed δ. By

Lemma C.2,

P

(

inf
SL
k

G(s, t) + g(s, t) ≤ r

)

≤ P

(

sup
SL
k

|G(s, t)| ≥ |r|
)

≤
{

3(k + 1)[(k + 1)d/k−δ] + 2
}2d

exp
(

−Cr2(k + 1)δ
)

for k large enough where C depends only on d. Thus, the infimum over each SLk is summable

over k.

For any β and β with β < β, let S
β,β

k = Sk∩{(k+1)β <
∏

i ti ≤ (k+1)β}. Using Lemma
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C.2 and (2),

P



 inf
S
β,β

k

G(s, t) + g(s, t) ≤ r



 ≤ P



sup

S
β,β

k

|G(s, t)| ≥ C1k
γ+β





≤
{

3(k + 1)[(k + 1)d/((k + 1)β ∧ 1)] + 2
}2d

exp

(

−CC2
1

k2γ+2β

(k + 1)β

)

.

This is summable over k if 2γ + 2β − β > 0.

Now, note that, since
∏

i ti ≤ (k + 1)d on Sk, we have, for any −δ < β1 < β2 < . . . <

βℓ−1 < βℓ = d, Sk = SLk ∪ S−δ,β1
k ∪ Sβ1,β2k ∪ . . . ∪ S

βℓ−1,βℓ
k . If we choose 0 < δ < γ, β1 = 0,

β2 = γ, and βi+1 = (2βi) ∧ d for i ≥ 2, the arguments above will show that the probability

of the infimum being less than or equal to r over SLk , S
−δ,β1
k and each S

βi,βi+1

k is summable

over k, so that P (infSk
G(s, t) + g(s, t) ≤ r) is summable over k, so setting M be such that

the tail of this sum past M is less than ε gives the desired result.

proof of Theorem C.3 for the general case. LetGn(s, t) = Gn,xm,j(s, t) and gn(s, t) = gn,xm,j(s, t).

Let η be small enough that (3) holds.

As in the proof of the previous theorem, let Sk = {k ≤ ‖(s, t)‖ ≤ k + 1} and let

SLk = Sk ∩ {∏i ti ≤ (k + 1)−δ} for some fixed δ. We have, using Lemma C.3,

P

(

inf
SL
k

Gn(s, t) + gn(s, t) ≤ r

)

≤ P

(

sup
SL
k

|Gn(s, t)| ≥ |r|
)

≤
{

6(k + 1)[(k + 1)d/k−δ] + 2
}2d

exp

(

−C |r|
(k + 1)−δ/2

)

for (k+1)−δ ≥ n−2γ/(d+2γ)(1+log n)2 ⇐⇒ k+1 ≤ n2γ/[δ(d+2γ)](1+log n)−2/δ so, if δ < 2γ, this

will hold eventually for all (k + 1) ≤ h−1
n η (once h−1

n η ≤ n2γ/[δ(d+2γ)](1 + log n)−2/δ ⇐⇒ η ≤
n2γ/[δ(d+2γ)]n−1/(d+2γ)(1+log n)−2/δ = n(2γ/δ−1)/(d+2γ)(1+log n)−2/δ). The bound is summable

over k for any δ > 0.

Again following the proof of the previous theorem, for β < β, define S
β,β

k = Sk∩{(k+1)β <
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∏

i ti ≤ (k + 1)β}. We have, again using Lemma C.3,

P



 inf
S
β,β

k

Gn(s, t) + gn(s, t) ≤ r



 ≤ P



sup

S
β,β

k

|Gn(s, t)| ≥ C1k
γ+β





≤
{

6(k + 1)[(k + 1)d/(kβ ∧ 1)] + 2
}2d

exp

(

−C C1k
γ+β

(k + 1)β/2

)

for (k+1)β ≥ n−2γ/(d+2γ)(1+log n)2 (which will hold once the same inequality holds for δ for

−δ < β) and k+1 ≤ h−1
n η. The bound is summable over k for any β, β with 2γ+2β−β > 0.

Thus, noting as in the previous theorem that, for any −δ < β1 < β2 < . . . < βℓ−1 < βℓ =

d, Sk = SLk ∪ S−δ,β1
k ∪ Sβ1,β2k ∪ . . . ∪ S

βℓ−1,βℓ
k , if we choose 0 < δ < γ, β1 = 0, β2 = γ, and

βi+1 = (2βi)∧d for i ≥ 2, the arguments above will show that the probability of the infimum

being less than or equal to r over the sets indexed by k for any k ≤ h−1
n η is bounded uniformly

in n by a sequence that is summable over k (once η ≤ n(2γ/δ−1)/(d+2γ)(1 + log n)−2/δ). Thus,

if we chooseM such that the tail of this sum pastM is less than ε and let N be large enough

so that η ≤ N (2γ/δ−1)/(d+2γ)(1 + logN)−2/δ, we will have the desired result.

Lemmas C.4 and C.5 hold as stated with the same proofs, so the rest of the proof is the

same as in the γ = 2 case. The n/(an log n) rate for Zn,2 is still faster than the n(d+γ)/(d+2γ)

rate for an increasing slowly enough.

