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This supplement contains proofs as well as auxiliary results and Monte Carlos. Section

A contains proofs of results in the main text. Section B discusses large market asymptotics

in some additional settings. Section C gives further discussion and formal results for the

recommendations in section 4 of the main text for diagnosing the issues brought up in this

paper. Section D gives the details of the Monte Carlo study, and presents additional Monte

Carlo results for designs not reported in the main text.

A Proofs

This section presents proofs of the results in the main text. Section A.1 states and proves

equivalence results used in the rest of the section, including the proof of Theorem 1 from the

main text. The rest of the section contains proofs of the remaining results in the main text.

A.1 Equivalence Results for IV Estimators

Many of the results in the paper are based on the IV equivalence results. The results follow

from characterizations of the asymptotic behavior of IV estimators under possible lack of

identification (this step follows known results in the literature; see, for example Staiger

and Stock, 1997) along with bounds on the difference between sample moments involving

different covariates. The following theorems are stated for a general linear IV estimator

β̂ =
[(

1
J

∑J
j=1 zjx

′
j

)
WJ

(
1
J

∑J
j=1 zjx

′
j

)]−1 (
1
J

∑J
j=1 zjx

′
j

)′
WJ

(
1
J

∑J
j=1 zjy

′
j

)
where zj is a

vector of instruments, xj is a vector of covariates and yj = x′
jβ + ξj (in the notation of

the rest of the paper, this theorem is used with (xj, pj) taking the place of xj and (α, β′)′

taking the place of β). In the following, the behavior of β̂ under a sequence x∗
j and y∗j with

y∗j = x∗′
j β + ξj is compared to the behavior of β under the original sequences.
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Assumption 1. (i) For some sequence of k × d matrices {Mzx,J}∞J=1, an invertible d × d

matrix H and nonnegative integers d1 and d2 with d1 + d2 = d, the first d1 columns of

Mzx,JH are 0 for all J ,
√
J
(

1
J

∑J
j=1 zjx

′
j −Mzx,J

)
d→ Zzx and Mzx,J → Mzx for some

matrix Mzx and a k×d random matrix Zzx such that the last d2 columns of MzxH have rank

d2. (ii) For a limiting multivariate normal random vector Zzξ with nonsingular variance,
1√
J

∑J
j=1 zjξj

d→ Zzξ jointly with the convergence in distribution in part (i). (iii) WJ
p→ W

for some positive definite weighting matrix W .

Assumption 2.
√
J maxj ‖x∗

j − xj‖
p→ 0 and 1

J

∑J
j=1 ‖zj‖ = OP (1).

Theorem 5. Under Assumption 1, we have the following.

(i) Define TJ = H−1(β̂ − β) with T1J the first d1 elements and T2J the last d2 elements.

Then

(
T1J√
JT2J

)
d→
( (

(ZzxH1)
′Q′

W,2WQW,2ZzxH1

)−1
(ZzxH1)

′Q′
W,2WQW,2Zzξ(

(MzxH2)
′Q′

W,1WQW,1MzxH2

)−1
(MzxH1)

′Q′
W,1WQW,1Zzξ

)

where H = (H1, H2) with H1 forming the first d1 columns and H2 the remaining

columns, QW,1 is the W inner product projection matrix for the orthogonal comple-

ment of the column span of ZzxH1 and QW,2 is the W inner product projection matrix

for the orthogonal complement of the column span of MzxH2.

(ii) If Assumption 2 holds as well, then, letting β̂∗ be the estimator with x∗
j and y∗j replacing

xj and yj, ‖β̂ − β̂∗‖ p→ 0.

Proof. Part (i) essentially follows from applying results for partially identified IV (see, for

example Stock and Wright, 2000) to a version of the model that is reparameterized so that

the parameter of interest is H−1β. We have, letting AJ be the d × d diagonal matrix with

the first d1 diagonal entries equal to 1 and the last d2 equal to
√
J ,

β̂ − β =

([
J∑

j=1

z′jxj

]′
WJ

[
J∑

j=1

z′jxj

])−1 [
J∑

j=1

z′jxj

]′
WJ

[
J∑

j=1

zj(yj − x′
jβ)

]

= argmin
γ

‖EJzξ − EJzx
′γ‖WJ
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where EJzξ = 1
J

∑J
j=1 zjξj and EJzx

′ = 1
J

∑J
j=1 zjx

′
j. Thus,

(
T1J√
JT2J

)
= AJH

−1(β̂ − β) = argmin
γ

∥∥EJzξ − EJzx
′HA−1

J γ
∥∥
WJ

= argmin
γ

∥∥∥
√
JEJzξ −

√
JEJzx

′HA−1
J γ
∥∥∥
WJ

= argmin
γ

∥∥∥
√
JEJzξ − (

√
JEJzx

′H1, EJzx
′H2)γ

∥∥∥
WJ

.

By the continuous mapping theorem, this converges to

argmin
γ

‖Zzξ − (ZzxH1,MzxH2)γ‖WJ
.

The result follows from applying the partitioned least squares formula to this expression.

For part (ii), the note that, under Assumptions 1 and 2, Assumption 1 will also hold with

x∗
j and y∗j . In fact, we will have

(√
J
(

1
J

∑J
j=1 zjx

∗′
j −Mzx,J

)
,
√
J
(

1
J

∑J
j=1 zjx

′
j −Mzx,J

))
d→

(Zzx, Zzx). The result follows by applying the above results to β̂∗ where we modify the above

argument by applying the continuous mapping theorem to (T ′
1J ,

√
JT ′

2J)
′ − (T ∗′

1J ,
√
JT ∗′

2J)
′ to

show that this quantity converges in distribution (and in probability) to a limiting distribu-

tion that can be seen to be identically zero.

Theorem 1 follows by verifying the conditions of Theorem 5.

Proof of Theorem 1. The result follows from Theorem 5 with (xj, pj) in place of x∗
j . The

first part of Assumption 2 follows from condition (i) in Theorem 1, with the boundedness of
1
J

∑J
j=1 ‖zj‖ following from condition (ii), since xj contains a constant. Assumption 1 follows

from condition (ii), with

Mzx,J =
1

J

J∑

j=1

Ezj(xj,MCj + b∗) =
1

J

J∑

j=1

E

(
xj

hj(x−j)

)(
x′
j MCj + b∗

)

=
1

J

J∑

j=1

(
Exjx

′
j ExjMCj + b∗Exj

Ehj(x−j)Ex′
j [Ehj(x−j)](EMCj + b∗)

)

=
1

J

J∑

j=1




1 0 0

0 Idx−1 0

Ehj(x−j) 0 0







1 Ew′
j EMCj + b∗

Ewj Ewjw
′
j EwjMCj + b∗Ewj

0 0 1



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where xj = (1, w′
j)

′, and with d1 = 1 and

H =




1 Ew′
j EMCj + b∗

Ewj Ewjw
′
j EwjMCj + b∗Ewj

0 0 1




−1


0 0 1

0 IdX−1 0

1 0 0




(which does not depend on j by the iid assumption).

The next theorem deals with the case where Mzx is full rank, leading to consistent

estimators. The theorem uses a slightly weaker version of the assumptions used for theorem

5 (with Mzx full rank).

Assumption 3. Assumption 1 holds with part (i) replaced by the condition that 1
J

∑J
j=1 zjx

′
j

p→
Mzx, with Mzx full rank.

Assumption 4. maxj ‖x∗
j − xj‖

p→ 0 and 1
J

∑J
j=1 ‖zj‖ = OP (1).

Theorem 6. Under Assumptions 3 and 4,
√
J(β̂ − β)

d→ (M ′
zxWMzx)

−1M ′
zxWZzξ, and the

same holds for
√
J(β̂∗ − β).

Proof. Under these assumptions, Assumption 3 holds for both the original and starred quan-

tities (note that 1
J

∑J
j=1 z

′
jx

∗
j = 1

J

∑J
j=1 z

′
jxj +

1
J

∑J
j=1 z

′
j(x

∗
j − xj); the first term converges

in probability to Mzx and the second term is bounded by 1
J

∑J
j=1 ‖zj‖ · ‖x∗

j − xj‖, which
converges in probability to zero under these assumptions). The result then follows since

√
J(β̂ − β) =

([
1

J

J∑

j=1

z′jxj

]′
WJ

[
1

J

J∑

j=1

z′jxj

])−1 [
1

J

J∑

j=1

z′jxj

]′
WJ

[
1√
J

J∑

j=1

zj(yj − x′
jβ)

]

d→ (M ′
zxWMzx)

−1M ′
zxWZzξ

by the continuous mapping theorem since 1
J

∑J
j=1 z

′
jxj

p→ Mzx and 1√
J

∑J
j=1 zj(yj − x′

jβ) =

1√
J

∑J
j=1 zjξj

d→ Zxξ and, for the starred quantities,

√
J(β̂∗ − β) =

([
1

J

J∑

j=1

z′jx
∗
j

]′
WJ

[
1

J

J∑

j=1

z′jx
∗
j

])−1 [
1

J

J∑

j=1

z′jx
∗
j

]′
WJ

[
1√
J

J∑

j=1

zj(y
∗
j − x∗

j
′β)

]

d→ (M ′
zxWMzx)

−1M ′
zxWZzξ

since 1
J

∑J
j=1 z

′
jx

∗
j

p→ Mzx and 1√
J

∑J
j=1 zj(y

∗
j − x∗

j
′β) = 1√

J

∑J
j=1 zjξj

d→ Zxξ.
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Note that the conditions for Theorem 5 require
√
J maxj ‖x∗

j − xj‖
p→ 0, while The-

orem 6 requires only the weaker condition that maxj ‖x∗
j − xj‖

p→ 0. This is because

the asymptotic distribution of β̂ in Theorem 5 depends on the asymptotic distribution of√
J
(

1
J

∑J
j=1 zjx

′
j −Mzx,J

)
, while the asymptotic distribution of

√
J(β̂ − β) in Theorem 6

only uses the fact that 1
J

∑J
j=1 zjx

′
j

p→ Mzx, and does not depend on its asymptotic distri-

bution. To get the same results with the starred quantities, weaker conditions suffice in the

case of Theorem 6.

A.2 Proof of Theorem 2

We prove a slightly more general version of Theorem 2 with the boundedness condition on

MCj, xj and ξj generalized to an exponential tail condition. In particular, we replace the

condition that (xj, ξj,MCj) is bounded with the following condition: for some constants C

and ε > 0, P (|ξj| ≥ t) ≤ C exp(−εt1+ε), P (|MCj| ≥ t) ≤ C exp(−εt1+ε) and P (‖xj‖ ≥ t) ≤
C exp(−εt2+ε).

Before proceeding to the proof, note that, formally, the theorem applies to the triangular

array of prices pj,J arising from any sequence of Nash-Bertrand equilibria (defined for any

realization of the primitives {xj,MCj, ξj}Jj=1), defined for each J . This can be made explicit

by writing prices as function of {xj ,MCj, ξj}Jj=1, and an additional random variable ωJ that

determines equilibrium selection in the case of multiple equilibria (which may be arbitrarily

correlated with the remaining variables): pj = pj,J({xj,MCj, ξj}Jj=1, ωJ). We assume that

an equilibrium exists on a probability one set of {xj,MCj, ξj}Jj=1 for each J .

The proof of the theorem uses only the first order condition for each firm’s best response,

which holds regardless of how ωJ determines the equilibrium in the case of multiple equilibria

(since the strategy space for prices is (−∞,∞), the best response problem must be maximized

at an interior solution in equilibrium). Thus, to simplify notation, we leave the dependence

of prices on ωJ implicit and write pj instead of pj,J({xj ,MCj, ξj}Jj=1, ωJ) in the remainder

of the proof. To further simplify notation in the proof of this theorem, we also define

gj(ζ) = x′
j(β + ζ) + ξj.

At several places in the proof, we use the fact that, for some constantK,
∫
exp(a‖ζ‖) dP (ζ) ≤

K exp(Ka2) for any a and
∫
exp(t′ζ) dP (ζ) ≤

∫
exp(‖t‖·‖ζ‖) dP (ζ) ≤ K exp(K‖t‖2) for any

t. This follows since the tails of ζ are bounded by the tails of the normal random variable

(for Z ∼ N(µ, σ2), E exp(a‖Z‖) ≤ E[exp(aZ)+ exp(−aZ)], which, by standard calculations

for the moment generating function of the normal distribution, is bounded by K exp(Ka2)

for a constant K that depends on µ and σ2).
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Rearranging the markup formula for firm j gives

pj −MCj −
1

α
=

∫
s̃2j(δ, ζ) dPζ(ζ)

α
∫
s̃j(δ, ζ)(1− s̃j(δ, ζ)) dPζ(ζ)

=
1

α

∫
s̃2j (δ,ζ) dPζ(ζ)∫
s̃j(δ,ζ) dPζ(ζ)

1−
∫
s̃2j (δ,ζ) dPζ(ζ)∫
s̃j(δ,ζ) dPζ(ζ)

.

