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This appendix contains proofs and additional results for the paper “Unbiased Instru-

mental Variables Estimation Under Known First-Stage Sign.” Appendix A gives proofs

for results stated in the main text. Appendix B derives asymptotic results for models

with non-normal errors and an unknown reduced-form error variance. Appendix C re-

lates our results to those of Hirano & Porter (2015). Appendix D derives a lower bound

on the risk of unbiased estimators in over-identified models, discusses cases in which

the bound in attained, and proves that there is no uniformly minimum risk unbiased

estimator in such models. Appendix F gives additional simulation results for the just-

identified case, while Appendix G details our simulation design for the over-identified

case.

A Proofs

This appendix contains proofs of the results in the main text. The notation is the same

as in the main text.

A.1 Single Instrument Case

This section proves the results from Section 2, which treats the single instrument case

(k = 1). We prove Lemma 2.1 and Theorems 2.1, 2.2 and 2.3.

We first prove Lemma 2.1, which shows unbiasedness of τ̂ for 1/π. As discussed in

the main text, this result is known in the literature (see, e.g., pp. 181-182 of Voinov
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& Nikulin 1993). We give a constructive proof based on elementary calculus (Voinov &

Nikulin provide a derivation based on the bilateral Laplace transform).

Proof of Lemma 2.1. Since ξ2/σ2 ∼ N(π/σ2, 1), we have

Eπ,β τ̂(ξ2, σ
2
2) =

1

σ2

∫
1− Φ(x)

φ(x)
φ(x− π/σ2) dx =

1

σ2

∫
(1− Φ(x)) exp

(
(π/σ2)x− (π/σ2)2/2

)
dx

=
1

σ2

exp(−(π/σ2)2/2)

{
[(1− Φ(x))(σ2/π) exp((π/σ2)x)]∞x=−∞ +

∫
(σ2/π) exp((π/σ2)x)φ(x) dx

}
,

using integration by parts to obtain the last equality. Since the first term in brackets

in the last line is zero, this is equal to

1

σ2

∫
(σ2/π) exp((π/σ2)x− (π/σ2)2/2)φ(x) dx =

1

π

∫
φ(x− π/σ2) dx =

1

π
.

We note that τ̂ has an infinite 1 + ε moment for ε > 0.

Lemma A.1. The expectation of τ̂(ξ2, σ
2
2)1+ε is infinite for all π and ε > 0.

Proof. By similar calculations to those in the proof of Lemma 2.1,

Eπ,β τ̂(ξ2, σ
2
2)1+ε =

1

σ1+ε
2

∫
(1− Φ(x))1+ε

φ(x)ε
exp

(
(π/σ2)x− (π/σ2)2/2

)
dx.

For x < 0, 1−Φ(x) ≥ 1/2, so the integrand is bounded from below by a constant times

exp(εx2/2 + (π/σ2)x), which is bounded away from zero as x→ −∞.

Proof of Theorem 2.1. To establish unbiasedness, note that since ξ2 and ξ1 − σ12
σ2
2
ξ2 are

jointly normal with zero covariance, they are independent. Thus,

Eπ,ββ̂U(ξ,Σ) = (Eπ,β τ̂)

[
Eπ,β

(
ξ1 −

σ12

σ2
2

ξ2

)]
+
σ12

σ2
2

=
1

π

(
πβ − σ12

σ22

π

)
+
σ12

σ22

= β

since Eπ,β τ̂ = 1/π by Lemma 2.1.

To establish uniqueness, consider any unbiased estimator β̂ (ξ,Σ). By unbiasedness

Eπ,β

[
β̂ (ξ,Σ)− β̂U(ξ,Σ)

]
= 0 ∀β ∈ B, π ∈ Π.
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The parameter space contains an open set by assumption, so by Theorem 4.3.1 of

Lehmann & Romano (2005) the family of distributions of ξ under (π, β) ∈ Θ is complete.

Thus β̂ (ξ,Σ) − β̂U(ξ,Σ) = 0 almost surely for all (π, β) ∈ Θ by the definition of

completeness.

Proof of Theorem 2.2. If Eπ,β
∣∣∣β̂U(ξ,Σ)

∣∣∣1+ε

were finite, then Eπ,β
∣∣∣β̂U(ξ,Σ)− σ12/σ

2
2

∣∣∣1+ε

would be finite as well by Minkowski’s inequality. But

Eπ,β

∣∣∣β̂U(ξ,Σ)− σ12/σ
2
2

∣∣∣1+ε

= Eπ,β
∣∣τ̂ (ξ2, σ

2
2

)∣∣1+ε
Eπ,β

∣∣∣∣ξ1 −
σ12

σ2
22

ξ2

∣∣∣∣1+ε

,

and the second term is nonzero since Σ is positive definite. Thus, the 1 + ε absolute

moment is infinite by Lemma A.1. The claim that any unbiased estimator has infinite

1 + ε moment follows from Rao-Blackwell: since β̂U(ξ,Σ) = E
[
β̃(ξ,Σ)|ξ

]
for any

unbiased estimator β̃ by the uniqueness of the non-randomized unbiased estimator

based on ξ, Jensen’s inequality implies that the 1 + ε moment of |β̃| is bounded from

below by the (infinite) 1 + ε moment of |β̂U |.

We now consider the behavior of β̂U relative to the usual 2SLS estimator (which, in

the single instrument case considered here, is given by β̂2SLS = ξ1/ξ2) as π →∞.

Proof of Theorem 2.3. Note that

β̂U − β̂2SLS =

(
τ̂(ξ2, σ

2
2)− 1

ξ2

)(
ξ1 −

σ12

σ2
2

ξ2

)
=
(
ξ2τ̂(ξ2, σ

2
2)− 1

)(ξ1

ξ2

− σ12

σ2
2

)
.

As π → ∞, ξ1/ξ2 = β̂2SLS = OP (1), so it suffices to show that π (ξ2τ̂(ξ2, σ
2
2)− 1) =

oP (1) as π →∞. Note that, by Section 2.3.4 of Small (2010),

π
∣∣ξ2τ̂(ξ2, σ

2
2)− 1

∣∣ = π

∣∣∣∣ ξ2

σ2

1− Φ(ξ2/σ2)

φ(ξ2/σ2)
− 1

∣∣∣∣ ≤ π
σ2

2

ξ2
2

=
π

ξ2

σ2
2

ξ2

.

This converges in probability to zero since π/ξ2
p→ 1 and σ2

2

ξ2

p→ 0 as π →∞.