The proof of Theorem 4.1 for the limiting process is the same as before. The only place

the drift term is used is in ensuring that the inequality gP,xm,j(si,k, tk) ≤ K/k holds in the

last display in the proof of the theorem, which is still the case.

C.4 Testing Rate of Convergence Conditions

First, I collect results on the rate estimate β̂ defined in (1). The next lemma bounds β̂

when the statistic may not converge at a polynomial rate. Throughout the following, Sn

is a statistic on R with cdf Jn(x) and quantile function J−1
n (t). Ln,b(x|τ) and L̃n,b(x|τ) are

defined as in the body of the paper, with S(Tn(θ)) replaced by Sn.

Lemma C.8. Let Sn be a statistic such that, for some sequence τn and x > 0, τnJ
−1
n (t) ≥

x for large enough n. Then, if τbSn
p→ 0 and b/n → 0, we will have, for any ε > 0,

L−1
n,b(t+ ε|τ) ≥ x− ε with probability approaching one.
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Proof. It suffices to show Ln,b(x − ε|τ) ≤ t + ε with probability approaching one. On the

event En ≡ {|τbSS | ≤ ε}, which has probability approaching one, Ln,b(x− ε|τ) ≤ L̃n,b(x|τ).
We also have E[Ln,b(x|τ)] = P (τbSS ≤ x) = Jb(x/τb) ≤ t by assumption. Thus,

P (Ln,b(x− ε|τ) ≤ t+ ε) ≥ P
({

L̃n,b(x|τ) ≤ t+ ε
}

∩ En
)

≥ P
({

L̃n,b(x|τ) ≤ E[Ln,b(x|τ)] + ε
}

∩ En
)

.

This goes to one by standard arguments.

Lemma C.9. Let β̂a be the estimator defined in Section 2.4, or any other estimator such

that β̂a =
− logL−1

n,b1
(t|1)+Op(1)

log b1−Op(1)
. Suppose that, for some xℓ > 0 and βu, xun

βu ≤ J−1
n (t − ε)

eventually and bβu1 Sn
p→ 0. Then, for any ε > 0, we will have β̂a ≤ β̂u + ε with probability

approaching one.

Proof. We have

β̂a = −
logL−1

n,b1
(t|1)

log b1
+ op(1) =

βu log b1 − logL−1
n,b1

(t|bβu)
log b1

+ op(1) ≤ βu −
log(xu/2)

log b1
+ op(1)

p→ βu

where the inequality holds with probability approaching one by Lemma C.8.

The following lemma shows that the asymptotic distribution of the KS statistic is strictly

increasing on its support, which is needed for the estimates of the rate of convergence in

Politis, Romano, and Wolf (1999) to converge at a fast enough rate that they can be used

in the subsampling procedure.

Lemma C.10. Under Assumptions 3.1, 3.2, 3.3, 4.1 and 4.2 with part (ii) of Assumption

3.1 replaced by Assumption 5.1, if S is convex, then the the asymptotic distribution S(Z)

in Theorem 5.2 satisfies P (S(Z) ∈ (a,∞)) = 1 for some a, and the cdf of S(Z) is strictly

increasing on (a,∞).

Proof. First, note that, for any concave functions f1, . . . , fdY , fi : Vi → R, for some vector

space Vi, x 7→ S(f1(x1), . . . , fdY (xdY )) is convex, since, for any λ ∈ (0, 1),

S(f1(λxa,1 + (1− λ)xb,1), . . . , fk(λxa,dY + (1− λ)xb,dY ))

≥ S(λf1(xa,1) + (1− λ)fk(xb,1), , . . . , λfk(xa,dY ) + (1− λ)fk(xb,dY ))

≥ λS(f1(xa,1), . . . , fk(xa,dY )) + (1− λ)S(f1(xb,1), . . . , fk(xb,dY ))
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where the first inequality follows since S is decreasing in each argument and by concavity of

the fks, and the second follows by convexity of S.

S(Z) can be written as, for some random processes H1(t), . . . ,HdY (t) with continuous

sample paths and T ≡ R
|X0|·2dX , S(inft∈T H1(t), . . . , inft∈T HdY (t)). Since the infimum of a

real valued function is a concave functional, this is a convex function of the sample paths

of (H1(t), . . . ,HdY (t)). The result follows from Theorem 11.1 in Davydov, Lifshits, and

Smorodina (1998) as long as the vector of random processes can be given a topology for

which this function is lower semi-continuous. In fact, this step can be done away with

by noting that, for T0 a countable dense subset of T and Tℓ the first ℓ elements of this

subset, S(inft∈Tℓ
H1(t), . . . , inft∈Tℓ

HdY (t))
d→ S(inft∈R2d H1(t), . . . , inft∈R2d HdY (t)) as ℓ→ ∞,

so, letting Fℓ be the cdf of S(inft∈Tℓ
H1(t), . . . , inft∈Tℓ

HdY (t)), applying Proposition 11.3 of

Davydov, Lifshits, and Smorodina (1998) for each Fℓ shows that Φ−1(Fℓ(t)) is concave for

each ℓ, so, by convergence in distribution, this holds for S(Z) as well.