Thus, it suffices to show that
∫
s̃2j (δ,ζ) dPζ(ζ)∫
s̃j(δ,ζ) dPζ(ζ)

converges to zero more quickly than 1/
√
J uni-

formly over 1 ≤ j ≤ J . To this end, we prove the following lemma.

Lemma 1. Suppose that, for some constants BJ and AJ , |ξj| ≤ AJ , |pj| ≤ AJ and ‖xj‖ ≤ BJ

for all j, and that the tails of ζ are bounded by the tails of a normal variable. Then, for

some constant C,

∫
s̃2j(δ, ζ) dPζ(ζ)∫
s̃j(δ, ζ) dPζ(ζ)

≤ 1

J
C exp(C · AJ + C ·B2

J).

Proof. Under these conditions,

s̃j(δ, ζ) ≤
exp(BJ‖β + ζ‖+ αAJ + AJ)∑J

k=1 exp(−BJ‖β + ζ‖ − AJ)
=

1

J
exp(2BJ‖β + ζ‖+ (α + 2)AJ)

Similarly,

s̃j(δ, ζ) ≥
exp(−BJ‖β + ζ‖ − AJ)∑J

k=1 exp(BJ‖β + ζ‖+ αAJ + AJ)
=

1

J
exp(−2BJ‖β + ζ‖ − (α + 2)AJ).

Thus,

∫
s̃2j(δ, ζ) dPζ(ζ)∫
s̃j(δ, ζ) dPζ(ζ)

≤
∫

1
J2 exp (2 · 2BJ‖β + ζ‖+ 2(α + 2)AJ) dPζ(ζ)∫
1
J
exp (−2BJ‖β + ζ‖ − (α + 2) · AJ) dPζ(ζ)

=
1

J
exp(3(α + 2)AJ)

∫
exp (4BJ‖β + ζ‖) dPζ(ζ)∫
exp (−2BJ‖β + ζ‖) dPζ(ζ)

.

The result follows since the integral in the denominator is bounded from below by exp(−2 ·
BJ ·K) · Pζ(‖ζ‖ ≤ K) ≥ exp(−2 · BJ ·K) · (1/2) for large enough K, and the numerator is

bounded from above by a constant times K exp(KB2
J) for large enough K.

The bound in Lemma 1 will decrease more quickly than 1/
√
J so long as AJ/ log J → 0

and B2
J/ log J → 0. For the bounds on the primitives xj, ξj and MCj, this follows easily

from the bounds on tail probabilities, as shown in the next lemma. For the bound on prices,
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a more involved argument is needed, which constitutes the remainder of the proof.

Lemma 2. Let {uj}Jj=1 be a sequence of random variables such that P (uj ≥ t) ≤ C exp(−tγ/C)

for some γ and C that do not depend on j. Then, for any ε > 0,

P

(
max
1≤j≤J

uj ≥ (C + ε)1/γ(log J)1/γ
)

→ 0.

Proof. We have

P

(
max
1≤j≤J

uj ≥ (C + ε)1/γ(log J)1/γ
)

≤
J∑

j=1

P (uj ≥ (C + ε)1/γ(log J)1/γ)

≤ J · C exp(−(C + ε)(log J)/C) = J · C · J−(C+ε)/C J→∞→ 0.

It follows from Lemma 2 that all of the conditions of Lemma 1, except for the bound on

price, hold with probability one for AJ = C(log J)1−ε and BJ = C(log J)1/2−ε for C large

enough and ε small enough. To prove the theorem, it suffices to show that max1≤j≤J |pj| is
also bounded by AJ for C large enough and ε small enough. This follows from the next two

lemmas.

Lemma 3. Suppose that, for some KJ ,

∫
exp(gj(ζ))s̃j(δ, ζ) dPζ(ζ)∫

s̃j(δ, ζ) dPζ(ζ)
≤ KJ .

Then

pj ≤ max

{
MCj +

2

α
,
1

α
[log 2 + logKJ ]

}
.

Proof. Note that s̃j(δ, ζ) =
exp(gj(ζ)−αpj)∑J

k=1 exp(gk(ζ)−αpk)
≤ exp(gj(ζ) − αpj), since one of the terms in

the denominator is the outside good, with utility 0. Thus,

∫
s̃2j(δ, ζ)dPζ(ζ) ≤ exp(−αpj)

∫
exp(gj(ζ))s̃j(δ, ζ) dPζ(ζ).
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Suppose that exp(−αpj)KJ ≤ 1/2. Then

pj −MCj −
1

α
=

1

α

∫
s̃2j (δ,ζ) dPζ(ζ)∫
s̃j(δ,ζ) dPζ(ζ)

1−
∫
s̃2j (δ,ζ) dPζ(ζ)∫
s̃j(δ,ζ) dPζ(ζ)

≤ 1

α

exp(−αpj)KJ

1− exp(−αpj)KJ

≤ 1

α

where the inequalities follow since t/(1 − t) is increasing in t for 0 ≤ t < 1. Thus, either

pj −MCj − 1
α
≤ 1

α
or

exp(−αpj)KJ > 1/2 =⇒ −αpj + logKJ > log(1/2) =⇒ −αpj > log(1/2)− logKJ

=⇒ pj < −[log(1/2)]/α + [logKJ ]/α,

giving the desired bound.

Lemma 4. For some constant C,

∫
exp(gj(ζ))s̃j(δ, ζ) dPζ(ζ)∫

s̃j(δ, ζ) dPζ(ζ)
≤ C exp

(
C max

1≤k≤J
‖xk‖2 + C max

1≤k≤J
‖ξk‖

)
.

Proof. We have

∫
exp(gj(ζ))s̃j(δ, ζ) dPζ(ζ)∫

s̃j(δ, ζ) dPζ(ζ)
=

∫
exp(gj(ζ))

exp(gj(ζ)−αpj)∑
k exp(gk(ζ)−αpk)

dPζ(ζ)
∫ exp(gj(ζ)−αpj)∑

k exp(gk(ζ)−αpk)
dPζ(ζ)

=

∫ exp(2gj(ζ))∑
k ak exp(gk(ζ))

dPζ(ζ)
∫ exp(gj(ζ))∑

k ak exp(gk(ζ))
dPζ(ζ)

where ak = exp(−αpk)/
∑

ℓ exp(−αpℓ) so that
∑J

k=1 ak = 1. By Jensen’s inequality, this is

bounded by

[∫
exp(2gj(ζ))∑
k ak exp(gk(ζ))

dPζ(ζ)

] [∫ ∑
k ak exp(gk(ζ))

exp(gj(ζ))
dPζ(ζ)

]

≤
[∫

exp(2gj(ζ))
∑

k

ak exp(−gk(ζ)) dPζ(ζ)

] [∫ ∑
k ak exp(gk(ζ))

exp(gj(ζ))
dPζ(ζ)

]
(8)

where the last inequality follows from Jensen’s inequality applied to
∑

k ak exp(gk(ζ)). We
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have, for each j and k,

∫
exp(2gj(ζ)) exp(−gk(ζ)) dPζ(ζ) =

∫
exp(2gj(ζ)− gk(ζ)) dPζ(ζ)

=

∫
exp(2x′

j(β + ζ) + 2ξj − x′
k(β + ζ)− ξk) dPζ(ζ)

= exp((2xj − xk)
′β + 2ξj − ξk)

∫
exp((2xj − xk)

′ζ) dPζ(ζ).

Since the tails of ζ are bounded by the tails of a normal variable, this is bounded by, for

some constant C,

exp((2xj − xk)
′β + 2ξj − ξk) · C exp(C‖2xj − xk‖2).

By making C larger, this can be bounded by C exp(Cmax{‖xj‖2, ‖xk‖2}+Cmax{‖ξj‖, ‖ξk‖}).
Similarly,

∫
exp(gk(ζ))/ exp(gj(ζ)) dPζ(ζ) can also be bounded by C exp(Cmax{‖xj‖2, ‖xk‖2}+

Cmax{‖ξj‖, ‖ξk‖}) for large enogh C. Thus, (8) can be bounded by

C2

[
J∑

j=1

akC exp(Cmax{‖xj‖2, ‖xk‖2}+ Cmax{‖ξj‖, ‖ξk‖})
]2

≤ C2 exp

(
2C max

1≤k≤J
‖xk‖2 + 2C max

1≤k≤J
‖ξk‖

)
.

The result follows by redefining C.

Putting these lemmas together, it follows that, for some constant K, max1≤j≤J ‖pj‖ ≤
K +Kmax1≤j≤J ‖MCj‖+Kmax1≤j≤J ‖ξj‖+Kmax1≤j≤J ‖xj‖2. From this and Lemma 2,

it follows that, for C large enough and ε > 0 small enough, the conditions of Lemma 1 hold

with AJ = C(log J)1−ε and BJ = (log J)1/2−ε with probability approaching one, giving the

desired result.
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A.3 Proof of Theorem 3

The result follows by verifying the conditions of Theorem 6. First, note that

1

J

J∑

j=1

zj(x
′
j, p

∗
j)−Mzx

=
∑

f∈F

|Ff |
J

1

|Ff |
∑

j∈Ff

[
zj(x

′
j,MCj + b∗f )− Ezj(x

′
j,MCj + b∗f )

]
+

1

J

J∑

j=1

Ezj(x
′
j, p

∗
j)−Mzx

which converges in probability to zero by the assumption that 1
J

∑J
j=1 Ezj(x

′
j, p

∗
j) → Mzx

and the law of large numbers applied to the iid sum within each firm f . This verifies the

first part of Assumption 3. To verify part (ii) of this assumption, note that

1√
J

J∑

j=1

zjξj =
F∑

f=1

√
|Ff |√
J

1√
|Ff |

∑

j∈Ff

zjξj =
F∑

f=1

√
|Ff |√
J

1√
|Ff |

∑

j∈Ff

(
xj

πfµh,f

)
ξj +RJ

where RJ is a vector with the first dx rows equal to zero, and the remaining dh rows given by
1√
J

∑F
f=1

[
1
J

∑
k∈Ff

h̃(xk)− πfµh,f

] [∑
j∈Ff

ξj

]
(where dx is the dimension of xj and dh is the

dimension of h̃(xk)). The first term in the display converges to a normal variable with mean

zero and variance
∑F

f=1 πfVf by the central limit theorem, and RJ
p→ 0 by the law of large

numbers applied to 1
J

∑
k∈Ff

h̃(xk) and the central limit theorem applied to 1√
J

∑
j∈Ff

ξj.

To verify Assumption 4, it suffices to show maxj |pj − p∗j |
p→ 0. Arguing as in Konovalov

and Sandor (2010), it can be seen that equation (5) has a unique solution, and defines b as a

R
F valued function that is continuously differentiable at (π1µr,1, . . . , πFµr,F ) (the latter claim

can be seen using the implicit function theorem). The difference between pj and p∗j can then

be written as, for f the firm producing product j, bf (π1µr,1, . . . , πFµr,F )−bf (π̂1r̄1, . . . , π̂F r̄F ),

which converges in probability to zero by the law of large numbers and the continuous

mapping theorem. Since maxj |pj − p∗j | = maxf bf (π1µr,1, . . . , πFµr,F ) − bf (π̂1r̄1, . . . , π̂F r̄F )

and the number of firms does not increase with J , the result follows.

A.4 Proof of Theorem 4

The following notation is used throughout this section. Let dz = dx + dh (where dx and

dh are the dimensions of xi,j and h(xi,j) respectively). Define m2 = 1
N

∑N
i=1(Ji/J̄)

2, m̃2 =
1
N

∑N
i=1 Ji(Ji − 1)/J̄2 = m2 − 1/J̄ , m3 = 1

N

∑N
i=1(Ji/J̄)

3, m2,∞ = limN→∞
1
N

∑N
i=1(Ji/J̄)

2

and m3,∞ = limN→∞
1
N

∑N
i=1(Ji/J̄)

3. Let ri,j = exp(x′
i,jβ − αMCi,j − 1 + ξi,j). Let
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wi,j be the nonconstant part of xi,j so that xi,j = (1, w′
i,j)

′ and let µh = Eh̃(xi,j)

µr = E(ri,j), µxr = E(xi,jri,j) and µwr = E(wi,jri,j). For a n × m matrix M

with i, jth entry Mi,j , vec(M) is the vectorization of M given by the ij × 1 vector

(M1,1,M2,1, . . . ,Mn,1,M1,2,M2,2, . . . ,Mn,2, . . . ,M1,m,M2,m, . . . ,Mn,m)
′. For a 1× k row vec-

tor a, diag(a) is the k × k matrix with all off diagonal elements equal to zero and j × jth

entry given by the jth element of a. The notation 0a×b and 1a×b is used to denote an a× b

matrix of zeros and ones respectively, with the subscript being dropped in cases where the

dimension of the matrix of zeros or ones is clear from the context.