The following lemma regarding the mean absolute deviation of β̂U will be useful in

the next section treating the case with multiple instruments.
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Lemma A.2. For a constant K(β,Σ) depending only on Σ and β (but not on π),

πEπ,β

∣∣∣β̂U(ξ,Σ)− β
∣∣∣ ≤ K(β,Σ).

Proof. We have

π
(
β̂U − β

)
= π

[
τ̂ ·
(
ξ1 −

σ12

σ2
2

ξ2

)
+
σ12

σ2
2

− β
]

= πτ̂ ·
(
ξ1 −

σ12

σ2
2

ξ2

)
+ π

σ12

σ2
2

− πβ

= πτ̂ ·
(
ξ1 − βπ −

σ12

σ2
2

(ξ2 − π)

)
+ πτ̂βπ − πτ̂ σ12

σ2
2

π + π
σ12

σ2
2

− πβ

= πτ̂ ·
(
ξ1 − βπ −

σ12

σ2
2

(ξ2 − π)

)
+ π(πτ̂ − 1)

(
β − σ12

σ2
2

)
.

Using this and the fact that ξ2 and ξ1 − σ12
σ2
2
ξ2 are independent, it follows that

πEπ,β

∣∣∣β̂U − β∣∣∣ ≤ Eπ,β

∣∣∣∣ξ1 − βπ −
σ12

σ2
2

(ξ2 − π)

∣∣∣∣+ πEπ,β|πτ̂ − 1|
∣∣∣∣β − σ12

σ2
2

∣∣∣∣ ,
where we have used the fact that Eπ,βπτ̂ = 1. The only term in the above expression

that depends on π is πEπ,β|πτ̂−1|. Note that this is bounded above by πEπ,βπτ̂+π = 2π

(using unbiasedness and positivity of τ̂), so we can assume an arbitrary lower bound

on π when bounding this term.

Letting π̃ = π/σ2, we have ξ2/σ2 ∼ N(π̃, 1), so that

π

σ2

Eπ,β|πτ̂ − 1| = π

σ2

Eπ,β

∣∣∣∣ πσ2

1− Φ(ξ2/σ2)

φ(ξ2/σ2)
− 1

∣∣∣∣ = π̃

∫ ∣∣∣∣π̃1− Φ(z)

φ(z)
− 1

∣∣∣∣φ(z − π̃) dz.

Let ε > 0 be a constant to be determined later in the proof. By (1.1) in Baricz (2008)

π̃2

∫
z≥π̃ε

∣∣∣∣1− Φ(z)

φ(z)
− 1

π̃

∣∣∣∣φ(z − π̃) dz

≤ π̃2

∫
z≥π̃ε

∣∣∣∣1z − 1

π̃

∣∣∣∣φ(z − π̃) dz + π̃2

∫
z≥π̃ε

∣∣∣∣ z

z2 + 1
− 1

π̃

∣∣∣∣φ(z − π̃) dz.

The first term is

π̃2

∫
z≥π̃ε

∣∣∣∣ π̃ − zπ̃z

∣∣∣∣φ(z − π̃) dz ≤ π̃2

∫
z≥π̃ε

∣∣∣∣ π̃ − zπ̃2ε

∣∣∣∣φ(z − π̃) dz ≤ 1

ε

∫
|u|φ(u) du.

The second term is

π̃2

∫
z≥π̃ε

∣∣∣∣ 1

z + 1/z
− 1

π̃

∣∣∣∣φ(z − π̃) dz = π̃2

∫
z≥π̃ε

∣∣∣∣ π̃ − (z + 1/z)

π̃(z + 1/z)

∣∣∣∣φ(z − π̃) dz

≤ π̃2

∫
z≥π̃ε

|π̃ − z|+ 1
επ̃

π̃2ε
φ(z − π̃) dz ≤ 1

ε

∫ (
|u|+ 1

επ̃

)
φ(u) dz.
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We also have

π̃2

∫
z<π̃ε

∣∣∣∣1− Φ(z)

φ(z)
− 1

π̃

∣∣∣∣φ(z − π̃) dz ≤ π̃2

∫
z<π̃ε

1− Φ(z)

φ(z)
φ(z − π̃) dz + π̃

∫
z<π̃ε

φ(z − π̃) dz.

The second term is equal to π̃Φ(π̃ε− π̃), which is bounded uniformly over π̃ for ε < 1.

The first term is

π̃2

∫
z<π̃ε

(1− Φ(z)) exp

(
π̃z − 1

2
π̃2

)
dz

= π̃2

∫
z<π̃ε

∫
t≥z

φ(t) exp

(
π̃z − 1

2
π̃2

)
dtdz

= π̃2

∫
t∈R

∫
z≤min{t,π̃ε}

φ(t) exp

(
π̃z − 1

2
π̃2

)
dzdt

= π̃2 exp

(
−1

2
π̃2

)∫
t∈R

φ(t)

[
1

π̃
exp (π̃z)

]min{t,π̃ε}

z=−∞
dt

= π̃ exp

(
−1

2
π̃2

)∫
t∈R

φ(t) exp (π̃min{t, π̃ε}) dt

≤ π̃ exp

(
−1

2
π̃2 + επ̃2

)
.

For ε < 1/2, this is uniformly bounded over all π̃ > 0.

A.2 Multiple Instrument Case

This section proves Theorem 3.1 and extends this theorem to cover unbiased estimators

that are efficient under strong instrument asymptotics in the heteroskedastic case. In

particular, we prove an extension of this theorem allowing for unbiased estimators

that are asymptotically equivalent to a GMM estimator of the form β̂GMM,W =
ξ′2Ŵ ξ1

ξ′2Ŵ ξ2
,

where Ŵ = Ŵ (ξ) is a data dependent weighting matrix. For Theorem 3.1, Ŵ is the

deterministic matrix Z ′Z. In models with non-homoskedastic errors the two step GMM

estimator with weighting matrix

Ŵ =
(

Σ11 − β̂2SLS(Σ12 + Σ21) + β̂2
2SLSΣ22

)−1

(10)
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is asymptotically efficient under strong instruments. Here, Ŵ is an estimate of the

inverse of the variance matrix of the moments ξ1− βξ2, which the GMM estimator sets

close to zero. Let

ŵ∗GMM,i(ξ
(b)) =

ξ
(b)
2

′
Ŵ (ξ(b))eie

′
iξ

(b)
2

ξ
(b)
2

′
Ŵ (ξ(b))ξ

(b)
2

(11)

where

Ŵ (ξ(b)) =
(

Σ11 − β̂(ξ(b))(Σ12 + Σ21) + β̂(ξ(b))2Σ22

)−1

for a preliminary estimator β̂(ξ(b)) of β based on ξ(b). The Rao-Blackwellized esti-

mator formed by replacing ŵ∗ with ŵ∗GMM in the definition of β̂∗RB gives an unbiased

estimator that is asymptotically efficient under strong instrument asymptotics with

non-homoskedastic errors, as we now show by proving an extension of Theorem 3.1

that covers the weight matrix in (10) in addition to the matrix Z ′Z used in Theorem

3.1.