The same result in Davydov, Lifshits, and Smorodina (1998) could also be used in the

proof of Theorem 4.1 to show that the distribution of S(Z) is continuous except possibly at

the infimum of its support, but an additional argument would be needed to show that, if

such an atom exists, it would have to be at zero. In the proof of Theorem 4.1, this is handled

by using the results of Pitt and Tran (1979) instead.

We are now ready to prove Theorem 6.1.

proof of Theorem 6.1. First, suppose that Assumption 3.1 holds with part (ii) of Assump-

tion 3.1 replaced by Assumption 5.1 for some γ < γ < γ and X0 nonempty. By Theorem

5.2, n(dX+γ)/(dX+2γ)S(Tn(θ)) converges in distribution to a continous distribution. Thus, by

Lemma C.9, β̂a
p→ (dX + γ)/(dX + 2γ), so β̂a > β = (dX + γ)/(dX + 2γ) with probability

approaching one. On this event, the test uses the subsample estimate of the 1 − α quan-

tile with rate estimate β̂ ∧ β. By Theorem 8.2.1 in Politis, Romano, and Wolf (1999),

β̂ ∧ β = (dX + γ)/(dX + 2γ) + op((log n)
−1) as long as the asymptotic distribution of

n(dX+γ)/(dX+2γ)S(Tn(θ)) is increasing on the smallest interval (k0, k1) on which the asymptotic

distribution has probability one. This holds by Lemma C.10. By Theorem 8.3.1 in Politis,

Romano, and Wolf (1999), the op((log n)
−1) rate of convergence for the rate estimate β̂ ∧ β

implies that the probability of rejecting converges to α.

Next, suppose that Assumption 3.1 holds with part (ii) of Assumption 3.1 replaced by

Assumption 5.1 for γ = γ. The test that compares n1/2S(Tn(θ)) to a positive critical value

will fail to reject with probability approaching one in this case, so, on an event with prob-

ability approaching one, the test will reject only if β̂a ≥ β and the subsampling test with
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rate β̂ ∧ β rejects. Thus, the probability of rejecting is asymptotically no greater than the

probability of rejecting with the subsampling test with rate β̂ ∧ β, which has asymptotic

level α under these conditions by the argument above.

Now, consider the case where, for some x0 ∈ X0 and B < ∞, m̄j(θ, x) ≤ B‖x − x0‖γ
for some γ > γ̄. Let m̃j(Wi, θ) = mj(Wi, θ) + (B‖x − x0‖γ − m̄j(θ, x)). Then m̃j(Wi, θ) ≥
mj(Wi, θ), and m̃j(Wi, θ) satisfies the assumptions of Theorems 5.2 and 4.1, so

n(dX+γ)/(dX+2γ)S(Tn(θ)) ≥ n(dX+γ)/(dX+2γ)S(0, . . . , 0, inf
s,t
Enm̃j(Wi, θ)I(s < Xi < s+ t), 0, . . . , 0)

and the latter quantity converges in distribution to a continuous random variable that is

positive with probability one. Thus, by Lemma C.9, for any ε > 0, β̂a < (dX+γ)/(dX+2γ)+ε

with probability approaching one. For ε small enough, this means that β̂a < (dX +γ)/(dX +

2γ) with probability approaching one. Thus, the procedure uses an asymptotically level α

test with probability approaching one.

The remaining case is where m̄j(θ, x) is bounded from below away from zero. Ifmj(Wi, θ) ≥
0 for all j with probability one, S(Tn(θ)) and the estimated 1 − α quantile will both be

zero, so the probability of rejecting will be zero, so suppose that P (mj(Wi, θ) < 0) > 0

for some j. Then, for some η > 0, we have nS(Tn(θ)) > η with probability approach-

ing one. From Lemma C.8 (applied with t less that 1 − α and τb = b), it follows that

L−1
n,b(1 − α|bβ̂∧β) = bβ̂∧β−1L−1

n,b(1 − α|b) ≥ bβ̂∧β−1η/2 with probability approaching one. By

Lemma C.5, S(Tn(θ)) will converge at a n log n rate, so that nβ̂∧βS(Tn(θ)) < nβ̂∧β−1(log n)2

with probability approaching one. Thus, we will fail to reject with probability approaching

one as long as nβ̂∧β−1(log n)2 ≤ bβ̂∧β−1η/2 = nχ3(β̂∧β−1)η/2 for large enough n, and this holds

since χ3 < 1. A similar argument holds for L̃−1
n,b(1− α|bβ̂∧β).

C.5 Local Alternatives

proof of Theorem 7.1. Everything is the same as in the proof of Theorem 3.1, but with the

following modifications.