It will be useful to define some additional quantities to describe the asymptotic distribu-

tion. Let

Wi,j =

(
xi,jx

′
i,j − Exi,jx

′
i,j xi,j(MCi,j + 1/α)− Exi,j(MCi,j + 1/α)

µh(xi,j − µx)
′ + (h̃(xi,j)− µh)µ

′
x µh(MCi,j − (EMCi,j))

′ + (h̃(xi,j)− µh)(EMCi,j + 1/α)

)

and let ui,j = ξi,j(x
′
i,j , µ

′
h)

′. Let ΣWu be the variance matrix of (vec(Wi,j)
′, u′

i,j)
′ and let

Σ̃Wu be defined by starting with ΣWu and multiplying diagonal elements dx + 1 through dz,

dz + dx + 1 through 2dz, 2dz + dx + 1 through 3dz, etc. (those corresponding to the last

dh rows of Wi,j and ui,j) by m3,∞, and multiplying off diagonal elements in these rows and

columns by m2,∞. Define

M1 =

(
Idx 0dx×1

01×dx 01×1

)
, H =

(
E(xi,jx

′
i,j) E(xi,j(MCi,j +

1
α
))

01×dx 11×1

)

and

Km̃2 =




11×1 0 0

0 Idx−1 0

m̃2µh 0 1dh×1




and let Km2,∞ be defined in the same way, but with m2,∞ replacing m̃2. Let

M2 =




1/α

0dz×dx µwr/(µrα)

µh/α


 , Aq =

(
Idx×dx 0

0 q

)
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for any positive real number q. Let

M̃1 =




1 E(wi,j)
′ E(MCi,j) +

1
α

E(wi,j) E(wi,jw
′
i,j) E(wi,jMCi,j) +

1
α
E(wi,j)

µhm̃2 µhm̃2E(wi,j)
′ µhm̃2

[
E(MCi,j) +

1
α

]




Note that A−1
q = A1/q and, with the above notation, M̃1 = Km̃2M1H.

To describe the asymptotic distribution, let Zzξ be a random vector on R
dz and Zzx a ran-

dom dz × (dx+1) matrix, defined on the same probability space such that (vec(Zzx)
′, Z ′

zξ) ∼
N(0, Σ̃Wu). Let Q = Km2,∞M1 +M2 and let Q̃∞,c = Km2,∞M1 + ZzxH

−1diag(0, . . . , 0, 1) +

M2A√
c (note that Q is full rank iff m2,∞ 6= 1, so that this matrix is full rank under the

conditions of the theorem). In the case where N/J̄ → ∞, we will show that

diag(
√
J̄N, . . . ,

√
J̄N,

√
N/J̄)H[(β̂′,−α̂)′ − (β′,−α)′]

d→ (Q′WQ)−1Q′WZzξ.

In the case where N/J̄ → c for some finite constant c, we will show that

diag(
√
J̄N, . . . ,

√
J̄N, 1)H[(β̂′,−α̂)′ − (β′,−α)′]

d→ (Q̃′
∞,cWQ̃∞,c)

−1Q̃′
∞,cWZzξ.

We first prove the following lemma.

Lemma 5. Under the conditions of Theorem 4,

Ri,j ≡ J2
i

(
pi,j −MCi,j −

1

α
− ri,j

α
∑Ji

k=1 ri,k

)

is bounded uniformly over i as N and the Ji’s increase.

Proof. First, note that

pi,j −MCi,j −
1

α
=

1

α

(
1

1− si,j
− 1

)
=

1

α

exp
(
x′
i,jβ − αpi,j + ξi,j

)
∑

k 6=j exp
(
x′
i,kβ − αpi,k + ξi,k

) . (9)

From this formula and the fact that one of the terms in the denominator is the outside good

with mean utility zero, it follows that 0 ≤ pi,j − MCi,j − 1
α
≤ exp

(
x′
i,jβ − αpi,j + ξi,j

)
≤

exp
(
x′
i,jβ + ξi,j

)
, so that prices are bounded uniformly over i and j. From this and the

boundedness of xi,j, and ξi,j , it follows that 0 ≤ pi,j −MCi,j − 1/α ≤ C/(Jiα) for C large

enough.
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Substituting this bound back into (9), we see that (9) is bounded from above by

1

α

exp
(
x′
i,jβ − αMCi,j − 1 + ξi,j

)
∑

k 6=j exp
(
x′
i,kβ − αMCi,k − 1− C/Ji + ξi,k

)

=
1

α

exp
(
x′
i,jβ − αMCi,j − 1 + ξi,j

)

exp(−C/Ji)
∑

k 6=j exp
(
x′
i,kβ − αMCi,k − 1 + ξi,k

)

and from below by

1

α

exp
(
x′
i,jβ − αMCi,j − 1− C/Ji + ξi,j

)
∑

k 6=j exp
(
x′
i,kβ − αMCi,j − 1 + ξi,k

) .

Thus,

exp(−C/Ji)
ri,j

α
∑

k 6=j ri,k
≤ pi,j −MCi,j −

1

α
≤ exp(C/Ji)

ri,j
α
∑

k 6=j ri,k
.

Using the fact that, for a constant C1 that depends only on C, exp(C/Ji) ≤ 1 + C1/Ji and

exp(−C/Ji) ≥ 1− C1/Ji, we have

(1− C1/Ji)
ri,j

α
∑

k 6=j ri,k
≤ pi,j −MCi,j −

1

α
≤ (1 + C1/Ji)

ri,j
α
∑

k 6=j ri,k
.

Thus,

∣∣∣∣∣pi,j −MCi,j −
1

α
− ri,j

α
∑

k 6=j ri,k

∣∣∣∣∣ ≤
C1

Ji

ri,j
α
∑

k 6=j ri,k
≤ C1

Ji(Ji − 1)

r

αr

where r and r are positive upper and lower bounds for ri,j (which exist by boundedness of

xi,j , ξi,j and MCi,j). The result now follows by using the triangle inequality and noting that

∣∣∣∣∣
ri,j

α
∑Ji

k=1 ri,k
− ri,j

α
∑

k 6=j ri,k

∣∣∣∣∣ =
r2i,j

α
(∑Ji

k=1 ri,k

)(∑
k 6=j ri,k

) ≤ r2

αr2Ji(Ji − 1)
.

This result is used in the following lemmas, which concern the sample means involved in

the IV estimator.
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Lemma 6. Under the conditions of Theorem 4,

1

NJ̄

N∑

i=1

Ji∑

j=1

[
1

J̄

∑

k 6=j

h̃(xi,k)

](
pi,j −MCi,j −

1

α

)
=

1

J̄

(µh

α
+ oP (1)

)

Proof. The term that is claimed to be oP (1) is given by

J̄

{
1

NJ̄

N∑

i=1

Ji∑

j=1

[
1

J̄

∑

k 6=j

h̃(xi,k)

](
pi,j −MCi,j −

1

α

)
− 1

J̄

µh

α

}

=
1

NJ̄

{
N∑

i=1

Ji∑

j=1

[
Ji∑

k=1

h̃(xi,k)

](
pi,j −MCi,j −

1

α

)
− µh

α
NJ̄

}

− 1

NJ̄

N∑

i=1

Ji∑

j=1

h̃(xi,j)

(
pi,j −MCi,j −

1

α

)
(10)

The last term goes to zero, since it is bounded by 1
NJ̄

∑N
i=1

∑Ji
j=1 |h̃(xi,j)| ·C/Ji, where C/Ji

is a bound for
∣∣pi,j −MCi,j − 1

α

∣∣ (where the existence of such a bound follows from Lemma

5). Using Lemma 5, the first term in (10) is equal to

1

NJ̄

{
N∑

i=1

Ji∑

j=1

[
Ji∑

k=1

h̃(xi,k)

](
ri,j

α
∑Ji

k=1 ri,k
+

Ri,j

J2
i

)
− µh

α
NJ̄

}

=
1

NJ̄

{
N∑

i=1

[
Ji∑

j=1

h̃(xi,j)

](
1

α
+

Ji∑

k=1

Ri,k

J2
i

)
−

N∑

i=1

Ji∑

j=1

µh

α

}

=
1

NJ̄

{
N∑

i=1

[
Ji∑

j=1

h̃(xi,j)− µh

α

]
+

N∑

i=1

[
Ji∑

j=1

h̃(xi,j)

][
Ji∑

k=1

Ri,k

J2
i

]}

where Ri,j is the remainder term in Lemma 5. This converges to zero since Ri,k is bounded

and 1
NJ̄

∑N
i=1

∑Ji
j=1 h̃(xi,j)

p→ µh by the law of large numbers.

Lemma 7. Under the conditions of Theorem 4,

1

NJ̄

N∑

i=1

Ji∑

j=1

xi,j

(
pi,j −MCi,j −

1

α

)
=

1

J̄

(
µxr

αµr

+ oP (1)

)
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Proof. We have

J̄
1

NJ̄

N∑

i=1

Ji∑

j=1

xi,j

(
pi,j −MCi,j −

1

α

)
=

1

N

N∑

i=1

Ji∑

j=1

xi,j

(
ri,j

α
∑Ji

k=1 ri,k
+

Ri,j

J2
i

)

=
1

N

N∑

i=1

(∑Ji
j=1 xi,jri,j

α
∑Ji

k=1 ri,k
+

Ji∑

j=1

xi,jRi,j

J2
i

)

where Ri,j is the quantity in Lemma 5. The last term is bounded by a constant times
1
N

∑N
i=1

1
Ji

≤ 1
min1≤i≤N Ji

, which goes to zero under the conditions of Theorem 4. For the first

term, we have

1

N

N∑

i=1

∑Ji
j=1 xi,jri,j

α
∑Ji

k=1 ri,k
=

1

N

N∑

i=1

∑Ji
j=1 xi,jri,j

αJiµr

Jiµr∑Ji
k=1 ri,k

=
µxr

αµr

+
1

N

N∑

i=1

(
1
Ji

∑Ji
j=1 xi,jri,j − µxr

αµr

)
+

1

N

N∑

i=1

(
1
Ji

∑Ji
j=1 xi,jri,j

αµr

)(
µr

1
Ji

∑Ji
k=1 ri,k

− 1

)
.

The second term has mean zero and variance 1
N2

∑N
i=1

1
J2
i

var(xi,jri,j/(αµr)), which goes to

zero as N → ∞, and the last term is equal to

1

N

N∑

i=1

(
1
Ji

∑Ji
j=1 xi,jri,j

αµr
1
Ji

∑Ji
k=1 ri,k

)(
µr −

1

Ji

Ji∑

k=1

ri,k

)
.

By boundedness of xi,j and ri,j , this is bounded by a constant times 1
N

∑N
i=1

∣∣∣µr − 1
Ji

∑Ji
k=1 ri,k

∣∣∣,
which converges in probability to zero since, by Hölder’s inequality,

1

N

N∑

i=1

E

∣∣∣∣∣µr −
1

Ji

Ji∑

k=1

ri,k

∣∣∣∣∣ ≤
1

N

N∑

i=1

√√√√E

(
µr −

1

Ji

Ji∑

k=1

ri,k

)2

=
1

N

N∑

i=1

√
var(ri,k)/Ji → 0.

Lemma 8. Under the conditions of Theorem 4, for any sequence of iid variables vi,j with
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mean µv and a finite fourth moment,

1

NJ̄

N∑

i=1

Ji∑

j=1

[
1

J̄

∑

k 6=j

h̃(xi,k)

]
vi,j

= m̃2µhµv +
1

NJ̄

N∑

i=1

Ji∑

j=1

Ji
J̄

[
µh(vi,j − µv) + µv(h̃(xi,j)− µh)

]
+ oP

(
1/
√

NJ̄
)
. (11)

Proof. We have

1

NJ̄

N∑

i=1

Ji∑

j=1

[
1

J̄

∑

k 6=j

h̃(xi,k)

]
vi,j

=
1

NJ̄2

N∑

i=1

Ji∑

j=1

∑

k 6=j

[
µhµv + µh(vi,j − µv) + µv(h̃(xi,k)− µh) + (vi,j − µv)(h̃(xi,k)− µh)

]

= µhµv
1

NJ̄2

N∑

i=1

Ji(Ji − 1) +
1

NJ̄2

N∑

i=1

Ji∑

j=1

(Ji − 1)
[
µh(vi,j − µv) + µv(h̃(xi,j)− µh)

]

+
1

NJ̄2

N∑

i=1

Ji∑

j=1

∑

k 6=j

(vi,j − µv)(h̃(xi,k)− µh). (12)

The first term is equal to (m2 − 1/J̄)µhµv = m̃2µhµv. The second term is equal to

the second term in (11) minus 1
NJ̄

∑N
i=1

∑Ji
j=1

1
J̄

[
µh(vi,j − µv) + µv(h̃(xi,j)− µh)

]
, which is

OP (1/(J̄
√
NJ̄)) = oP (1/

√
NJ̄) by the central limit theorem. The last term in (12) has mean

zero and variance given by

1

N2J̄4
E

[
N∑

i=1

Ji∑

j=1

∑

k 6=j

(vi,j − µv)(h̃(xi,k)− µh)

]2
=

1

N2J̄4

N∑

i=1

E

[
Ji∑

j=1

∑

k 6=j

(vi,j − µv)(h̃(xi,k)− µh)

]2

=
1

N2J̄4

N∑

i=1

Ji∑

j=1

∑

k 6=j

Ji∑

ℓ=1

∑

m 6=ℓ

E(vi,j − µv)(h̃(xi,k)− µh)(vi,ℓ − µv)(h̃(xi,m)− µh).