Consider the GMM estimator β̂GMM,W =
ξ′2Ŵ ξ1

ξ′2Ŵ ξ2
, where Ŵ = Ŵ (ξ) is a data depen-

dent weighting matrix. For Theorem 3.1, Ŵ is the deterministic matrix Z ′Z while, in

the extension discussed above, Ŵ is defined in (10). In both cases, Ŵ p→ W ∗ for some

positive definite matrix W ∗ under the strong instrument asymptotics in the theorem.

For this W ∗, define the oracle weights

w∗i = πi
π′W ∗ei
π′W ∗π

=
π′W ∗eie

′
iπ

π′W ∗π

and the oracle estimator

β̂oRB = β̂RB(ξ,Σ;w∗) = β̂w(ξ,Σ;w∗) =
k∑
i=1

w∗i β̂U(ξ(i),Σ(i)).

Define the estimated weights as in (11):

ŵ∗i = ŵ∗i (ξ
(b)) =

ξ
(b)
2

′
Ŵ (ξ(b))eie

′
iξ

(b)
2

ξ
(b)
2

′
Ŵ (ξ(b))ξ

(b)
2

and the Rao-Blackwellized estimator based on the estimated weights

β̂∗RB = β̂RB(ξ,Σ; ŵ∗) = E
[
β̂w(ξ(a), 2Σ; ŵ∗)

∣∣∣ξ] =
k∑
i=1

E
[
ŵ∗i (ξ

(b)
2 )β̂U(ξ(a)(i), 2Σ(i))

∣∣∣ξ] .
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In the general case, we will assume that ŵ∗i (ξ(b)) is uniformly bounded (this holds for

equivalence with 2SLS under the conditions of Theorem 3.1, since sup‖u‖Z′Z=1 u
′Z ′Zeie

′
iu

is bounded, and one can likewise show that it holds for two step GMM provided Σ has

full rank). Let us also define the oracle linear combination of 2SLS estimators

β̂o2SLS =
k∑
i=1

w∗i
ξ1,i

ξ2,i

.

Lemma A.3. Suppose that ŵ is deterministic: ŵ(ξ(b)) = w for some constant vector

w. Then β̂RB(ξ,Σ;w) = β̂w(ξ,Σ;w).

Proof. We have

β̂RB(ξ,Σ;w) = E

[
k∑
i=1

wiβ̂U(ξ(a)(i), 2Σ(i))

∣∣∣∣ξ
]

=
k∑
i=1

wiE

[
β̂U(ξ(a)(i), 2Σ(i))

∣∣∣∣ξ] .
Since ξ(a)(i) = ζ(i) + ξ(i) (where ζ(i) = (ζi, ζk+i)

′), ξ(a)(i) is independent of {ξ(j)}j 6=i
conditional on ξ(i). Thus, E

[
β̂U(ξ(a)(i), 2Σ(i))

∣∣∣∣ξ] = E

[
β̂U(ξ(a)(i), 2Σ(i))

∣∣∣∣ξ(i)]. Since

E

[
β̂U(ξ(a)(i), 2Σ(i))

∣∣∣∣ξ(i)] is an unbiased estimator for β that is a deterministic function

of ξ(i), it must be equal to β̂U(ξ(i),Σ(i)), the unique nonrandom unbiased estimator

based on ξ(i) (where uniqueness follows by completeness since the parameter space

{(βπi, πi)|πi ∈ R+, β ∈ R} contains an open rectangle). Plugging this in to the above

display gives the result.

Lemma A.4. Let ‖π‖ → ∞ with ‖π‖/mini πi = O(1). Then ‖π‖
(
β̂GMM,W − β̂o2SLS

)
p→

0.

Proof. Note that

β̂GMM,W − β̂o2SLS =
ξ′2Ŵ ξ1

ξ′2Ŵ ξ2

−
k∑
i=1

w∗i
ξ1,i

ξ2,i

=
k∑
i=1

(
ξ′2Ŵeie

′
iξ2

ξ′2Ŵ ξ2

− w∗i

)
ξ1,i

ξ2,i

=
k∑
i=1

(
ξ′2Ŵeie

′
iξ2

ξ′2Ŵ ξ2

− π′W ∗eie
′
iπ

π′W ∗π

)
ξ1,i

ξ2,i

=
k∑
i=1

(
ξ′2Ŵeie

′
iξ2

ξ′2Ŵ ξ2

− π′W ∗eie
′
iπ

π′W ∗π

)(
ξ1,i

ξ2,i

− β
)
,

where the last equality follows since
∑k

i=1
ξ′2Ŵeie

′
iξ2

ξ′2Ŵ ξ2
=
∑k

i=1
π′W ∗eie′iπ

π′W ∗π
= 1 with proba-

bility one. For each i, πi(ξ1,i/ξ2,i − β) = OP (1) and ξ′2Ŵeie
′
iξ2

ξ′2Ŵ ξ2
− π′W ∗eie′iπ

π′W ∗π

p→ 0 as the
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elements of π approach infinity. Combining this with the above display and the fact

that ‖π‖/mini πi = O(1) gives the result.

Lemma A.5. Let ‖π‖ → ∞ with ‖π‖/mini πi = O(1). Then ‖π‖
(
β̂o2SLS − β̂oRB

)
p→ 0.

Proof. By Lemma A.3,

‖π‖
(
β̂o2SLS − β̂oRB

)
= ‖π‖

k∑
i=1

w∗i

(
ξ1,i

ξ2,i

− β̂U(ξ(i),Σ(i))

)
.

By Theorem 2.3, πi
(
ξ1,i
ξ2,i
− β̂U(ξ(i),Σ(i))

)
p→ 0. Combining this with the boundedness

of ‖π‖/mini πi gives the result.

Lemma A.6. Let ‖π‖ → ∞ with ‖π‖/mini πi = O(1). Then ‖π‖
(
β̂oRB − β̂∗RB

)
p→ 0.