First, in the proof of Theorem C.1, we need to show that, for all j,

√
n

√

hdn
(En − E)[mj(Wi, θ0 + an)−mj(Wi, θ0)]I(hns < Xi − xk < hn(s+ t))

converges to zero uniformly over ‖(s, t)‖ < M for any fixed M . By Theorem 2.14.1 in
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van der Vaart and Wellner (1996), the L2 norm of this is bounded up to a constant by

J(1,Fn, L2)
1
hdn

√

EFn(Xi,Wi)2, where Fn = {(x, w) 7→ [mj(w, θ0 + an) −mj(w, θ0)]I(hns <

x − xk < hn(s + t))|(s, t) ∈ R
2d} and Fn(x, w) = |mj(w, θ0 + an) − mj(w, θ0)|I(−hnMι <

x − xk < 2hnMι) is an envelope function for this class (here ι is a vector of ones). The

covering numbers of the Fns are uniformly bounded by a polynomial, so that we just need

to show that 1
hdn

√

EFn(Xi,Wi)2 converges to zero. We have

1
√

hdn

√

EFn(Xi,Wi)2

=
1
√

hdn

√

EE{[mj(Wi, θ0 + an)−mj(Wi, θ0)]2|Xi}I(−hnMι < Xi − xk < 2hnMι)

≤ 1
√

hdn

√

EI(−hnMι < Xi − xk < 2hnMι) sup
‖x−xk‖≤η

E{[mj(Wi, θ0 + an)−mj(Wi, θ0)]
2|Xi = x}

where the first equality uses the law of iterated expectations and the second holds eventually

with η chosen so that the convergence in Assumption 7.2 is uniform over ‖x− xk‖ < η. The

first term is bounded eventually by f
∫

−Mι<x<2Mι
dx where f is a bound for the density of

Xi in a neighborhood of xk (this follows from the same change of variables as in other parts

of the proof). The second term converges to zero by Assumption 7.2.

Next, in the proof of Theorem C.1, we need to show that

1

hd+2
n

E[m̄j(θ0 + an, Xi)− m̄j(θ0, Xi)]I(hns < Xi − xk < hn(s+ t)) → fX(xk)m̄θ,j(θ0, xk)a
∏

i

ti

uniformly in ‖(s, t)‖ ≤M . We have

1

hd+2
n

E[m̄j(θ0 + an, Xi)− m̄j(θ0, Xi)]I(hns < Xi − xk < hn(s+ t))− fX(xk)m̄θ,j(θ0, xk)a
∏

i

ti

=
1

hd+2
n

∫

hns<x−xk<hn(s+t)

{

[m̄j(θ0 + an, x)− m̄j(θ0, x)]fX(x)− h2nfX(xk)m̄θ,j(θ0, xk)a
}

dx

=

∫

s<x<s+t

{

h−2
n [m̄j(θ0 + an, hnx+ xk)− m̄j(θ0, hnx+ xk)]fX(hnx+ xk)− fX(xk)m̄θ,j(θ0, xk)a

}

dx

where the second equality comes from the change of variable x 7→ hnx+ xk. This will go to

zero uniformly in ‖(s, t)‖ ≤M as long as sup‖x‖≤2M ‖fX(hnx+ xk)− fX(xk)‖ and

sup
‖x‖≤2M

‖h−2
n [m̄j(θ0 + an, hnx+ xk)− m̄j(θ0, hnx+ xk)]− m̄θ,j(θ0, xk)a‖
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both go to zero. sup‖x‖≤2M ‖fX(hnx+ xk)− fX(xk)‖ goes to zero by continuity of fX at xk.

As for the other expression, since ah2n = an, the mean value theorem shows that this is equal

to m̄θ,j(θ
∗(an), hnx+ xk)a− m̄θ,j(θ0, xk)a for some θ∗(an) between θ0 and θ0 + an. This goes

to zero by Assumption 7.1.

In verifying the conditions of Lemma C.1, we need to make sure the bounds, gP,xk,j,a(s, t) ≥
C‖(s, t)‖2∏i ti and

gn,xk,j,a(s, t) ≡
1

hd+2
n

Emj(Wi, θ0 + an)I(hns < Xi < hn(s+ t)) ≥ C‖(s, t)‖2
∏

i

ti

still hold for ‖(s, t)‖ ≥ M for M large enough and, for the latter function, ‖(s, t)‖ ≤ h−1
n η

for some η > 0 and n greater than some N that does not depend on M . We have

gP,xk,j,a(s, t) = gP,xk,j(s, t) + m̄θ,j(θ0, xk)afX(xk)
∏

i

ti ≥ C‖(s, t)‖2
∏

i

ti + m̄θ,j(θ0, xk)afX(xk)
∏

i

ti

= ‖(s, t)‖2[C + m̄θ,j(θ0, xk)afX(xk)/‖(s, t)‖2]
∏

i

ti

where the first inequality follows from the bound in the original proof. For ‖(s, t)‖ ≥
M for M large enough, this is greater than or equal to K‖(s, t)‖2∏i ti for K = C −
|m̄θ,j(θ0, xk)a|fX(xk)/M2 > 0. For gn,xk,j,a(s, t), we have

‖gP,xk,j,a(s, t)− gP,xk,j(s, t)‖ = ‖ 1

hd+2
n

E[mj(Wi, θ0 + an)−mj(Wi, θ0)]I(hns < Xi < hn(s+ t))‖

≤ sup
‖x−xk‖≤η

‖ 1

h2n
[m̄j(θ0 + an, x)− m̄j(θ0, x)]‖‖

1

hdn
EI(hns < Xi < hn(s+ t))‖.