For each i, all of the terms in the above summand are zero except for those where either j = ℓ

and k = m or j = m and k = ℓ. The number of such terms is bounded by a constant times

J2
i , so that the above display is bounded by a constant times 1

N2J̄2

∑N
i=1(Ji/J̄)

2 = 1
NJ̄2m2.

Thus, the last term in (12) converges to zero at a 1/
√
NJ̄2 rate, which is strictly faster than

1/
√
NJ̄ , as claimed.
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Lemma 9. Under the conditions of Theorem 4,

1

NJ̄

N∑

i=1

Ji∑

j=1

(
xi,j

1
J̄

∑
k 6=j h̃(xi,k)

)(
x′
i,j MCi,j +

1
α

)
= M̃1 + VJN/

√
NJ̄

where M̃1 is defined at the beginning of this section and

(
(vec(VJN)

′,
(

1√
NJ̄

∑N
i=1

∑Ji
j=1 zi,jξi,j

)′)′

converges to a normal distribution with variance Σ̃Wu (where Σ̃Wu is defined at the beginning

of this section).

Proof. It follows from Lemma 8 that

(
(vec(VJN)

′,
(

1√
NJ̄

∑N
i=1

∑Ji
j=1 zi,jξi,j

)′)′
is, up to

oP (1), equal to

1√
NJ̄

N∑

i=1

Ji∑

j=1

(Idx+2 ⊗BJi/J̄)

(
vec(Wi,j)

ui,j

)

where Wi,j and ui,j are defined at the beginning of this section and, for any scalar r, Br is

defined to be the dz × dz diagonal matrix with ones in the first dx diagonal entries and r

in the remaining diagonal entries. By a central limit theorem for triangular arrays of inid

variables, this converges to a normal distribution with variance

lim
N→∞

1

NJ̄

N∑

i=1

Ji∑

j=1

(Idx+2 ⊗BJi/J̄)ΣWu(Idx+2 ⊗BJi/J̄)
′,

which can be seen to be equal to Σ̃Wu by inspection. (To verify Lindeberg’s condition

for the terms of the form (Ji/J̄)vi,j for a random variable vi,j, it suffices to show that
max1≤i≤N (Ji/J̄)

2

∑N
i=1

∑Ji
j=1(Ji/J̄)

2
→ 0, which follows since

max1≤i≤N (Ji/J̄)
2

∑N
i=1

∑Ji
j=1(Ji/J̄)

2
≤ max1≤i≤N (Ji/J̄)

2

max1≤i≤N

∑Ji
j=1(Ji/J̄)

2
= 1

max1≤i≤N Ji
→

0.)

Putting the above lemmas together and using the fact that M̃1 = Km̃2M1H, we have

M̂zx ≡ 1

NJ̄

N∑

i=1

Ji∑

j=1

zj(x
′
j, pj) = Km̃2M1H + VJN/

√
J̄N +M2(A1/J̄ + oP (1/J̄))

where VJN is given in Lemma 9. Since the last column of M1 is all zeros, M1AJ̄ = M1. Also,

since the first dx columns of M2A1/J̄ are zero, M2A1/J̄H = M2A1/J̄ , so that M2A1/J̄H
−1 =
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M2A1/J̄ as well. Thus,

QN ≡ M̂zxH
−1A−1

1/J̄
= Km̃2M1 + VJNH

−1AJ̄/
√

J̄N +M2 + oP (1).

Let Ẑzξ =
1√
J̄N

∑N
i=1

∑Ji
j=1 zi,jξi,j .

It follows that, in the case where N/J̄ → ∞,

diag(
√
J̄N, . . . ,

√
J̄N,

√
N/J̄)H[(β̂′,−α̂)′ − (β′,−α)′] =

√
J̄NA1/J̄H[(β̂′,−α̂)′ − (β′,−α)′]

= (Q′
NWQN)

−1
Q′

NWẐzξ
d→ (Q′WQ)

−1
Q′WZzξ,

where Q is the deterministic matrix and Zzξ the random vector defined at the beginning of

the proof. In the case where N/J̄ → c for a finite constant c,

Q̃N ≡ M̂zxH
−1A−1

1/
√
NJ̄

= Km2M1 + VJNH
−1A√

NJ̄/
√
J̄N +M2A√N/J̄

+ oP (1)

This converges in distribution toKm2,∞M1+ZzxH
−1diag(0, . . . , 0, 1)+M2A√

c = Q̃∞,c jointly

with Ẑzξ. (Here, (vec(Zzx)
′, Z ′

zξ)
′ is normal with mean zero and variance matrix Σ̃Wu as

defined at the beginning of the proof. Note that Ẑzξ and VJN converge in distribution jointly

to Zzξ and Zzx by Lemma 9). Thus,

diag(
√
J̄N, . . . ,

√
J̄N, 1)H[(β̂′,−α̂)′ − (β′,−α)′] =

√
J̄NA1/

√
NJ̄H[(β̂′,−α̂)′ − (β′,−α)′]

=
(
Q̃′

NWQ̃N

)−1

Q̃′
NWẐzξ

d→
(
Q̃′

∞,cWQ̃∞,c

)−1

Q̃′
∞,cWZzξ.

For c = 0, Q̃∞,c = Km2,∞M1 + ZzxH
−1diag(0, . . . , 0, 1), and this limiting distribution is the

same as if the markup were equal to 1/α (by the same arguments, but with M2 a matrix of

zeros).

B Additional Large Market Asymptotic Results

This section gives the formal results described in section 3.2 for the nested logit model,

and discusses large market asymptotics for the vertical model, and for some of the cases

considered in the main text under multi product firms.
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B.1 Nested Logit

In the nested logit model, the J products are split into G mutually exclusive groups. Here,

the number of groups G will increase, while the number of products per group stays fixed. As

in section 3.1, this section considers single product firms, although the results will be similar

for multiproduct firms as long as the number of firms increases rather than the number

of products per firm. The set of products in a given group g ∈ {1, . . . , G} is denoted by

Jg ⊆ {1, . . . , J}. The share of product j as a fraction of its group g is denoted by s̄j/g(x, p, ξ),

and the share of group g as a fraction of all products is given by s̄g(x, p, ξ). Consumer i’s

utility for good j is

uij = x′
jβ − αpj + ξj + ζig + (1− σ)εij ≡ δj + ζig + (1− σ)εij

where ζig is a random coefficient on a dummy variable for group g and εij is still extreme

value. The distribution of ζig depends on σ and is such that ζig + (1 − σ)εij is extreme

value. This leads to the formulas s̄j/g =
exp(δj/(1−σ))

Dg
and s̄g =

D1−σ
g∑

h D1−σ
h

for shares where

Dg =
∑

j∈Jg
exp(δj/(1− σ)). These can be inverted to get

log sj − log s0 = x′
jβ − αpj + σ log s̄j/g + ξj (13)

(here, the outside good, product 0, has mean utility normalized to zero and is the only

product in its nest). The derivative of j’s share with respect to j’s price is
dsj
dpj

= −α
1−σ

sj(1−
σs̄j/g − (1− σ)sj), which gives a markup of

pj −MCj =
1− σ

α
/(1− σs̄j/g − (1− σ)sj). (14)

If the number of nests increases with the number of products per nest fixed, sj will go

to zero. Thus, we might expect that prices converge to the solution to a limiting system of

equations where sj is removed from the right hand side of (14). Since s̄j/g depends only on

products in group g, this would mean that asymptotic markups are determined by a pricing

game involving only firms with products in the same group. To formalize this, let p∗j for j
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in group j be defined as the unique solution to the system of equations

p∗j −MCj =
1− σ

α
/(1− σs̄j/g(x, p

∗, ξ))

=
1− σ

α

∑
k∈Jg

exp((x′
kβ − p∗kα + ξk)/(1− σ))

[∑
k∈Jg

exp((x′
kβ − p∗kα + ξk)/(1− σ))

]
− σ exp((x′

jβ − p∗jα + ξj)/(1− σ))
(15)

and let s̄∗j/g = s̄j/g(x, p
∗, ξ). That is, p∗j is defined as the solution to a system of equations

given by the markup formula (14), but with sj set to its limiting value of 0. The following

theorem states that IV estimates in this model are asymptotically equivalent to the estimates

that would be obtained if prices were replaced with p∗j . Since prices in the limiting model

depend on characteristics of products in the same nest but not on characteristics of products

in other nests, this means that characteristics of products in the same nest will potentially

have identifying power, while products in other nests will not.

Theorem 7. In the nested logit model single product firms and many nests, suppose that

(xj, ξj ,MCj) is bounded and iid across j. Let zj = (xj, h({xk}j∈Jg−L
, . . . , {xk}j∈Jg+M

) for

j ∈ Jg for some function h with finite variance. Let p∗j and s̄∗j/g be defined in (15). Let

(α̂, β̂, σ̂) be the IV estimates defined in (4), and let (α̂∗, β̂∗, σ̂∗) be defined in the same way, but

with p∗j and s̄∗j/g replacing pj and s̄j/g. Then ‖(α̂, β̂, σ̂)− (α̂∗, β̂∗, σ̂∗)‖ p→ 0 and, if (α̂∗, β̂∗, σ̂∗)

is consistent and asymptotically normal, (α̂, β̂, σ̂) will also be consistent and asymptotically

normal, with the same asymptotic distribution.

Note that, if we had taken the number of nests fixed with the number of products per

nest increasing, both s̄j/g and sj would converge to zero in the markup formula (14), and

the markup would converge to a constant as with the results in section 3.1. Thus, if the

dimension of ζ is fixed, we obtain the same results as in section 3.1 (with the stronger result

for the nested logit model that ‖σ̂ − σ̂∗‖ p→ 0, where both estimates are inconsistent). The

proof of Theorem 7 is given below.

proof of Theorem 7. As before, it suffices to show that pj and, in this case sj/g converge

uniformly to the starred versions at a faster than
√
J rate.
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Define the function f by

fj(p, x, ξ,MC, θ, r)

= pj −MCj

− 1− σ

α

∑
k exp((x

′
kβ − pkα + ξk)/(1− σ))

[
∑

k exp((x
′
kβ − pkα + ξk)/(1− σ))]− σ exp((x′

jβ − pjα + ξj)/(1− σ))
+ rj.

Then p∗g satisfies f(p∗g, xg, ξg,MCg, 0) = 0 and any solution p to the Nash pricing equations

satisfies f(p∗g, xg, ξg,MCg, r̃) = 0 for

r̃j =
1− σ

α

(1− σ)sj(p, x)

(1− σs̄j/g(p, x))(1− σs̄j/g(p, x)− (1− σ)sj(p, x))

where the functions sj and s̄j/g take prices and product characteristics to the expressions for

nested logit shares defined earlier in the section.

The proof proceeds by first showing that
√
J maxj≤J r̃j converges to zero, and then using

the implicit function theorem and the mean value theorem to get a linear approximation to

the p that solves f(p, x, ξ,MC, r) = 0 as a function of r. The first statement follows since

|r̃j| ≤
1− σ

α

sj(p, x)

1− σ − (1− σ)sj(p, x)
.

so that
√
J maxj≤J r̃j will converge to zero as long as

√
J maxj≤J sj converges to zero. In-

spection of the formula for sj shows that this will hold as long as equilibrium prices are

bounded.

For r small, the equation f(p, x, θ,MC, r) = 0 has a unique solution for p. To see that a

solution exists, note that this equation is equivalent to the first order condition for setting

prices in the Bertrand pricing game with demand given by qj(p) ≡ exp((x′
jβ − αpj)/(1 −

σ))/Dσ
g and marginal cost equal to MCj + rj. An equilibrium exists in this game, since it is
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log supermodular (see pp. 151-152 of Vives (2001)):

∂2 log πj

∂pj∂pk
=

∂2 log qj(p)

∂pj∂pk

=
∂2

∂pj∂pk

{
log exp((x′

jβ − αpj)/(1− σ))− σ log
∑

ℓ

exp((x′
ℓβ − αpℓ)/(1− σ))

}

= − ∂

∂pj
σ

−α
1−σ

exp((x′
kβ − αpk)/(1− σ))

∑
ℓ exp((x

′
ℓβ − αpℓ)/(1− σ))

=
ασ exp((x′

kβ − αpk)/(1− σ))

1− σ

α
1−σ

exp((x′
jβ − αpj)/(1− σ))

(
∑

ℓ exp((x
′
ℓβ − αpℓ)/(1− σ)))2

> 0.