Proof. We have

β̂oRB − β̂∗RB =
k∑
i=1

E
[(
w∗i − ŵ∗i (ξ(b))

)
β̂U(ξ(a)(i), 2Σ(i))

∣∣∣ξ]
=

k∑
i=1

E
[(
w∗i − ŵ∗i (ξ(b))

) (
β̂U(ξ(a)(i), 2Σ(i))− β

) ∣∣∣ξ]
using the fact that

∑k
i=1 w

∗
i =

∑k
i=1 ŵ

∗
i (ξ

(b)) = 1 with probability one. Thus,

Eβ,π

∣∣∣β̂oRB − β̂∗RB∣∣∣ ≤ k∑
i=1

Eβ,π

∣∣∣(w∗i − ŵ∗i (ξ(b))
) (
β̂U(ξ(a)(i), 2Σ(i))− β

)∣∣∣
=

k∑
i=1

Eβ,π
∣∣w∗i − ŵ∗i (ξ(b))

∣∣Eβ,π ∣∣∣β̂U(ξ(a)(i), 2Σ(i))− β
∣∣∣ .

As ‖π‖ → ∞, ŵ∗i (ξ(b))−w∗i
p→ 0 so, since ŵ∗i (ξ(b)) is bounded, Eβ,π

∣∣w∗i − ŵ∗i (ξ(b))
∣∣→ 0.

Thus, it suffices to show that πiEβ,π
∣∣∣β̂U(ξ(a)(i), 2Σ(i))− β

∣∣∣ = O(1) for each i. But this

follows by Lemma A.2, which completes the proof.

B Non-Normal Errors and Unknown Reduced Form

Variance

This appendix derives asymptotic results for the case with non-normal errors and an

estimated reduced form covariance matrix. Section B.1 shows asymptotic unbiasedness
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in the weak instrument case. Section B.2 shows asymptotic equivalence with 2SLS in

the strong instrument case (where, in the case with multiple instruments, the weights

are chosen appropriately). The results are proved using some auxiliary lemmas, which

are stated and proved in Section B.3.

Throughout this appendix, we consider a sequence of reduced form estimators

ξ̃ =

 (Z ′Z)−1Z ′Y

(Z ′Z)−1Z ′X

 ,

which we assume satisfy a central limit theorem:

√
T

ξ̃ −
 πTβ

πT

 d→ N (0,Σ∗) , (12)

where πT is a sequence of parameter values and Σ∗ is a positive definite matrix. Fol-

lowing Staiger & Stock (1997), we distinguish between the case of weak instruments,

in which πT converges to 0 at a
√
T rate, and the case of strong instruments, in which

πT converges to a vector in the interior of the positive orthant. Formally, the weak

instrument case is given by the condition that

√
TπT → π∗ where π∗i > 0 for all i (13)

while the strong instrument case is given by the condition that

πT → π∗ where π∗i > 0 for all i. (14)

In both cases, we assume the availability of a consistent estimator Σ̃ for the asymptotic

variance of the reduced form estimators:

Σ̃
p→ Σ∗. (15)

The estimator is then formed as

β̂RB(ξ̃, Σ̃/T, ŵ) = EΣ̃/T

[
β̂w(ξ̃(a), 2Σ̃/T, ŵ(ξ̃(b)))

∣∣∣ξ̃]
=

∫
β̂w(ξ̃ + T−1/2Σ̃1/2η, 2Σ̃/T, ŵ(ξ̃ − T−1/2Σ̃1/2η)) dPN(0,I2k)(η)
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where ξ̃(a) = ξ̃ + T−1/2Σ̃1/2η and ξ̃(b) = ξ̃ − T−1/2Σ̃1/2η for η ∼ N(0, I2k) independent

of ξ̃ and Σ̃, and we use the subscript in the expectation to denote the dependence of

the conditional distribution of ξ̃(a) and ξ̃(b) on Σ̃/T . In the single instrument case,

β̂RB(ξ̃, Σ̃/T, ŵ) reduces to β̂U(ξ̃, Σ̃/T ).

For the weights ŵ, we assume that ŵ(ξ(b)) is bounded and continuous in ξ(b) with∑k
i=1 ŵi(ξ

(b)) = 1 and ŵi(aξ(b)) = ŵi(ξ
(b)) for any scalar a, as holds for all the weights

discussed above. Using the fact that β̂U(
√
ax, aΩ) = β̂U(x,Ω) for any scalar a and any

x and Ω, we have, under the above conditions on ŵ,

β̂RB(ξ̃, Σ̃/T, ŵ) =

∫
β̂w(
√
T ξ̃ + Σ̃1/2η, 2Σ̃, ŵ(

√
T ξ̃ − Σ̃1/2η)) dPN(0,I2k)(η) = β̂RB(

√
T ξ̃, Σ̃, ŵ).

Thus, we can focus on the behavior of
√
T ξ̃ and Σ̃, which are asymptotically nonde-

generate in the weak instrument case.

B.1 Weak Instrument Case

The following theorem shows that the estimator β̂RB converges in distribution to a

random variable with mean β. Note that, since convergence in distribution does not

imply convergence of moments, this does not imply that the bias of β̂RB converges

to zero. While it seems likely this stronger form of asymptotic unbiasedness could be

achieved under further conditions by truncating β̂RB at a slowly increasing sequence of

points, we leave this extension for future research.

Theorem B.1. Let (12) (13) and (15) hold, and suppose that ŵ(ξ(b)) is bounded and

continuous in ξ(b) with ŵi(aξ(b)) = ŵi(ξ
(b)) for any scalar a. Then

β̂RB(ξ̃, Σ̃/T, ŵ) = β̂RB(
√
T ξ̃, Σ̃, ŵ)

d→ β̂RB(ξ∗,Σ∗, ŵ)

where ξ∗ ∼ N((π∗′β, π∗′)′,Σ∗) and E
[
β̂RB(ξ∗,Σ∗, ŵ)

]
= β.