By the mean value theorem, m̄j(θ0 + an, x) − m̄j(θ0, x) = m̄j,θ(θ
∗(an), x)an for some θ∗(an)

between θ0 and θ0 + an. By continuity of the derivative as a function of (θ, x), for small

enough η and n large enough, m̄j,θ(θ
∗(an), x) is bounded from above, so that ‖ 1

h2n
[m̄j(θ0 +

an, x)−m̄j(θ0, x)]‖ is bounded by a constant times ‖an‖/h2n = ‖a‖. By continuity of fX at xk,

‖ 1
hdn
EI(hns < Xi < hn(s+ t))‖ is bounded by some constant times

∏

i ti for ‖(s, t)‖ ≤ h−1
n η.

Thus, for M ≤ ‖(s, t)‖ ≤ h−1
n η for the appropriate M and η, we have, for some constant C1,

gP,xk,j,a(s, t) ≥ gP,xk,j(s, t)− C1

∏

i

ti ≥ C‖(s, t)‖2
∏

i

ti − C1

∏

i

ti

= ‖(s, t)‖2[C − C1/‖(s, t)‖2]
∏

i

ti
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where the second inequality uses the bound from the original proof. For M large enough,

this gives the desired bound with the constant equal to C − C1/M > 0.

In verifying the conditions of Lemma C.1, we also need to make sure the argument in

Lemma C.3 still goes through when m(Wi, θ0) is replaced by m(Wi, θ0 + an). To get the

lemma to hold (with the constant C depending only on the distribution of X and the Y in

Assumption 7.3), we can use the same proof, but with the classes of functions Fn defined to be

Fn = {(x, w) 7→ mj(w, θ0+an)I(hns0 < x−xk < hn(s0+ t))|t ≤ t0} (J(1,Fn, L
2) is bounded

uniformly for these classes because the covering number of each Fn is bounded by the same

polynomial), and using the envelope function Fn(x, w) = Y I(hns0 < x − xk < hn(s0 + t0))

when applying Theorem 2.14.1 in van der Vaart and Wellner (1996).

proof of Theorem 7.2. First, note that, for any neighborhoods B(xk) of the elements of X0,√
n infs,tEnmj(Wi, θ0 + an)I(s < X < s + t) =

√
n inf(s,s+t)∈∪k s.t. j∈J(k)B(xk)Enmj(Wi, θ0 +

an)I(s < Xi < s + t) + op(1) since, if these neighborhoods are made small enough, we will

have, for any (s, s+t) not in one of these neighborhoods, Emj(Wi, θ0+an)I(s < Xi < s+t) ≥
BP (s < Xi < s + t) by an argument similar to the one in Lemma C.4, so that an argu-

ment similar to the one in Lemma C.5 will show that inf(s,s+t)∈∪k s.t. j /∈J(k)B(xk)Enmj(Wi, θ0+

an)I(s < Xi < s+ t) converges to zero at a faster than
√
n rate (Assumption 7.1 guarantees

that E[mj(Wi, θ0+an)|X] is eventually bounded away from zero outside of any neighborhood

of X0 so that a similar argument applies).

Thus, the result will follow once we show that, for each j and k such that j ∈ J(k),

√
n inf

(s,s+t)∈B(xk)
Enmj(Wi, θ0 + an)I(s < Xi < s+ t)

p→ inf
s,t
fX(xk)

∫

s<x<s+t

(

1

2
x′V x+mθ,j(θ0, xk)a

)

dx.

With this in mind, fix j and k with j ∈ J(k).

Let (s∗n, t
∗
n) minimize Enmj(Wi, θ0+an)I(s < X < s+t) over B(xk)

2 (and be chosen from

the set of minimizers in a measurable way). First, I show that ρ(0, (s∗n, t
∗
n))

p→ 0 where ρ is the

covariance semimetric ρ((s, t), (s′, t′)) = var(mj(Wi, θ0)I(s < x < s + t) −mj(Wi, θ0)I(s
′ <

x < s′ + t′)). To show this, note that, for any ε > 0, Emj(Wi, θ0 + an)I(s < Xi < s + t) is

bounded from below away from zero for ρ(0, (s, t)) ≥ ε for large enough n. To see this, note

that, for ρ(0, (s, t)) ≥ ε,
∏

i ti ≥ K for some constant K, so that ‖(s, t)‖ ≥ K1/d and, for
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some constant C and a bound f for fX on B(xk),

Emj(Wi, θ0 + an)I(s < Xi < s+ t)

= Emj(Wi, θ0)I(s < Xi < s+ t) + E[m̄j(θ0 + an, Xi)− m̄j(θ0, Xi)]I(s < Xi < s+ t)

≥ C1‖(s, t)‖2
(

∏

i

ti

)

− sup
x∈B(xk)

‖m̄j(θ0 + an, x)− m̄j(θ0, x)‖f
(

∏

i

ti

)

≥
[

C1‖(s, t)‖2 − sup
x∈B(xk)

‖m̄j(θ0 + an, x)− m̄j(θ0, x)‖f
]

K.