Uniqueness follows from verifying a dominant diagonal condition for f (see p. 47 of Vives

(2001)). We have

∂fj
∂pj

= 1− 1− σ

α
σ

1
(
1− σs̄j/g(p)

)2
∂

∂pj
s̄j/g(p)

= 1− 1− σ

α
σ

1
(
1− σs̄j/g(p)

)2
−α

1− σ
s̄j/g(p)(1− s̄j/g(p)) = 1 + σ

s̄j/g(p)(1− s̄j/g(p))(
1− σs̄j/g(p)

)2

and, for k 6= j,

∂fj
∂pk

= −1− σ

α
σ

1
(
1− σs̄j/g(p)

)2
∂

∂pk
s̄j/g(p)

= −1− σ

α
σ

1
(
1− σs̄j/g(p)

)2
α

1− σ
s̄j/g(p)s̄k/g(p)) = −σ

s̄j/g(p)s̄k/g(p))(
1− σs̄j/g(p)

)2 .

Thus,

∂fj
∂pj

−
∑

k 6=j

∣∣∣∣
∂fj
∂pk

∣∣∣∣ = 1 +
σs̄j/g(p)(

1− σs̄j/g(p)
)2

(
1− sj/g(p)−

∑

k 6=j

sk/g(p)

)
= 1 > 0.

Since a unique p solves f(p, x, ξ,MC, θ, r) = 0 for the elements of (x, ξ,MC) in the given

bounded set, θ in the given neighborhood of θ0, and r close to zero, this defines p as a

function φ(x, ξ,MC, θ, r) of the remaining variables. By the implicit function theorem, the

derivative matrix Dφ(x, ξ,MC, θ, r) of φ is given by

(Dpf(φ(x, ξ,MC, θ, r), x, ξ,MC, θ, r))−1Dx,ξ,MC,θ,rf(φ(x, ξ,MC, θ, r), x, ξ,MC, θ, r)
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where subscripts denote blocks of the derivative matrix corresponding to derivatives with

respect to given variables (the derivative matrix of f with respect to p is invertible since it

is diagonally dominant). Since p = φ(x, ξ,MC, θ, r̃) and p∗ = φ(x, ξ,MC, θ, 0), by the mean

value theorem, for every index j, there is a r between 0 and r̃ such the difference between

pj and p∗j is given by the jth row of

(Dpf(φ(x, ξ,MC, θ, r), x, ξ,MC, θ, r))−1Drf(φ(x, ξ,MC, θ, r), x, ξ,MC, θ, r)r̃.

Since the elements of (Dpf(φ(x, ξ,MC, θ, r), x, ξ,MC, θ, r))−1Drf(φ(x, ξ,MC, θ, r), x, ξ,MC, θ, r)

are continuous functions of x, ξ, MC, θ, and r, the function that maps t to the maximum of

the absolute values of the elements of this matrix times t takes a maximum M as x, ξ, MC,

θ, and r range over the compact set that contains them and t ranges over the unit sphere in

R
|Jg |. This gives

√
J max

j≤J,‖θ−θ0‖<ε
|p∗j − pj| ≤

√
J max

j≤J
M‖r̃j‖ → 0.

The rate of uniform convergence for s̄j/g follows since s̄j/g is equal to s̄∗j/g with p∗k replaced

by pk in the definition, and the formula in the definition has a derivative with respect to

the vector of prices in group g that is bounded in an open set containing all values of

(x, ξ,MC, θ, p) that can be taken under the assumptions of the theorem. Thus, by the mean

value theorem, for some finite B,
√
J maxj≤J,‖θ−θ0‖<ε |s̄∗j/g−s̄j/g| ≤

√
JBmaxj≤J,‖θ−θ0‖<ε |p∗j−

pj| → 0.

B.2 Vertical Model

In contrast to the other models in which consumers have an idiosyncratic preference term

εij for each item, consider a model in which consumers agree on the ranking of goods, but

differ in their willingness to pay for product quality, as in Bresnahan (1987). As with the

random coefficients logit results in section 3.1, the identifying power of characteristics of

other products as instruments for price goes to zero at a faster than 1/
√
J rate.10

Utility of an individual consumer is given by

uij = x′
jβ − ζippj + ξj ≡ δj − ζippj

10Note, however, that the version of this model used by Bresnahan (1987) places enough structure on
the distribution of random coefficients that the model is identified through other means (see the discussion
surrounding equation (17) below).

48



where ζip represents consumer i’s preference for product quality. A small value of ζip means

that consumer i has a high value for the quality of the inside goods relative to the numeraire

good. The outsize good 0 has p0 = 0 and δ0 normalized to 0.

Arrange the goods in order of product quality so that δ1 < . . . < δJ . If all products have

positive market share, this will imply that prices satisfy p1 < . . . < pJ as well. Consumer i

will prefer good j to j − 1 if

δj − ζippj > δj−1 − ζippj−1 ⇔ ∆j ≡
δj − δj−1

pj − pj−1

> ζip.

Combining this with the expression for j + 1, consumer i will prefer j to its neighbors if

∆j > ζip > ∆j+1. In order for all products to have positive market share, this must hold

for some ζip for all j, so we must have ∆1 > . . . > ∆J . If this is the case, consumers who

prefer j to its neighbors will also prefer j to all other products, so, letting F be the cdf of

ζip, market shares will be given by

sj = F (∆j)− F (∆j+1). (16)

If we define ∆0 = ∞ and ∆J+1 = −∞, this will hold for good J and the outside good 0 as

well.

This can be inverted to give

F−1

(
J∑

k=j

sk

)
(pj − pj−1) = (xj − xj−1)

′β + ξj − ξj−1. (17)

If F is known, this equation can be estimated using OLS (indeed, Bresnahan, 1987, treats

F as known and fixes F when estimating a version of this model). If F is allowed to depend

on an unknown parameter (as in, e.g. Berry and Pakes, 2007), more instruments will be

needed, so it will be useful to study the identifying power of moment conditions based on

characteristics of other products (note, however, that, unless the parameter enters linearly

into (17), the inconsistency results in this paper will not apply, and additional arguments

will be needed).

Differentiating the formula for shares with respect to pj gives, letting f be the pdf of ζip,

dsj
dpj

= −f(∆j)
∆j

pj − pj−1

− f(∆j+1)
∆j+1

pj+1 − pj
.
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This gives markups in an interior Bertrand equilibrium as

pj −MCj =
F (∆j)− F (∆j+1)

f(∆j)
∆j

pj−pj−1
+ f(∆j+1)

∆j+1

pj+1−pj

. (18)

Suppose that, for some ζ > 0, ζ ≤ ζip for all consumers. That is, willingness to pay for

product quality is bounded from above. In this case, if all products have positive market

share, we will have ∆j > ζ for all j. Thus, the denominator in (18) will be bounded from

below as J increases, so, if market shares all converge to zero, markups will converge to zero

at the same rate or faster. If firms have approximately equal market shares asymptotically,

they will converge to zero at a 1/J rate, fast enough for Theorem 5 to hold.

One set of primitive conditions under which markups will converge to zero at a fast rate

is the following. In addition to assuming that ζip is bounded from below, suppose that

the density f of the random coefficient is bounded from above by f and from below by f .

Suppose that product characteristics are added in such a way that
√
J maxj≤J δj − δj−1 → 0

(e.g., this holds with probability one by results in Devroye, 1981, for the case where the

δj’s are order statistics of the uniform distribution or, by a quantile transformation, any

distribution with finite support and continuous density bounded from above and below) and

that all products have positive market share in equilibrium. Then

pj −MCj =
F (∆j)− F (∆j+1)

f(∆j)
∆j

pj−pj−1
+ f(∆j+1)

∆j+1

pj+1−pj

≤ f

f

∆j −∆j+1

∆j

pj−pj−1
+

∆j+1

pj+1−pj

≤ f

f
(pj − pj−1)

(the last inequality follows by bounding the denominator from below by f
∆j−∆j+1

pj−pj−1
). In order

for product j to have positive market share, we must have

ζ <
δj − δj−1

pj − pj−1

⇒ pj − pj−1 <
δj − δj−1

ζ
.

Thus,

√
J max

j≤J
pj −MCj ≤

√
J

f

f · ζ max
j≤J

δj − δj−1 → 0.

We note that, while the above conditions lead to markups quickly decreasing, the results

may be different if the support of product characteristics or the distribution of the random

coefficient changes with J . We leave these questions for future research.
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B.3 Multi Product Firms

This section considers the case with many small multiproduct firms. If the number of

products sold by each firm is fixed and the number of firms grows large, the results are

similar the single product case, although, due to the difficulty of proving existence and

uniqueness of equilibrium for these models with multi product firms, these results place

some conditions directly on equilibrium prices. In particular, these results require prices to

be bounded as the number of products increases, and the nested logit model requires the

existence of an equilibrium in a limiting form of the game in which price is a differentiable

function of costs and characteristics.

For the logit model, we have
∂sj
∂pj

= −αsj(1−sj) and, for k 6= j,
∂sj
∂pk

= αsjsk. Substituting

this into the first order conditions for pj (equation 1) and dividing by −αsj gives

(pj −MCj)(1− sj(x, p, ξ))−
∑

k∈Ff ,k 6=j

(pk −MCk)sk(x, p, ξ)−
1

α
= 0. (19)

Assuming that prices and product characteristics are bounded as J increases, shares will go

to zero at a faster than
√
J rate. In this case, markups will converge to 1/α at a faster than√

J rate, as in the single product case.

For the nested logit model, it can be checked that, for k 6= j and k and j in the same nest,

∂sk/∂pj =
α

1−σ
sk(σs̄j/g + (1 − σ)sj). For k in some other nest ℓ, we have ∂sk/∂pj = αsksj.

Plugging these into the first order conditions for firm f setting pj gives

0 = − α

1− σ
(pj −MCj)sj(1− σs̄j/g − (1− σ)sj)

+
∑

k∈Ff∩Jg ,k 6=j

(pk −MCk)
α

1− σ
sk(σs̄j/g + (1− σ)sj) +

∑

k∈Ff\Jg

(pk −MCk)αsksj + sj.

Rearranging gives

0 =
1− σ

α
− (pj −MCj)(1− σs̄j/g − (1− σ)sj)

+
∑

k∈Ff∩Jg ,k 6=j

(pk −MCk)
s̄k/g
s̄j/g

(σs̄j/g + (1− σ)sj) +
∑

k∈Ff\Jg

(pk −MCk)(1− σ)sk

This can be written as, for r̃J a term that converges to zero at faster than a
√
J rate as
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long as prices and product characteristics are bounded as J increases,

0 =
1− σ

α
− (pj −MCj)(1− σs̄j/g) +

∑

k∈Ff∩Jg ,k 6=j

(pk −MCk)σs̄k/g + r̃J . (20)

If this system of equations has a unique solution, and the function that takes marginal costs

and product characteristics of nest g and the remainder term to the vector of prices for nest

g that solves this system of equations for nest g has an invertible derivative for marginal

costs and product characteristics in a compact set that contains them by assumption, then

an argument similar to the one used for Theorem 7 will show that prices in the nested logit

game converge uniformly at a faster than
√
J rate to those that solve these equations. As

with the single product firm case, equilibrium prices do not depend on characteristics of

goods in other nests asymptotically. This holds even for products in other nests owned by

the same firm.

In the full random coefficients model with multi product firms, the first order conditions

for product j are

− α(pj −MCj)

∫
s̃j(δ, ζ)(1− s̃j(δ, ζ)) dPζ(ζ)

+ α
∑

k∈Fj ,k 6=j

(pk −MCk)

∫
s̃j(δ, ζ)s̃k(δ, ζ) dPζ(ζ) + sj = 0.

This can be rearranged to give

(pj −MCj)

∫
s̃j(δ, ζ)(1− s̃j(δ, ζ)) dPζ(ζ)∫

s̃j(δ, ζ) dPζ(ζ)

=
∑

k∈Fj ,k 6=j

(pk −MCk)

∫
s̃j(δ, ζ)s̃k(δ, ζ) dPζ(ζ)∫

s̃j(δ, ζ) dPζ(ζ)
+

1

α
.

If prices are bounded and the assumptions of Theorem 2 hold, the left hand side will converge

to (pj −MCj) at faster than a
√
J rate. Assuming prices are bounded, the first term on the

right hand side is bounded by a constant times
∫
s̃j(δ,ζ)s̃k(δ,ζ) dPζ(ζ)∫

s̃j(δ,ζ) dPζ(ζ)
. This term goes to zero at

the required rate using the same argument as for
∫
s̃2j (δ,ζ) dPζ(ζ)∫
s̃j(δ,ζ) dPζ(ζ)

.
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C Details for Diagnostics in Section 4

This section of the appendix provides details and formal justification for the diagnostics

in section 4 of the main text. Section C.1 treats the tests for identification discussed in

section 4.2. Section C.2 treats the tests of overidentifying supply side restrictions discussed

in section 4.3. Section C.3 gives primitive conditions for some specific examples.