Proof. Since
√
T ξ̃

d→ ξ∗ and Σ̃
p→ Σ∗, the first display follows by the continuous map-

ping theorem so long as β̂RB(ξ∗,Σ∗, ŵ) is continuous in ξ∗ and Σ∗. Since

β̂RB(ξ∗,Σ∗, ŵ) =

∫
β̂w(ξ∗ + Σ∗1/2η, 2Σ∗, ŵ(ξ∗ − Σ∗1/2η)) dPN(0,I2k)(η) (16)
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and the integrand is continuous in ξ∗ and Σ∗, it suffices to show uniform integrability

over ξ∗ and Σ∗ in an arbitrarily small neighborhood of any point. The pth moment of

the integrand in the above display is bounded by a constant times the sum over i of∫ ∫ ∣∣∣β̂U(ξ∗(i) + Σ∗1/2(i)z, 2Σ∗(i))
∣∣∣p φ(z1)φ(z2) dz1dz2 = R(ξ∗(i),Σ∗(i), 0, p),

where R is defined below in Section B.3. By Lemma B.1 below, this is equal to

R̃

 ξ∗2(i)√
Σ∗22(i)

,
ξ∗1(i)√
Σ∗22(i)

,

(
Σ∗11(i)

Σ∗22(i)
− Σ∗12(i)2

Σ∗22(i)2

)1/2

,−Σ∗12(i)

Σ∗22(i)
, p

 ,

which is bounded uniformly over a small enough neighborhood of any ξ∗ and Σ∗ with

Σ∗ positive definite by Lemma B.2 below so long as p < 2. Setting 1 < p < 2, it follows

that uniform integrability holds for (16) so that β̂RB(ξ∗,Σ∗, ŵ) is continuous, thereby

giving the result.

B.2 Strong Instrument Asymptotics

Let W̃ (ξ̃(b), Σ̃) and Ŵ be weighting matrices that converge in probability to some pos-

itive definite symmetric matrix W . Let

ŵ∗GMM,i(ξ̃
(b)) =

ξ̃
(b)′
2 W̃ (ξ̃(b), Σ̃)eie

′
iξ̃

(b)
2

ξ̃
(b)′
2 W̃ (ξ̃(b), Σ̃)ξ̃

(b)
2

,

where ei is the ith standard basis vector in Rk, and let

β̂GMM,Ŵ =
ξ̃′2Ŵ ξ̃1

ξ̃′2Ŵ ξ̃1

.

The following theorem shows that β̂GMM,Ŵ and β̂RB(
√
T ξ̃, Σ̃, ŵ∗GMM) are asymptot-

ically equivalent in the strong instrument case. For the case where W̃ (ξ̃(b), Σ̃) = Ŵ =

Z ′Z/T , this gives asymptotic equivalence to 2SLS.

Theorem B.2. Let W̃ (ξ̃(b), Σ̃) and Ŵ be weighting matrices that converge in probability

to the same positive definite matrix W , such that ŵ∗GMM,i defined above is uniformly

bounded over ξ̃(b). Then, under (12), (14) and (15),
√
T
(
β̂RB(

√
T ξ̃, Σ̃, ŵ∗GMM)− β̂GMM,Ŵ

)
p→ 0.
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Proof. As with the normal case, define the oracle linear combination of 2SLS estimators

β̂o2SLS =
k∑
i=1

w∗i
ξ̃1,i

ξ̃2,i

where w∗i =
π∗′Weie

′
iπ
∗

π∗′Wπ∗
. We have

√
T
(
β̂RB(

√
T ξ̃, Σ̃, ŵ∗GMM)− β̂GMM,Ŵ

)
= I + II + III

where I ≡
√
T (β̂RB(

√
T ξ̃, Σ̃, ŵ∗GMM)− β̂RB(

√
T ξ̃, Σ̃, w∗)), II ≡

√
T (β̂RB(

√
T ξ̃, Σ̃, w∗)−

β̂o2SLS) and III ≡
√
T (β̂o2SLS − β̂GMM,Ŵ ).

For the first term, note that

I =
√
T

k∑
i=1

EΣ̃

[(
ŵ∗GMM,i(ξ̃

(b))− w∗i
)
β̂U(
√
T ξ̃(a)(i), Σ̃(i))

∣∣∣ξ̃]
=
√
T

k∑
i=1

EΣ̃

[(
ŵ∗GMM,i(ξ̃

(b))− w∗i
)(

β̂U(
√
T ξ̃(a)(i), Σ̃(i))− β

) ∣∣∣ξ̃]
where the last equality follows since

∑k
i=1 ŵ

∗
GMM,i(ξ̃

(b)) =
∑k

i=1w
∗
i = 1 with probability

one. Thus, by Hölder’s inequality,

|I| ≤
√
T

k∑
i=1

(
EΣ̃

[∣∣∣ŵ∗GMM,i(ξ̃
(b))− w∗i

∣∣∣q ∣∣∣ξ̃])1/q (
EΣ̃

[∣∣∣β̂U(
√
T ξ̃(a)(i), Σ̃(i))− β

∣∣∣p ∣∣∣ξ̃])1/p

for any p and q with p, q > 1 and 1/p+1/q = 1 such that these conditional expectations

exist. Under (14), ŵ∗GMM,i(ξ̃
(b))

p→ w∗i so, since ŵ∗GMM,i(ξ̃
(b)) is uniformly bounded,

EΣ̃

[∣∣∣ŵ∗GMM,i(ξ̃
(b))− w∗i

∣∣∣q ∣∣∣ξ̃] will converge to zero for any q. Thus, for this term, it

suffices to bound

√
T
(
EΣ̃

[∣∣∣β̂U(
√
T ξ̃(a)(i), Σ̃(i))− β

∣∣∣p ∣∣∣ξ̃])1/p

=
√
TR

(√
T ξ̃(i), Σ̃(i), β, p

)1/p

=
√
TR̃

√T ξ̃2(i)√
Σ̃22(i)

,

√
T (ξ̃1(i)− βξ̃2(i))√

Σ̃22(i)
,

(
Σ̃11(i)

Σ̃22(i)
− Σ̃12(i)2

Σ̃22(i)2

)1/2

, β − Σ̃12(i)

Σ̃22(i)
, p

1/p

for R and R̃ as defined in Section B.3 below. By Lemma B.3 below, this is equal to√
Σ̃22(i)/ξ̃2(i) times a OP (1) term for p < 2. Since

√
Σ̃22(i)/ξ̃2(i)

p→
√

Σ∗22(i)/π∗i , it

follows that the above display is also OP (1). Thus, I p→ 0.
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For the second term, we have

II =
√
T
∑
i=1

w∗i

(
β̂U(
√
T ξ̃(i), Σ̃(i))− ξ̃1(i)

ξ̃2(i)

)

=
√
T
∑
i=1

w∗i

(√
T ξ̃2(i)τ̂(

√
T ξ̃2(i), Σ̃22(i))− 1

)( ξ̃1(i)

ξ̃2(i)
− Σ̃12(i)

Σ̃22(i)

)
.