By Assumption 7.2, supx∈B(xk)
‖m̄j(θ0+an, x)−m̄j(θ0, x)‖ converges to zero, so the last term

in this display will be positive and bounded away from zero for large enough n. Thus, we can

write
√
nEnmj(Wi, θ0+an)I(s < Xi < s+ t) as the sum of

√
n(En−E)mj(Wi, θ0+an)I(s <

Xi < s + t), which is Op(1) uniformly in (s, t), and
√
nEmj(Wi, θ0 + an)I(s < X < s + t),

which is bounded from below uniformly in ρ(0, (s, t)) ≥ ε by a sequence of constants that

go to infinity. Thus, infρ(0,(s,t))≥ε
√
nEnmj(Wi, θ0 + an)I(s < X < s+ t) is greater than zero

with probability approaching one, so ρ(0, (s∗, t∗))
p→ 0.

Thus, for some sequence of random variables εn
p→ 0,

√
n inf

s,t
Enmj(Wi, θ0 + an)I(s < X < s+ t)

=
√
n inf
ρ(0,(s∗,t∗))≤εn,(s,s+t)∈B(xk)

Enmj(Wi, θ0 + an)I(s < X < s+ t).

This is equal to
√
n infρ(0,(s∗,t∗))≤εn,(s,s+t)∈B(xk)Emj(Wi, θ0 + an)I(s < X < s+ t) plus a term

that is bounded by
√
n supρ(0,(s∗,t∗))≤εn,(s,s+t)∈B(xk)

|(En − E)Enmj(Wi, θ0 + an)I(s < X <

s + t)|. By Assumption 7.2 and an argument using the maximal inequality in Theorem

2.14.1 in van der Vaart and Wellner (1996),
√
n sup(s,s+t)∈B(xk)

|(En − E)[mj(Wi, θ0 + an)−
mj(Wi, θ0)]I(s < Xi < s+ t)| converges in probability to zero.

√
n(En −E)mj(Wi, θ0)I(s <

Xi < s + t) converges in distribution under the supremum norm to a mean zero Gaus-

sian process H(s, t) with covariance kernel cov(H(s, t),H(s′, t′)) = cov(mj(Wi, θ0)I(s <

Xi < s + t),mj(Wi, θ0)I(s
′ < Xi < s′ + t′)) and almost sure ρ continuous sample paths.

Since (z, ε) 7→ supρ(0,(s,t))≤ε |z(s, t)| is continuous in C(R2dX , ρ) × R (where C(R2dX , ρ) is

the space of ρ continuous functions on R
2d) under the product norm of the supremum

norm and the Euclidean norm, by the continuous mapping theorem, supρ(0,(s,t))≤εn |
√
n(En−

E)mj(Wi, θ0)I(s < Xi < s + t)| d→ supρ(0,(s,t))≤0 H(s, t) = 0 (the last step follows since

var(H(s, t)) = 0 whenever ρ(0, (s, t)) = 0).
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Thus,

√
n inf

(s,s+t)∈B(xk)
Enmj(Wi, θ0 + an)I(s < Xi < s+ t)

=
√
n inf
ρ(0,(s,t))<εn,(s,s+t)∈B(xk)

Emj(Wi, θ0 + an)I(s < Xi < s+ t) + op(1)

=
√
n inf
ρ(0,(s,t))<εn,(s,s+t)∈B(xk)

∫

s<x<s+t

m̄j(θ0 + an, x)fX(x) dx+ op(1).

By Assumption 7.1, the integrand is positive eventually for ‖(s− xk, t)‖ ≥ η for any η > 0,

and once this holds, the infimum will be achieved on ‖(s − xk, t)‖ < η. Using a first order

Taylor expansion in the first argument of m̄j(θ0+an, x) and a second order Taylor expansion

in the second argument the integrand is equal to

[

1

2
(x− xk)V (x∗(x))(x− xk)

′ + m̄θ,j(θ
∗(an), x)an

]

fX(x)

for some x∗(x) between x and xk and θ∗(an) between θ0 and θ0 + an. For η small enough,

continuity of the derivatives at (θ0, xk) guarantees that this is bounded from below by C1‖x−
xk‖2 − C2an for some constants C1 and C2, so the integrand is positive for x greater than

C
√

‖an‖ for some large C, so that the infimum will be taken on ‖(s, s + t)‖ < C
√

‖an‖.
Thus, we have

√
n inf

(s,s+t)∈B(xk)
Enmj(Wi, θ0 + an)I(s < Xi < s+ t)

=
√
n inf
ρ(0,(s,t))<εn,‖(s−xk,t)‖<C

√
‖an‖

∫

s<x<s+t

m̄j(θ0 + an, x)fX(x) dx+ op(1).