As discussed in section 4, the proper approach to diagnosing the issues brought up in

this paper will depend on whether a supply side is specified. In the case where a supply

side is specified and needs to be correct for the overall analysis to go through (or, if the

researcher wishes to use a set of plausible supply models to gauge whether it is likely that

the BLP instruments will perform well), the ideal approach involves a Monte Carlo analysis

to determine whether it is possible for BLP instruments to perform well when prices are

generated from the equilibrium model, as discussed in section 4. If computational costs

make this prohibitive, the researcher may use the statistical tests in sections 4.2 and 4.3.

Most of this section of the appendix focuses on the case where a supply side model is

specified, and on showing that, if the supply and demand model imposed by the researcher

satisfy the conditions of Theorem 1 under the relevant asymptotics for the number of prod-

ucts, firms, etc., the tests in sections 4.2 and 4.3 will determine this with high probability

asymptotically. There are two cases to consider: (1) the data are generated from a model

satisfying the conditions of Theorem 1 or (2) the data are generated from a model where

the conditions of Theorem 1 do not hold, but the researcher imposes a model where they

do. Theorem 8 below shows that, in case (1), the test of identification in section 4.2 at level

α will find no evidence of identification with probability close to 1 − α. Theorem 9 shows

that in case (2), if the identification test does reject, a test of overidentifying supply side

restrictions (the test is suggested in section 4.3 and described in detail below) will reject with

high probability. Thus, taken together, rejecting lack of identification and failing to reject

proper specification give evidence that neither of these cases hold, and that therefore the

negative results of Theorem 1 are not relevant. As discussed in section 4, for applications

where a supply side does not need to be specified, only case (1) will be relevant, and Theorem

8 below shows that the identification test in section 4.2 gives a valid test for this case.

The remainder of this section uses the many markets notation of section 3.4, so that

prices, etc. are indexed by market i and product j. Some of the results, however, restrict

attention to the single market case.
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C.1 Tests for Identification

Let zi,j = (x′
i,j , hj(xi,−j)

′)′ be the instruments for product j in market i, and let z̄i,j =

h(xi,−j) −
[∑N

i=1

∑Ji
i=1 h(xi,−j)x

′
i,j

] [∑N
i=1

∑Ji
i=1 xi,jx

′
i,j

]−1

xi,j be the excluded BLP instru-

ments with the covariates projected out. As in the body of the text, we continue to as-

sume that xi,j contains the constant 1, which we take to be the first element. Let M̂zz =
1

NJ̄

∑N
i=1

∑Ji
j=1 ziz

′
i and let M̂z̄z̄ =

1
NJ̄

∑N
i=1

∑Ji
j=1 z̄iz̄

′
i. Let π̂p = M̂−1

z̄z̄
1

NJ̄

∑N
i=1

∑Ji
j=1 z̄i,jpi,j be

the vector of coefficients of hj(xi,−j) in the regression of pi,j on zi,j . Let

χ2
ident = NJ̄π̂′

pV̂
−1
π̂p

π̂p

where V̂π̂p
= M̂−1

z̄z̄

[
1

NJ̄

∑N
i=1

∑Ji
j=1 z̄i,j z̄

′
i,j(pi,j − z′i,j ˆ̟ p)

2
]
M̂−1

z̄z̄ is the heteroskedasticity robust

estimate of the asymptotic variance of π̂p, where ˆ̟ p is the full vector of coefficients in the

regression of pi,j on zi,j (it can be seen from the partitioned OLS formula that this is numer-

ically equivalent to using the submatrix of the usual sandwich estimate of the asymptotic

variance of ˆ̟ p corresponding to π̂p). The standard test for the null of lack of identification

in the model with σ known rejects when χ2
ident is greater than the 1− α quantile of the chi

square distribution with dh degrees of freedom, where dh is the dimension of hj(xi,−j). The

following theorem shows that, under the conditions of Theorem 1 (extended to the case with

multiple markets) and additional regularity conditions, this test will reject with probabil-

ity equal to its size asymptotically. Thus, if we reject with this test for identification, we

can conclude that prices were not generated by a supply and demand model satisfying the

conditions of Theorem 1.

Theorem 8. Let (xi,j ,MCi,j) be iid with finite second moment. Let χ2
ident be the first stage

identification test statistic defined above. Suppose that

(i)
√
NJ̄ max1≤i≤N,1≤j≤Ji |pi,j −MCi,j − b∗| p→ 0 for some constant b∗.

(ii) 1√
NJ̄

∑N
i=1

∑Ji
j=1 vec

{[
zi,j(z

′
i,j ,MCi,j)− Ezi,j(z

′
i,j,MCi,j)

}] d→ N(0, V ) for a positive

definite matrix V and 1
NJ̄

∑N
i=1

∑Ji
j=1 Ezi,jz

′
i,j → Mzz for some positive definite matrix

Mzz.
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(iii) zi,j is bounded by a nonrandom constant and, for V given in (ii),

1

NJ̄

N∑

i=1

Ji∑

j=1

vec
[
zi,j(z

′
i,j ,MCi,j)

]
vec
[
zi,j(z

′
i,j ,MCi,j)

]′

−
{

1

NJ̄

N∑

i=1

Ji∑

j=1

vec
[
zi,j(z

′
i,j,MCi,j)

]
}{

1

NJ̄

N∑

i=1

Ji∑

j=1

vec
[
zi,j(z

′
i,j ,MCi,j)

]
}′

p→ V.

Then χ2
ident converges in distribution to a chi square distribution with dh degrees of freedom.

Proof. By conditions (i) and (iii) of the theorem,

1√
NJ̄

N∑

i=1

Ji∑

i=1

zi,j(pi,j −MCi,j − b∗)
p→ 0

for b∗ given in condition (i). Thus,

ˆ̟ p = M̂−1
zz

1

NJ̄

N∑

i=1

Ji∑

i=1

zi,jpi,j = ˆ̟ ∗ + oP

(
1/
√

NJ̄
)
. (21)

where ˆ̟ ∗ = M̂−1
zz

1
NJ̄

∑N
i=1

∑Ji
j=1 zi,j(MCi,j + b∗). Let h̄N = 1

NJ̄

∑N
i=1

∑Ji
j=1 Ehj(xi,−j) and

h̄∞ = limN→∞ h̄N . Let

MzMC,N =
1

NJ̄

N∑

i=1

Ji∑

j=1

Ezi,j(MCi,j + b∗) =

(
Exi,j(MCi,j + b∗)

h̄NE(MCi,j + b∗)

)

and let MzMC,∞ = limN→∞ MzMC,N . Let ̟∗
N = M−1

zz MzMC,N and let ̟∗
∞ = M−1

zz MzMC,∞.

We have

√
NJ̄ ( ˆ̟ ∗ −̟∗

N) = M̂−1
zz

1√
NJ̄

N∑

i=1

Ji∑

j=1

zi,j [(MCi,j + b∗)− z′i,j̟
∗
N ]

d→ M−1
zz (ZzMC − Zzz(̟

∗ − b∗e1)) (22)

where e1 = (1, 0, . . . , 0)′ and ZzMC and Zzz are the normal random vector and matrix such

that 1√
NJ̄

∑N
i=1

∑Ji
j=1

[
zi,j(z

′
i,j,MCi,j)− Ezi,j(z

′
i,j ,MCi,j)

] d→ (Zzz, ZzMC) (here we use the

fact that the first row of zi,jz
′
i,j is z

′
i,j , since zi,j contains the constant 1 as the first element).

Note that, by (21), the same result holds when ˆ̟ ∗ is replaced by ˆ̟ p. Note also that the last
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dh elements of ̟∗
N are zero (this follows by independence of hj(xi,−j) from (x′

i,j ,MCi,j)).

Let V̂ ˆ̟ ∗ = M̂−1
zz

1
NJ̄

∑N
i=1

∑Ji
j=1 ziz

′
iη̂

∗2
i M̂−1

zz where η̂∗i = MCi,j + b∗ − z′i,j ˆ̟
∗, and let

V̂ ˆ̟ p
= M̂−1

zz
1

NJ̄

∑N
i=1

∑Ji
j=1 ziz

′
iη̃

2
i M̂

−1
zz where η̂i = pi,j−z′i,j ˆ̟ p, so that V̂ ˆ̟ ∗ and V̂ ˆ̟ p

are the het-

eroskedasticity robust variance estimates of ˆ̟ ∗ and ˆ̟ p respectively. Note that ‖V̂ ˆ̟ ∗ − V̂ ˆ̟ p
‖

is bounded by a constant times ‖M̂zz‖ · 1
NJ̄

∑N
i=1

∑Ji
j=1 ‖zi‖2(η̂∗2i − η̂2i ), which converges in

probability to zero by (21) and conditions (i) and (iii).

Thus, letting χ∗2
ident = NJ̄(R ˆ̟ ∗)′(RV̟̂∗R′)(R ˆ̟ ∗) where R = (0dh×dx , Idh), we have χ

∗2
ident−

χ2
ident

p→ 0. It therefore suffices to show that χ∗2
ident converges in distribution to a chi square

distribution with dh degrees of freedom. This follows by standard arguments. By conditions

(ii) and (iii), V̟̂∗

p→ var(ZzMC − Zzz(̟
∗ − b∗e1)), so the result follows by (22) and the fact

that the last dh elements of ̟∗
N are zero.

C.2 Tests of Overidentifying Restrictions

As in section 4.3, let bi,j(α, β, σ) = bi,j(pi, xi, ξj(α, β, σ, xi, pi);α, β, σ) be the markup for

product j in market i recovered using parameter values (α, β, σ). Consider a test of overi-

dentifying restrictions based on the moments

E
(
δj(xi, pi, σ)− x′

i,jβ − αpi,j
)
(

xi,j

hj(xi,−j)

)
= 0, (23)

E
(
pi,j − bi,j(α, β, σ)− x′

i,jγ
)
(

xi,j

hj(xi,−j)

)
= 0. (24)

Let θ = (α, β′, σ′, γ′) denote the parameters, and let

ĝD(θ) =
1

NJ̄

N∑

i=1

Ji∑

j=1

(
δj(xi, pi, σ)− x′

i,jβ − αpi,j
)
(

xi,j

hj(xi,−j)

)

ĝS(θ) =
1

NJ̄

N∑

i=1

Ji∑

j=1

(
pi,j − bi,j(α, β, σ)− x′

i,jγ
)
(

xi,j

hj(xi,−j)

)

denote the supply and demand side sample moments respectively. The GMM estimator

minimizes

NJ̄ ‖(gD(θ)′, gS(θ)′)′‖2WN
(25)
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where WN is a sequence of positive definite weighting matrices.

Let χ2
spec denote the minimized objective function (25). In the case where WN is an

estimate of the optimal weighting matrix, a standard test for overidentifying restrictions

compares χ2
spec to a quantile of the chi square distribution with degrees of freedom equal

to number of moments minus the number of parameters (see section 9.5 of Newey and

McFadden, 1994). Alternatively, on can add the excluded instruments to the pricing equation

(24) and test the null hypothesis that they do not enter this equation using OLS. Let γ̂h

denote the estimated coefficient of hj(xi,−j) in the OLS regression of pi,j − bi,j(α̂, β̂, σ̂) on xi,j

and hj(xi,−j).

The following theorem shows that if markups are recovered using a model where the

conditions of Theorem 1 hold and the identification test in section C.1 rejects with high

probability, then, under additional regularity conditions, the specification tests described

above will reject with high probability as well. Thus, if one imposes a model where the results

of Theorem 1 are relevant, one will find evidence of misspecification or lack of identification

with high probability asymptotically. As in section C.1, we let zi,j = (x′
i,j, hj(xi,−j)

′)′ denote

the vector of covariates and excluded BLP instruments.

Theorem 9. Suppose that the following conditions hold.

(i) For some sequence of random variables b∗N ,
√
NJ̄ max1≤i≤N,1≤j≤Ji |bi,j(α̂, β̂, σ̂)− b∗N |

p→
0.

(ii) The data (zi,j , pi,j) are bounded with probability one independently of i, j, and xi,j con-

tains a constant.

(iii) The matrix V̂πp
defined in section C.1 and the matrix 1

NJ̄

∑N
i=1

∑Ji
j=1 zi,jz

′
i,j converge in

probability to strictly positive definite matrices.

Then
√
NJ̄‖γ̂h − π̂p‖

p→ 0 and, for some constant C > 0, χ2
spec ≥ Cχ2

ident + oP (1). In

particular, if the identification test based on χ2
ident rejects with probability approaching one

and WN converges to a positive definite matrix, then the test of overidentifying restrictions

based on χ2
spec will also reject with probability approaching one.