For each i, ξ̃1(i)

ξ̃2(i)
− Σ̃12(i)

Σ̃22(i)
converges in probability to a finite constant and, by Section

2.3.4 of Small (2010),

√
T
∣∣∣√T ξ̃2(i)τ̂(

√
T ξ̃2(i), Σ̃22(i))− 1

∣∣∣ ≤ √T Σ̃22(i)

T ξ̃2(i)2

p→ 0.

The third term converges in probability to zero by standard arguments. We have

III =
√
T

k∑
i=1

(
w∗i −

ξ̃′2Ŵeie
′
iξ̃2

ξ̃′2Ŵ ξ̃2

)
ξ̃1,i

ξ̃2,i

=
√
T

k∑
i=1

(
w∗i −

ξ̃′2Ŵeie
′
iξ̃2

ξ̃′2Ŵ ξ̃2

)(
ξ̃1,i

ξ̃2,i

− β

)
,

where the last equality follows since
∑k

i=1w
∗
i =

∑k
i=1

ξ̃′2Ŵeie
′
iξ̃2

ξ̃′2Ŵ ξ̃2
with probability one.

The result then follows from Slutsky’s theorem.

B.3 Auxiliary Lemmas

For p ≥ 1, x ∈ R2, Ω a 2× 2 matrix and b ∈ R, let

R(x,Ω, b, p) =

∫ ∫ ∣∣∣β̂U(x+ Ω1/2z, 2Ω)− b
∣∣∣p φ(z1)φ(z2) dz1dz2

and let

R̃(t, c1, c2, c3, p) =

∫ ∫
|τ̂(t+ z2, 2)(c1 + c2z1) + [τ̂(t+ z2, 2)t− 1] c3|p φ(z1)φ(z2) dz1dz2.

Lemma B.1. For R and R̃ defined above,

R(x,Ω, b, p) = R̃

(
x2√
Ω22

,
x1 − bx2√

Ω22

,

(
Ω11

Ω22

− Ω2
12

Ω2
22

)1/2

, b− Ω12

Ω22

, p

)
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Proof. Without loss of generality, we can let Ω1/2 be the upper diagonal square root

matrix

Ω1/2 =

 (
Ω11 − Ω2

12

Ω22

)1/2
Ω12√
Ω22

0
√

Ω22

 .

Then

β̂U(x+ Ω1/2z, 2Ω)

= τ̂(x2 +
√

Ω22z2, 2Ω22) ·

(
x1 +

(
Ω11 −

Ω2
12

Ω22

)1/2

z1 +
Ω12√
Ω22

z2 −
Ω12

Ω22

(
x2 +

√
Ω22z2

))
+

Ω12

Ω22

=
τ̂(x2/

√
Ω22 + z2, 2)√
Ω22

·

(
x1 +

(
Ω11 −

Ω2
12

Ω22

)1/2

z1 −
Ω12

Ω22

x2

)
+

Ω12

Ω22

so that

β̂U(x+ Ω1/2z, 2Ω)− b =
τ̂(x2/

√
Ω22 + z2, 2)√
Ω22

·

(
x1 +

(
Ω11 −

Ω2
12

Ω22

)1/2

z1 −
Ω12

Ω22

x2

)
+

Ω12

Ω22

− b

=
τ̂(x2/

√
Ω22 + z2, 2)√
Ω22

·

(
x1 − x2b+

(
Ω11 −

Ω2
12

Ω22

)1/2

z1 +

(
b− Ω12

Ω22

)
x2

)
+

Ω12

Ω22

− b

=
τ̂(x2/

√
Ω22 + z2, 2)√
Ω22

·

(
x1 − x2b+

(
Ω11 −

Ω2
12

Ω22

)1/2

z1

)
+

(
τ̂(x2/

√
Ω22 + z2, 2)√
Ω22

x2 − 1

)(
b− Ω12

Ω22

)
and the result follows by plugging this in to the definition of R.

We now give bounds on R and R̃. By the triangle inequality,

R̃(t, c1, c2, c3, p)
1/p ≤

(∫ ∫
τ̂(t+ z2, 2)p|c1 + c2z1|pφ(z1)φ(z2) dz1dz2

)1/p

+ c3

(∫ ∫
|τ̂(t+ z2, 2)t− 1|p φ(z1)φ(z2) dz1dz2

)1/p

= [C1(t, p) · C2(c1, c2, p)]
1/p + c3C3(t, p)1/p (17)

where C1(t, p) =
∫
τ̂(t+ z, 2)pφ(z) dz, C2(c1, c2, p) =

∫
|c1 + c2z|pφ(z) dz and C3(t, p) =∫

|τ̂(t+ z, 2)t− 1|pφ(z) dz. Note that, by the triangle inequality, for t > 0,

C1(t, p)1/p ≤
(∫
|τ̂(t+ z, 2)− 1/t|pφ(z) dz

)1/p

+ 1/t = (1/t)
[
C3(t, p)1/p + 1

]
. (18)
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Similarly,

C3(t, p)1/p ≤ 1 + t

(∫
τ̂(t+ z, 2)pφ(z) dz

)1/p

= 1 + tC1(t, p)1/p. (19)

Lemma B.2. For p < 2, C1(t, p) is bounded uniformly over t on any compact set, and

R̃(t, c1, c2, c3, p) is bounded uniformly over (t, c1, c2, c3) in any compact set.

Proof. We have

C1(t, p) =

∫
τ̂(t+ z, 2)pφ(z) dz =

∫ ∣∣∣∣∣ 1√
2

1− Φ
(
(t+ z)/

√
2
)

φ
(
(t+ z)/

√
2
) ∣∣∣∣∣

p

φ(z) dz

≤ 2−p/2
∫

φ(z)

φ((t+ z)/
√

2)p
dz ≤ K

∫
exp

(
−1

2
z2 +

p

4
(t+ z)2

)
dz

for a constant K that depends only on p. This is bounded uniformly over t in any

compact set so long as p/4 < 1/2, giving the first result. Boundedness of R̃ follows

from this, (19) and boundedness of C2(c1, c2, p) over c1, c2 in any compact set.

Lemma B.3. For p < 2, tR̃(t, c1, c2, c3, p)
1/p is bounded uniformly over t, c1, c2, c3 in

any set such that t is bounded from below away from zero and c1, c2 and c3 are bounded.