This will be equal up to o(1) to the infimum of

√
n

∫

s<x<s+t

[

1

2
(x− xk)Vj(xk)(x− xk)

′ + m̄θ,j(θ0, xk)an

]

fX(xk) dx

once we show that the difference between this expression and
√
n
∫

s<x<s+t
m̄j(θ0+an, x)fX(x) dx

goes to zero uniformly over ‖(s − xk, t)‖ ≤ C
√

‖an‖ (the infimum of this last display will

be taken at a sequence where ‖(s− xk, t)‖ ≤ C
√

‖an‖ anyway, so that the infimum can be

taken over all of R2d).
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The difference between these terms is

√
n

∫

s<x<s+t

[

1

2
(x− xk)Vj(xk)(x− xk)

′ + m̄θ,j(θ0, xk)an

]

[fX(x)− fX(xk)] dx

+
√
n

∫

s<x<s+t

1

2
[(x− xk)Vj(x

∗(x))(x− xk)
′ − (x− xk)Vj(xk)(x− xk)

′] fX(x) dx

+
√
n

∫

s<x<s+t

[m̄θ,j(θ
∗(an), x)− m̄θ,j(θ0, xk)] anfX(x) dx.

These can all be bounded using the change of variables u = (x − xk)n
1/(2(d+2)) and the

continuity of densities, conditional means, and their derivatives. The first term is

√
n

∫

n1/(2(d+2))(s−xk)<u<(s+t−xk)n1/(2(d+2))

[

1

2
uVj(xk)u

′n−1/(d+2) + m̄θ,j(θ0, xk)an
−1/(d+2)

]

× [fX(n
−1/(2(d+2))u+ xk)− fX(xk)]n

−d/(2(d+2)) du

=

∫

n1/(2(d+2))(s−xk)<u<(s+t−xk)n1/(2(d+2))

[

1

2
uVj(xk)u

′ + m̄θ,j(θ0, xk)a

]

× [fX(n
−1/(2(d+2))u+ xk)− fX(xk)] du.

The integrand converges to zero uniformly over u in any bounded set by the continuity

of fX at xk, and the area of integration is bounded by ‖u‖ ≤ 2n1/(2(d+2))‖(s − xk, t)‖ ≤
2Cn1/(2(d+2))

√

‖a‖n−1/(2(d+2)) = 2C
√

‖a‖ on ‖(s − xk, t)‖ ≤ C
√

‖an‖. Using the same

change of variables, the second term is bounded by the integral of

1

2

[

u′Vj(x
∗(n−1/(2(d+2))u+ xk))u

′ − uVj(xk)u
′
]

fX(n
−1/(2(d+2))u+ xk)

over a bounded region, and this converges to zero uniformly in any bounded region by

continuity of the second derivative matrix. The last term is, by the same change of variables,

bounded by the integral of

[

m̄θ,j(θ
∗(an), n

−1/(2(d+2))u+ xk)− m̄θ,j(θ0, xk)
]

afX(n
−1/(2(d+2))u+ xk)

over a bounded region, and this converges to zero by continuity of mθ,j(θ, x) at (θ0, xk).
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Thus,

√
n inf

(s,s+t)∈B(xk)
Enmj(Wi, θ0 + an)I(s < Xi < s+ t)

= inf
‖(s−k,t)‖≤C

√
‖an‖

√
n

∫

s<x<s+t

[

1

2
(x− xk)Vj(xk)(x− xk)

′ + m̄θ,j(θ0, xk)an

]

fX(xk) dx+ op(1)

= inf
‖(s−xk,t)‖≤C

√
‖a‖

∫

(s−xk)<u<(s−xk+t)

[

1

2
uVj(xk)u

′ + m̄θ,j(θ0, xk)an

]

fX(xk) du+ op(1)

where the last equality follows from the same change of variables and a change of coordinates

in (s, t). The result follows since, for large enough C, the unconstrained infimum is taken on

‖(s− xk, t)‖ ≤ C
√

‖a‖, and C can be chosen arbitrarily large.

C.6 Alternative Method for Estimating the Asymptotic Distribu-

tion

proof of Theorem B.1. It suffices to show that, for every subsequence, there exists a further

subsequence along which the distribution of Ẑ converges weakly to the distribution of Z.

Given a subsequence, let the further subsequence be such that the convergence in probability

in Assumption B.1 is with probability one.

For any fixed B > 0, the processes

[

ĜP,xk(s, t) + ĝP,xk(s, t)
]

I(‖(s, t)‖ ≤ Bn)

are, along this subsequence, Gaussian processes with mean functions and covariance kernels

converging with probability one to those of the distribution being estimated uniformly in

‖(s, t)‖ ≤ B. Thus, with probability one, the distributions of these processes converge weakly

to the distribution of the process being estimated along this subsequence taken as random

processes on ‖(s, t)‖ ≤ B. Thus, to get the weak convergence of the elementwise infimum,

we just need to verify part (ii) of Lemma C.1. To this end, note that, along the further

subsequence, the infimum of

[

ĜP,xk,j(s, t) + ĝP,xk,j(s, t)
]

I(‖(s, t)‖ ≤ Bn)

is eventually bounded from below (in the stochastic dominance sense) by the infimum of a
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process defined the same way as

GP,xk,j(s, t) + gP,xk,j(s, t),

but with E(mJ(k)(Wi, θ)mJ(k)(Wi, θ)
′|X = xk) replaced by 2E(mJ(k)(Wi, θ)mJ(k)(Wi, θ)

′|X =

xk), and V (xk) replaced by V (xk)/2. Once n is large enough that this holds along this further

subsequence, part (ii) of Lemma C.1 will hold by Lemma C.2 applied to this process.

proof of Corollary B.1. By Theorem B.1, the distribution of S(Ẑ) converges weakly condi-

tionally in probability to the distribution of S(Z), and by Theorem 3.1, n(dX+2)/(dX+4)S(Tn(θ))
d→

S(Z). S(Z) has a continuous distribution by Theorem 4.1, so the result follows by standard

arguments.

proof of Lemma B.1. Let h(x) = m̄j(θ, x)−minx′∈D m̄j(θ, x) where m̄j(θ, x) = E(mj(Wi, θ)|Xi =

x) for a continuous version of the conditional mean function. First, note that X j
0 is compact.