Proof. For the first claim, note that, by the linearity of the OLS formula, π̂p − γ̂h = π̂markup

where π̂markup is the coefficient of hj(xi,−j) in the regression of bi,j(α̂, β̂, σ̂) on xi,j and
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hj(xi,−j). We have

√
NJ̄π̂markup = b∗NM̂

−1
z̄z̄

1√
NJ̄

N∑

i=1

Ji∑

j=1

z̄i + M̂−1
z̄z̄

1√
NJ̄

N∑

i=1

Ji∑

j=1

z̄i(bi,j(α̂, β̂, σ̂)− b∗N).

The first term is identically zero since z̄i is a projection onto a vector that contains a constant.

The second term converges in probability to zero by the assumptions of the theorem.

For the second claim, we have

√
NJ̄ĝS(θ̂) =

1√
NJ̄

N∑

i=1

Ji∑

j=1

(
pi,j − bi,j(α̂, β̂, σ̂)− x′

i,j γ̂
)
zi,j

=
1√
NJ̄

N∑

i=1

Ji∑

j=1

(
pi,j − b∗N − x′

i,j γ̂
)
zi,j + oP (1).

Thus,
∥∥∥
√
NJ̄ĝS(θ̂)

∥∥∥ ≥ minγ

∥∥∥ 1√
NJ̄

∑N
i=1

∑Ji
j=1

(
pi,j − b∗N − x′

i,jγ
)
zi,j

∥∥∥+oP (1). Letting M̂zz =

1
NJ̄

∑N
i=1

∑Ji
j=1 zi,jz

′
i,j , by condition (iii), this is bounded from below by a constant times an

oP (1) term plus

min
γ

∥∥∥∥∥
1√
NJ̄

N∑

i=1

Ji∑

j=1

(
pi,j − b∗N − x′

i,jγ
)
zi,j

∥∥∥∥∥
M̂−1

zz

= min
γ

∥∥∥∥∥
1√
NJ̄

N∑

i=1

Ji∑

j=1

(
pi,j − x′

i,jγ
)
zi,j

∥∥∥∥∥
M̂−1

zz

where the equality in the display follows from the fact that xi,j contains a constant. By

standard arguments (see section 9.6 of Newey and McFadden, 1994), the square of this is

equal to NJ̄‖π̂p‖2M̂−1
z̄z̄

where M̂−1
z̄z̄ and π̂p are defined in section C.1. The result follows since

replacing M̂−1
z̄z̄ with V̂π̂p

gives χ2
ident, and the eigenvalues of these matrices are bounded away

from zero and infinity by (iii).

Condition (i) of Theorem 9 essentially states that the formula used to recover markups

comes from a model where condition (i) of Theorem 1 holds (the conditions are slightly

different, since Theorem 9 treats markups recovered with estimated parameters). The re-

maining conditions are regularity conditions similar to those used in Theorem 8. Section C.3

verifies these conditions for some specific settings.

According to Theorem 9, γ̂h and γ̂p will have the same asymptotic distribution at a
√
NJ̄

scaling centered around the same limiting value, so long as one of these estimates satisfies a
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central limit theorem. Thus, if one forms a specification test by comparing γ̂h to zero using

a consistent estimate of the asymptotic variance, this test will give the same result as the

identification test based on χ2
ident (i.e. one will either find that the model is identified and

misspecified or unidentified and properly specified) with probability approaching one. While

this close relationship does not hold for the test based on the objective function statistic

χ2
spec, Theorem 9 shows that this test will still reject with high probability in cases where

the identification statistic is large and markups are recovered using a model that satisfies

the conditions of Theorem 1.

C.3 Examples

This section verifies the conditions of Theorem 9 for the the simple logit model with single

product firms and N and J̄ increasing, and the random coefficients logit model with a single

large market (since Theorem 8 uses only regularity conditions on the primitives zi,j ,MCi,j

in addition to the conditions of Theorem 1, the results in section 3.1 are sufficient to verify

these conditions in the latter case). In both cases, I assume only that markups are computed

according to the supply side model, thereby allowing the forms of misspecification that

lead the test to reject. I give examples of specific data generating processes, formed from

alternative models, that lead to this form of misspecification.

Theorem 10. Let bi,j be computed according to the simple logit model with estimated price

coefficient α̂: bi,j = 1
α̂(1−si,j)

. Suppose that {si,j}1≤i≤N,1≤j≤Ji are drawn according to some

sequence of distributions with max1≤i≤N,1≤j≤Ji Jisi,j ≤ C with probability approaching one for

some constant C, and that 1/α̂ is OP (1). Then, if N/J̄ → 0 and (max1≤i≤N Ji)/(min1≤i≤N Ji)

is bounded, part (i) of the conditions of Theorem 9 will hold.

Proof. The conditions hold with b∗N = 1/α̂, since, with probability approaching one,

√
NJ̄ max

1≤i≤N,1≤j≤Ji
|bi,j − 1/α̂| =

√
NJ̄ max

1≤i≤N,1≤j≤Ji

1

α̂

∣∣∣∣
si,j

1− si,j

∣∣∣∣

≤
√
NJ̄ max

1≤i≤N,1≤j≤Ji

2C

α̂Ji
≤ 2C

α̂

√
N

J̄

J̄

min1≤i≤N Ji
,

which converges to zero under these conditions.

Note that the above theorem holds under the conditions on N and the Ji’s that lead to

asymptotic equivalence with the unidentified model, with the additional regularity condition

that (max1≤i≤N Ji)/(min1≤i≤N Ji) is bounded.
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As an example of a setting where an incorrectly specified model leads to finding evidence

of identification with χ2
ident as well as misspecification with χ2

spec, suppose that the researcher

imposes a simple logit model with single product firms in a single large market, but prices are

actually generated by a nested logit model with many nests, as in section 3.2. Suppose that,

for each product j, the researcher uses the characteristics of another product that happens

to be in the same nest. Then, arguing as in Theorem 7, the correlation of the instrument

with prices will be bounded away from zero, leading the first stage identification statistic

χ2
ident to find evidence in favor of identification. However, since sj is bounded by a constant

in the nested logit model with bounded (xj, ξj), the conditions of Theorem 10 will hold, so

long as 1/α̂ is bounded asymptotically. Thus, by Theorem 9, the specification test based on

χ2
spec will also reject with probability approaching one.

Let us now consider the case where markups are computed according to the random

coefficients logit model in a single market with single product firms. I impose the additional

condition that the distribution of random coefficients is bounded.

Theorem 11. Let N = 1 and suppose that markups are computed according to the markup

formula for the random coefficients model with single product firms for an estimated param-

eter vector (α̂, β̂, σ̂): bj =
1
α̂

∫
s̃j(δ,ζ) dPζ(ζ)∫

s̃j(δ,ζ)(1−s̃j(δ,ζ)) dPζ(ζ)
where δ = δ(s, x, p, σ̂) is the inverse of the

share function and Pζ denotes the distribution of ζ corresponding to σ̂. Suppose that 1/α̂

and ‖σ̂‖ are OP (1) and, for some constant C, J maxj sj ≤ C and ‖(x′
j, pj)

′‖ ≤ C for all

J and the support of ‖ζ‖ under σ is bounded by C‖σ‖. Then part (i) of the conditions of

Theorem 9 will hold.

Proof. Let δ = δ(s, x, p, σ̂). Note that |bj − 1/α̂| is bounded by 2
∫
s̃j(δ,ζ)

2 dPζ(ζ)

α̂
∫
s̃j(δ,ζ) dPζ(ζ)

so long as
∫
s̃j(δ,ζ)

2 dPζ(ζ)

α̂
∫
s̃j(δ,ζ) dPζ(ζ)

≤ 1
2
, so it suffices to show that

√
J max1≤j≤J

∫
s̃j(δ,ζ)

2 dPζ(ζ)∫
s̃j(δ,ζ) dPζ(ζ)

p→ 0 (since 1/α̂ is

asymptotically bounded). We have

∫
s̃j(δ, ζ)

2 dPζ(ζ)∫
s̃j(δ, ζ) dPζ(ζ)

≤
∫
s̃j(δ, ζ)sj(δ) dPζ(ζ)∫

s̃j(δ, ζ) dPζ(ζ)
= sj(δ)

where sj(δ) = supζ∈supp[ζ] s̃j(δ, ζ). To bound supζ∈supp[ζ] s̃j(δ, ζ), note that, by boundedness

of xj and ζ,
supζ∈supp[ζ] s̃j(δ,ζ)

infζ∈supp[ζ] s̃j(δ,ζ)
is bounded by exp(4B‖σ̂‖) for some constant B (to see this,

note that, for large enough B, exp(−2B‖σ̂‖) exp(δj)∑J
k=1 exp(δk)

=
exp(δj−B‖σ̂‖)

∑J
k=1 exp(δk+B‖σ̂‖) ≤ s̃j(δ, ζ) ≤

exp(δj+B‖σ̂‖)
∑J

k=1 exp(δk−B‖σ̂‖) = exp(2B‖σ̂‖) exp(δj)∑J
k=1 exp(δk)

for all ζ ∈ supp[ζ]). Since
∫
s̃j(δ, ζ) dPζ(ζ) = sj

by definition of δ = δ(s, x, p, σ̂) as the inverse of the share function with Pζ following the
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distribution indexed by σ̂, it follows that

sup
ζ∈supp[ζ]

s̃j(δ, ζ) ≤
[

sup
ζ∈supp[ζ]

s̃j(δ, ζ)/ inf
ζ∈supp[ζ]

s̃j(δ, ζ)

]∫
s̃j(δ, ζ) dPζ(ζ) ≤ exp(4B‖σ̂‖) · C/J,

which gives the result.

The setting discussed above where the researcher observes data from a nested logit model

with many nests applies here as well. If the researcher incorrectly assumes a random co-

efficients model with a fixed number of bounded random coefficients, but happens to use

a product characteristic from the same nest as an instrument, the identification test and

specification test will find evidence of identification and misspecification with probability

approaching one.

D Monte Carlo

This section reports additional details and summary statistics for the Monte Carlos, as well

as results for designs not reported in the main text. These results include a comparison

to the case where markups are taken to be constant, which gives an idea of how well the

conclusion of Theorem 1 regarding large J asymptotics describes the given combinations of

N and J for these data generating processes (see Section D.3).

D.1 Details for the Monte Carlo Designs

For the Monte Carlos with more than one market, the BLP instruments are formed by taking

the excluded instruments for product j in market i, produced by firm f , to be
∑

k∈Ff
xi,k

and
∑Ji

k=1 xi,k. For the Monte Carlos with BLP instruments in a single market
∑Ji

k=1 xi,k

is constant, so the excluded instruments are formed as
∑

k∈Ff
xi,k and

(∑
k∈Ff

xi,k

)2
. For

the Monte Carlos with cost shifter instruments, the excluded instruments are zi,j and z2i,j .

For the Monte Carlos where prices are generated from constant markups, the form of the

instruments are the same (in particular, one of the BLP instruments is still
∑

k∈Ff
xi,k even

though the ownership structure that defines Ff does not affect prices). Note that, in all cases,

the number of moment conditions is equal to the number of parameters, so the estimator

does not depend on the form of the weighting matrix W . All of the Monte Carlo results

use 1000 Monte Carlo replications. For a small number of Monte Carlo draws, the equation
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solver did not converge to a solution for equilibrium prices or the estimator did not converge,

and these were discarded.

The share function and inverse share function were computed by Monte Carlo integration

with 10 draws of the random coefficients, with the same draws used to generate shares and

to compute the inverse share function. Since the same Monte Carlo draws are used in both

cases, there is no simulation error from Monte Carlo integration if we consider the random

coefficients to be drawn from a discrete distribution with 10 points.

The last two columns report rejection probabilities for a two sided test for the price

coefficient α at its true value and for testing α = 0. Note that the second to last column,

which gives the rejection probability at the true value of α, is a lower bound for the size

of the test, since the size of the test is the supremum of this rejection probability over all

possible values of other parameters (correlation between cost shocks and demand shocks,

etc.).

D.2 Additional Summary Statistics and Monte Carlo Designs

In addition to the Monte Carlos with 10 products per firm, I perform Monte Carlos with 2

products per firm, and with firm size varying between 2 products in approximately 1/3 of

the markets, 5 products in 1/3 of the markets, and 10 products per firm in the remaining

markets. More precisely, the number of products per firm and the number of products per

market for the cases where one or both of these is varied is given as follows. For the cases

with 3 markets and the number of products per market varied, the vector of market sizes

is (20, 60, 100). For the cases with 20 markets and the number of products per market

varied, 7 markets have 20 products, another 7 markets have 60 products, and the remaining

6 markets have 100 products. For the case with 3 markets where the number of products

per firm varies, the vector of firm sizes is (2, 5, 10). For the case with 20 markets and firm

size varied, 7 markets have 2 products per firm, another 7 have 5 products per firm, and the

remaining 6 have 10 products per firm. For the case with 3 markets where both products per

market and products per firm vary, one market has 20 products with 5 products per firm,

the second market has 60 products with 10 products per firm, and the remaining market has

100 products and 2 products per firm. For the case with 20 markets where both products

per market and products per firm vary, 4 markets have 20 products with 2 products per

firm, 3 markets have 20 products with 5 products per firm, 4 markets have 60 products with

5 products per firm, 3 markets have 60 products with 10 products per firm, 3 markets have

100 products with 10 products per firm, and the remaining 3 markets have 100 products
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with 2 products per firm.