Proof. By (17) and (18), it suffices to bound tC3(t, p)1/p = t
(∫
|τ̂(t+ z, 2)t− 1|pφ(z) dz

)1/p.

Let ε > 0 be a constant to be determined later. We split the integral into the regions

t+ z < εt and t+ z ≥ εt. We have∫
t+z<εt

|τ̂(t+ z, 2)t− 1|pφ(z) dz =

∫
t+z<εt

∣∣∣∣∣t1− Φ
(
(t+ z)/

√
2
)

√
2φ
(
(t+ z)/

√
2
) − 1

∣∣∣∣∣
p

φ(z) dz

=

∫
t+z<εt

∣∣∣t [1− Φ
(

(t+ z)/
√

2
)]
−
√

2φ
(

(t+ z)/
√

2
)∣∣∣p φ(z)[√

2φ
(
(t+ z)/

√
2
)]p dz.

(20)
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This is bounded by a constant times

max{t, 1}
∫
t+z≤εt

exp

(
−1

2
z2 +

p

4
(t+ z)2

)
dz

= max{t, 1}
∫
t+z≤εt

exp

(
−1

2
z2 +

p

4

(
z2 + 2tz + t2

))
dz

= max{t, 1}
∫
t+z≤εt

exp

(
−1

2

(
z2(1− p/2)− t2(p/2)− ptz

))
dz

= max{t, 1}
∫
t+z≤εt

exp

(
−1− p/2

2

(
z2 − t2 p

2− p
− 2

p

2− p
tz

))
dz

= max{t, 1}
∫
t+z≤εt

exp

(
−1− p/2

2

((
z − p

2− p
t

)2

−
(

p

2− p

)2

t2 − p

2− p
t2

))
dz

= max{t, 1} exp

(
1− p/2

2

(
p

2− p
+

(
p

2− p

)2
)
t2

)∫
t+z≤εt

exp

(
−1− p/2

2

(
z − p

2− p
t

)2
)
dz.

We have ∫
t+z≤εt

exp

(
−1− p/2

2

(
z − p

2− p
t

)2
)
dz

=

∫
z−tp/(2−p)≤(ε−1−p/(2−p))t

exp

(
−1− p/2

2

(
z − p

2− p
t

)2
)
dz

=

∫
u≤(ε−1−p/(2−p))t

exp

(
−1− p/2

2
u2

)
dz,

which is bounded by a constant times

Φ
(
t(ε− 1− p/(2− p))

√
1− p/2

)
.

For t(ε−1−p/(2−p)) < 0, this is bounded by a constant times exp
(
−1−p/2

2
t2(1 + p/(2− p)− ε)2

)
.

Thus, (20) is bounded uniformly over t > 0 by a constant times exp(−ηt2) for some

η > 0 so long as(
1 +

p

2− p
− ε
)2

>
p

2− p
+

(
p

2− p

)2

=
p

2− p

(
1 +

p

2− p

)
which can be ensured by choosing ε > 0 small enough so long as p < 2. Thus, ε > 0

can be chosen so that (20) is bounded uniformly over t when scaled by tp.
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For the integral over t+ z > εt, we have, by (1.1) in Baricz (2008),∫
t+z≥εt

|tτ̂(t+ z, 2)− 1|p φ(z) dz = tp
∫
t+z≥εt

∣∣∣∣τ̂(t+ z, 2)− 1

t

∣∣∣∣p φ(z) dz

≤ tp
∫
t+z≥εt

∣∣∣∣ 1

t+ z
− 1

t

∣∣∣∣p φ(z) dz + tp
∫
t+z≥εt

∣∣∣∣ 1

(t+ z) + 2/(t+ z)
− 1

t

∣∣∣∣p φ(z) dz.

The first term is

tp
∫
t+z≥εt

∣∣∣∣ z

(t+ z)t

∣∣∣∣p φ(z) dz ≤ 1

tp

∫ ∣∣∣z
ε

∣∣∣p φ(z) dz.

The second term is

tp
∫
t+z≥εt

∣∣∣∣ −z − 2/(t+ z)

[(t+ z) + 2/(t+ z)]t

∣∣∣∣p φ(z) dz ≤ 1

tp

∫ ∣∣∣∣ |z|+ |2/εt|ε

∣∣∣∣p φ(z) dz.

Both are bounded uniformly when scaled by tp over any set with t bounded from below

away from zero.

C Relation to Hirano & Porter (2015)

Hirano & Porter (2015) give a negative result establishing the impossibility of unbiased,

quantile unbiased, or translation equivariant estimation in a wide variety of models with

singularities, including many linear IV models. On initial inspection our derivation of

an unbiased estimator for β may appear to contradict the results of Hirano & Porter. In

fact, however, one of the key assumptions of Hirano & Porter (2015) no longer applies

once we assume that the sign of the first stage is known.

Again consider the linear IV model with a single instrument, where for simplicity

we let σ2
1 = σ2

2 = 1, σ12 = 0. To discuss the results of Hirano & Porter (2015), it

will be helpful to parameterize the model in terms of the reduced-form parameters

(ψ, π) = (πβ, π). For φ again the standard normal density, the density of ξ is

f (ξ;ψ, π) = φ (ξ1 − ψ)φ (ξ2 − π).

Fix some value ψ∗. For any π 6= 0 we can define β(ψ, π) = ψ
π
. If we consider any

sequence {πj}∞j=1 approaching zero from the right, then β(ψ∗, πj) → ∞ if ψ∗ > 0 and
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β(ψ∗, πj)→ −∞ if ψ∗ < 0. Thus we can see that β plays the role of the function κ in

Hirano & Porter (2015) equation (2.1).

Hirano & Porter (2015) show that if there exists some finite collection of parameter

values (ψl,d, πl,d) in the parameter space and non-negative constants cl,d such that their

Assumption 2.4,

f (ξ;ψ∗, 0) ≤
s∑
l=1

cl,df (ξ;ψl,d, πl,d) ∀ξ,

holds, then (since one can easily verify their Assumption 2.3 in the present context)

there can exist no unbiased estimator of β.

This dominance condition fails in the linear IV model with a sign restriction. For

any (ψl,d, πl,d) in the parameter space, we have by definition that πl,d > 0. For any such

πl,d, however, if we fix ξ1 and take ξ2 → −∞,

lim
ξ2→−∞

φ (ξ2 − πl,d)
φ (ξ2)

= lim
ξ2→−∞

exp

(
−1

2
(ξ2 − πl,d)2 +

1

2
ξ2

2

)
= lim

ξ2→−∞
exp

(
ξ2πl,d −

1

2
π2
l,d

)
= 0.