Since each x ∈ X j
0 is a local minimizer of h(x) such that the second derivative matrix is

strictly positive definite at x, there is an open set A(x) containing each x ∈ X j
0 such that

h(x) > 0 on A(x)\x. The sets A(x) with x ranging over X j
0 form a covering of X j

0 with

open sets. Thus, there is a finite subcover A(x1), . . . A(xℓ) of X j
0 . Since the only elements in

A(x1)∪ · · ·∪A(xℓ) that are also in X j
0 are x1, . . . , xℓ, this means that X j

0 = {x1, . . . , xℓ}.

proof of Theorem B.5. By the next lemma, we will have X j
0 ⊆ X̂ j

0 ⊆ ∪ℓ̂jk=1Bεn(x̂j,k) and X j
0 ⊆

X̂ j
0 ⊆ ∪k s.t. j∈J(k)Bεn(xk) with probability approaching one. When this holds, we will have

ℓ̂ ≤ |{k|j ∈ J(k)}| by construction and, once εn is less than the smallest distance between any

two points in X j
0 , we will also have ℓ̂j = |{k|j ∈ J(k)}| and, for each k from 1 to ℓ̂j, we will

have, for some function r(j, k) such that r(j, ·), is bijective from {1, . . . , ℓ̂j} to {k|j ∈ J(k)},
xr(j,k) ∈ Bεn(x̂j,k) for each j, k. When this holds, all of the x̂j,ks with r(j, k) equal will be in

the same equivalence class, since the corresponding εn neighborhoods will intersect. When

εn is small enough that εn neighborhoods containing xr and εn neighborhoods containing xs

do not intersect for r 6= s, there will be exactly ℓ equivalence classes, each one corresponding

to the (j, k) indices such that r(j, k) is the same. Let the labeling of the x̃ss be such that,

for all s, x̃s = x̂j,k for some (j, k) such that r(j, k) = s. Then, for each s, we have, for some

(j, k) such that r(j, k) = s, xs = xr(j,k) ∈ Bεn(x̂j,k) = Bεn(x̃s) with probability approaching

one so that x̃s
p→ xs. To verify that Ĵ(s) = J(s) with probability approaching one, note

that, for j ∈ J(s), we will have xs ∈ X j
0 ⊆ ∪kBεn(x̂j,k) and xs ∈ Bεn(x̃s) eventually, and,

when this holds, [∪kBεn(x̂j,k)] ∩ Bεn(x̃s) 6= ∅ so that j ∈ Ĵ(s). For j /∈ J(s), each x̂j,k will
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eventually be within εn of some xr with r 6= s, while indices (j′, k′) in the equivalence class

associated with s will eventually have x̂j′,k′ within 2ε of xs, so that (j, k) will not be in the

equivalence class associated with s for any k, and j /∈ Ĵ(s).

Lemma C.11. Suppose that supx∈D ‖ ˆ̄mj(θ, x)− m̄j(θ, x)‖ = O(an) for some sequence an →
0. Then, under Assumption 3.1, for any sequence bn → ∞ with bnan → 0 and εn with

εn → 0 more slowly than
√
bnan, the set X̂ j

0 ≡ {x| ˆ̄mj(θ, x) ≤ bnan} satisfies

X j
0 ⊆ X̂ j

0 ⊆ ∪k s.t. j∈J(k)Bεn(xk)

Proof. We will have X j
0 ⊆ X̂ j

0 as soon as supx∈D ‖ ˆ̄mj(θ, x) − m̄j(θ, x)‖ ≤ bnan, which hap-

pens with probability approaching one. To show that X̂ j
0 ⊆ ∪k s.t. j∈J(k)Bεn(xk) eventu-

ally, suppose that, for some x̂ ∈ X̂ j
0 , x̂ /∈ Bεn(xk) for any k. Let C and η be such that

m̄j(θ, x) ≥ Cmink ‖x − xk‖2 when ‖x − xk‖ ≤ η for some k (such a C and η exist by As-

sumption 3.1). Then, for any x̂ such that ˆ̄mj(θ, x̂) ≤ bnan, we must have, with probability

approaching one,

Cmin
k

‖x− xk‖2 ≤ m̄j(θ, x̂) ≤ bnan + m̄j(θ, x̂)− ˆ̄mj(θ, x̂) ≤ 2bnan

where the first inequality follows since X̂ j
0 is contained in {x|‖x − xk‖ ≤ η some k s.t. j ∈

J(k)} eventually. Since εn ≥
√

2bnan/C eventually, the first claim follows.
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