These results are reported in Tables 4 and 5. These tables contain the results from the

designs in the main text as well. In addition to the statistics reported in the main text, I also

report mean bias and mean absolute deviation from the true value (as opposed to median bias

and median absolute deviation, which are reported here as well). Since these estimators are

known not to have first moments in similar settings, it may be the case that these quantities

are undefined for some of these designs. This may explain some of the erratic behavior of

the mean bias and mean absolute deviation as estimated by the Monte Carlos (for example,

in the fourth row of Table 4). Given the possible lack of moments of the estimators for these

designs, careful must be taken in interpreting the columns corresponding to mean bias and

mean absolute deviation. On the other hand, poor performance in terms of median bias

and median absolute deviation can be interpreted as evidence that the estimators perform

poorly.

D.3 When is the Single Large Market Limiting Model a Good

Approximation?

The results of Section 3.1 show that, under asymptotics where the number of products in-

creases with firm size and the number of markets fixed, IV estimators do no better than

they would with constant markups. To address how well this limiting model approximates

Bertrand equilibrium with the Monte Carlo data generating processes used in this section,

I simulate from the same data generating process for x, ξ and MC used in Tables 4 and 5

(which subsume Tables 1 and 3 in the main text, but contain results for additional data gen-

erating processes as described above), but set markups to 1/α for all products and compare

estimates based on these data sets to the previously reported estimates computed from data

sets with Bertrand prices. Table 6 reports the results of applying the same BLP instrument

based estimators to the Monte Carlo data sets with constant markups, while Table 7 reports

the results for cost instruments.

The results show that, while the limiting model gives a pessimistic description of the

behavior of BLP instrument based estimates for some of the cases considered, in other cases

it is accurate enough that one would worry about applying the BLP instruments. With a

single market, BLP instruments do not appear to perform noticeably better under Bertrand

pricing than in the limiting model in any of the Monte Carlo designs. With 3 markets,

10 products per firm and 100 products, the median bias and median absolute deviation of

the estimate of α are only slightly better in the true model than they are with a constant
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markup, and the size distortion in the two sided test for α is actually worse. As seen in

Table 2, the results can be equally bad with 20 markets and 100 products, depending on the

ownership structure and coefficient of x in the demand specification.

markets firm products median median mean mean rejection power
size per bias abs. dev. bias abs. dev. prob. at of test

market from α0 from α0 true α of α = 0
1 2 20 -0.3385 0.6081 -0.1710 1.0412 0.1439 0.2052
1 2 60 -0.3613 0.6660 -0.2992 1.3802 0.0631 0.0731
1 2 100 -0.3491 0.6825 -0.3345 1.4174 0.1266 0.1628
1 10 20 -0.2147 1.9530 -57.5606 182.1044 0.2729 0.2729
1 10 60 -0.3698 0.6691 -0.1955 1.2607 0.0783 0.1004
1 10 100 -0.3648 0.7177 -0.0373 1.4195 0.1211 0.1381
3 varied 20 -0.0229 0.1665 0.0392 0.2642 0.0450 0.7390
3 varied varied -0.0890 0.2786 0.0033 0.4777 0.0520 0.4700
3 varied 60 -0.0804 0.3922 0.0218 0.7237 0.1002 0.2956
3 varied 100 -0.1586 0.4504 -0.1198 0.8946 0.0160 0.1590
3 2 20 -0.2893 0.6742 -0.2255 1.6845 0.0280 0.0750
3 2 varied -0.3313 0.6753 -0.1899 1.2031 0.0250 0.0600
3 2 60 -0.3697 0.7407 -0.3989 1.4161 0.0090 0.0530
3 2 100 -0.3154 0.7171 -0.2893 1.6900 0.0140 0.0600
3 10 20 -0.1053 0.3358 -0.0006 0.7356 0.0390 0.3980
3 10 varied -0.0494 0.2966 0.0890 0.4682 0.1523 0.4649
3 10 60 -0.2186 0.5827 0.1410 1.5941 0.0200 0.1040
3 10 100 -0.2525 0.6383 -0.1924 1.4761 0.1351 0.1762
20 varied 20 -0.0044 0.0504 -0.0006 0.0614 0.0510 1.0000
20 varied varied -0.0211 0.1537 0.0031 0.2073 0.0480 0.9170
20 varied 60 -0.0061 0.1158 0.0066 0.1451 0.0400 0.9990
20 varied 100 -0.0190 0.1659 0.0136 0.2172 0.0410 0.9450
20 2 20 -0.0393 0.3504 0.0042 1.0057 0.1552 0.4535
20 2 varied -0.1578 0.4697 0.0671 1.0065 0.0851 0.2543
20 2 60 -0.1689 0.6458 -0.0580 1.8815 0.0090 0.1080
20 2 100 -0.2191 0.6897 -0.1581 1.7837 0.1061 0.1632
20 10 20 0.0039 0.1140 0.0298 0.1510 0.0390 0.9880
20 10 varied -0.0014 0.1001 0.0123 0.1266 0.0400 0.9960
20 10 60 0.0130 0.2345 0.1111 0.4021 0.0230 0.7710
20 10 100 -0.0379 0.3154 0.1358 0.9300 0.0200 0.4560

Table 4: Monte Carlo Results for BLP Instruments
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markets firm products median median mean mean rejection power
size per bias abs. dev. bias abs. dev. prob. at of test

market from α0 from α0 true α of α = 0
1 2 20 -0.0795 0.3155 0.0105 0.5596 0.1510 0.4387
1 2 60 -0.0202 0.1580 -0.0070 0.2706 0.0893 0.7222
1 2 100 -0.0194 0.1250 -0.0063 0.1916 0.0836 0.7462
1 10 20 -0.0854 0.3049 -0.0639 0.5184 0.0794 0.2487
1 10 60 -0.0247 0.1749 -0.0085 0.3047 0.1130 0.6710
1 10 100 -0.0196 0.1358 -0.0067 0.1980 0.0762 0.7623
3 varied 20 -0.0241 0.1819 0.0087 0.2797 0.0801 0.6286
3 varied varied -0.0047 0.0932 0.0059 0.1435 0.0441 0.7854
3 varied 60 -0.0090 0.0960 0.0077 0.1450 0.0513 0.7678
3 varied 100 -0.0027 0.0760 0.0123 0.1050 0.0562 0.8193
3 2 20 -0.0238 0.1766 0.0049 0.2978 0.0843 0.6128
3 2 varied -0.0097 0.0999 0.0092 0.1513 0.0592 0.7653
3 2 60 0.0011 0.0930 0.0017 0.1343 0.0501 0.7898
3 2 100 0.0003 0.0736 0.0038 0.1353 0.0340 0.8338
3 10 20 -0.0262 0.1837 0.0030 0.2861 0.1002 0.6092
3 10 varied -0.0122 0.1000 -0.0036 0.1486 0.0852 0.7916
3 10 60 -0.0102 0.1007 -0.0063 0.1441 0.0661 0.7768
3 10 100 -0.0054 0.0767 0.0019 0.1155 0.0662 0.8175
20 varied 20 0.0036 0.0703 0.0226 0.1045 0.0190 0.7850
20 varied varied 0.0006 0.0390 0.0080 0.0576 0.0593 0.8593
20 varied 60 -0.0004 0.0369 0.0094 0.0555 0.0561 0.8509
20 varied 100 -0.0003 0.0287 0.0050 0.0402 0.0210 0.9000
20 2 20 -0.0013 0.0685 0.0266 0.1039 0.0633 0.7801
20 2 varied 0.0021 0.0402 0.0004 0.0568 0.0411 0.8537
20 2 60 0.0035 0.0385 0.0102 0.0520 0.0644 0.8632
20 2 100 -0.0003 0.0286 0.0049 0.0421 0.0483 0.8813
20 10 20 0.0065 0.0663 0.0350 0.1035 0.0220 0.7840
20 10 varied -0.0008 0.0385 0.0062 0.0617 0.0522 0.8554
20 10 60 -0.0023 0.0365 0.0072 0.0554 0.0641 0.8707
20 10 100 -0.0027 0.0298 0.0060 0.0476 0.0481 0.8826

Table 5: Monte Carlo Results for Cost Instruments
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markets firm products median median mean mean rejection power
size per bias abs. dev. bias abs. dev. prob. at of test

market from α0 from α0 true α of α = 0
1 2 20 -0.3318 0.6416 -0.2259 1.1425 0.1054 0.1486
1 2 60 -0.3589 0.6896 -0.5748 1.5334 0.0842 0.1032
1 2 100 -0.3272 0.6853 -0.6563 1.7149 0.0874 0.1206
1 10 20 1.4864 28.2989 -303.2969 1704.8748 0.3064 0.3064
1 10 60 -0.3112 0.6440 -0.3565 1.4920 0.0521 0.0922
1 10 100 -0.3156 0.6748 -0.5056 1.7151 0.1117 0.1368
3 varied 20 -0.2828 0.6433 -0.3962 1.3015 0.0130 0.0560
3 varied varied -0.3300 0.7105 -0.3652 1.5209 0.0110 0.0460
3 varied 60 -0.3228 0.7043 -0.2699 1.3547 0.0090 0.0590
3 varied 100 -0.3146 0.6614 -0.3707 1.3190 0.0060 0.0470
3 2 20 -0.3583 0.7749 -0.5273 1.4379 0.0912 0.1082
3 2 varied -0.3333 0.6597 -0.3441 1.4748 0.0160 0.0551
3 2 60 -0.3485 0.7714 -0.3107 1.4713 0.0110 0.0591
3 2 100 -0.3118 0.7599 -0.1014 1.7674 0.0340 0.0791
3 10 20 -0.3069 0.7160 -0.3308 1.5446 0.0150 0.0520
3 10 varied -0.3049 0.7559 -0.2353 1.4444 0.0090 0.0560
3 10 60 -0.3540 0.7290 -0.3361 1.3365 0.0120 0.0460
3 10 100 -0.3341 0.7353 -0.1354 1.8455 0.0250 0.0581
20 varied 20 -0.3111 0.7932 -0.6371 2.3960 0.0100 0.0620
20 varied varied -0.2830 0.7370 -0.1486 1.6991 0.0090 0.0580
20 varied 60 -0.3471 0.8158 -0.3022 1.9232 0.0080 0.0450
20 varied 100 -0.3545 0.7563 -0.4122 1.9241 0.0060 0.0530
20 2 20 -0.3432 0.8074 -0.1088 2.1540 0.0150 0.0600
20 2 varied -0.3514 0.7758 -0.4193 1.6797 0.0130 0.0570
20 2 60 -0.3504 0.8160 -0.5682 2.2721 0.0060 0.0460
20 2 100 -0.3279 0.8166 -0.2851 1.8619 0.0080 0.0580
20 10 20 -0.3292 0.7525 -0.4875 1.9865 0.0100 0.0430
20 10 varied -0.3570 0.8237 -0.4159 1.6799 0.0090 0.0500
20 10 60 -0.3387 0.8265 0.1271 2.3312 0.1533 0.1814
20 10 100 -0.3454 0.7592 -0.2575 2.1509 0.0090 0.0470

Table 6: Monte Carlo Results for BLP Instruments with Constant Markups
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markets products median median mean mean rejection power
per bias abs. dev. bias abs. dev. prob. at of test

market from α0 from α0 true α of α = 0
1 20 -0.0614 0.3010 0.0221 0.4937 0.1470 0.4673
1 60 -0.0148 0.1538 -0.0067 0.2716 0.0843 0.7329
1 100 -0.0185 0.1233 0.0034 0.1942 0.0604 0.7613
3 20 -0.0100 0.1694 0.0092 0.2583 0.0582 0.6790
3 varied -0.0085 0.0934 0.0119 0.1454 0.0654 0.7827
3 60 -0.0099 0.0969 0.0053 0.1378 0.0350 0.7778
3 100 -0.0025 0.0736 0.0143 0.1051 0.0431 0.8317
20 20 0.0039 0.0693 0.0250 0.1027 0.0731 0.7675
20 varied -0.0002 0.0371 0.0058 0.0530 0.0581 0.8768
20 60 0.0004 0.0363 0.0142 0.0564 0.0320 0.8639
20 100 -0.0002 0.0282 0.0054 0.0410 0.0230 0.8979

Table 7: Monte Carlo Results for Cost Instruments with Constant Markups
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