Thus, limξ2→−∞
f(ξ;ψl,d,πl,d)
f(ξ;ψ∗,0)

= 0, and for any fixed ξ1, {cl,d}sl=1 and {(ψl,d, πl,d)}sl=1

there exists a ξ∗2 such that ξ2 < ξ∗2 implies

f (ξ;ψ∗, 0) >
s∑
l=1

cl,df (ξ;ψl,d, πl,d) .

Thus, Assumption 2.4 in Hirano & Porter (2015) fails in this model, allowing the

possibility of an unbiased estimator. Note, however, that if we did not impose π > 0

then we would satisfy Assumption 2.4, so unbiased estimation of β would again be

impossible. Thus, the sign restriction on π plays a central role in the construction of

the unbiased estimator β̂U .

D Lower Bound on Risk of Unbiased Estimators

This appendix gives a lower bound on the attainable risk at a given π, β for an estimator

that is unbiased for β for all π, β with π in the positive orthant. The bound is given by

the risk in the submodel where π/‖π‖ (the direction of π) is known. While the bound
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cannot, in general, be obtained, we discuss some situations where it can, which include

certain values of π in the case where ξ comes from a model with homoskedastic errors.

Theorem D.1. Let U be the set of estimators for β that are unbiased for all π ∈

(0,∞)k, β ∈ R. For any π∗ ∈ (0,∞)k, β∗ ∈ R and any convex loss function `,

Eπ∗,β∗`(β̂U(ξ∗(π∗),Σ∗(π∗))− β∗) ≤ inf
β̂∈U

Eπ∗,β∗`(β̂(ξ,Σ)− β∗)

where ξ∗(π∗) =
[
(I2 ⊗ π∗)′Σ−1 (I2 ⊗ π∗)

]−1
(I2 ⊗ π∗)′Σ−1ξ and Σ∗(π∗) =

[
(I2 ⊗ π∗)′Σ−1 (I2 ⊗ π∗)

]−1.

Proof. Consider the submodel with π restricted to Π∗ = {π∗t|t ∈ (0,∞)}. Then ξ∗(π∗)

is sufficient for (t, β) in this submodel, and satisfies ξ∗(π∗) ∼ N((βt, t)′,Σ∗(π∗)) in this

submodel. To see this, note that, for t, β in this submodel, ξ follows the generalized

least squares regression model ξ = (I2 ⊗ π∗)(βt, t)′ + ε where ε ∼ N(0,Σ), and ξ∗(π∗)

is the generalized least squares estimator of (βt, t)′.

Let β̃(ξ(π∗),Σ(π∗)) be a (possibly randomized) estimator based on ξ(π∗) that is un-

biased in the submodel where π ∈ Π∗. By completeness of the submodel, E
[
β̃(ξ(π∗),Σ(π∗))|ξ∗(π∗)

]
=

β̂U(ξ(π∗),Σ(π∗)). By Jensen’s inequality, therefore,

Eπ∗,β∗`
(
β̃(ξ(π∗),Σ(π∗))− β

)
≥ Eπ∗,β∗`

(
E
[
β̃(ξ(π∗),Σ(π∗))|ξ∗(β)

]
− β

)
(this is just Rao-Blackwell applied to the submodel with the loss function `). By

sufficiency, the set of risk functions for randomized unbiased estimators based on ξ(π∗) in

the submodel is the same as the set of risk functions for randomized unbiased estimators

based on ξ in the submodel. This gives the result with U replaced by the set of

estimators that are unbiased in the submodel, which implies the result as stated, since

the set of estimator which are unbiased in the full model is a subset of those which are

unbiased in the submodel.

Theorem D.1 continues to hold in the case where the lower bound is infinite: in this

case, the risk of any unbiased estimator must be infinite at β∗, π∗. By Theorem 2.2, the

lower bound is infinite for squared error loss `(t) = t2 for any π∗, β∗. Thus, unbiased

estimators must have infinite variance even in models with multiple instruments.
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While in general Theorem D.1 gives only a lower bound on the risk of unbiased

estimators, the bound can be achieved in certain situations. A case of particular interest

arises in models with homoskedastic reduced form errors that are independent across

observations. In such cases V ar
(
(U ′, V ′)′

)
= V ar ((U1, V1)′)⊗IT , where IT is the T ×T

identity matrix, so that the definition of Σ in (3) gives Σ = V ar ((U1, V1)′)⊗ (Z ′Z)−1.

Thus, in models with independent homoskedastic errors we have Σ = QUV ⊗QZ for a

2× 2 matrix QUV and a k × k matrix QZ .

Theorem D.2. Suppose that
[
(I2 ⊗ π∗)′Σ−1 (I2 ⊗ π∗)

]−1
(I2 ⊗ π∗)′Σ−1 = (I2⊗ a(π∗)′)

for some a(π∗) ∈ Rk. Then β̂U(ξ∗(π∗),Σ(π∗)) defined in Theorem D.1 is unbiased at any

π, β such that a(π∗)′π > 0. In particular, if a(π∗) ∈ (0,∞)k, then β̂U(ξ∗(π∗),Σ(π∗)) ∈ U

and the risk bound is attained. Specializing to the case where Σ = QUV ⊗ QZ for a

2 × 2 matrix QUV and a k × k matrix QZ, the above conditions hold with a(π∗)′ =

π∗′Q−1
Z /(π∗′Q−1

Z π∗), and the bound is achieved if Q−1
Z π∗ ∈ (0,∞)k.

Proof. For the first claim, note that under these assumptions ξ∗(π∗) = (a(π∗)′ξ1, a(π∗)′ξ2)′

is N((a(π∗)′πβ, a(π∗)′π)′,Σ∗(π)) distributed under π, β, so β̂U(ξ∗(π∗),Σ(π∗)) is unbi-

ased at π, β by Theorem 2.1. For the case where Σ = QUV ⊗QZ , the result follows by

properties of the Kronecker product:[
(I2 ⊗ π∗)′ (QUV ⊗QZ)−1 (I2 ⊗ π∗)

]−1
(I2 ⊗ π∗)′ (QUV ⊗QZ)−1

=
[
Q−1
UV ⊗ π

∗′Q−1
Z π∗

]−1 (
Q−1
UV ⊗ π

∗′Q−1
Z

)
= I2 ⊗

[
π∗′Q−1

Z /
(
π∗′Q−1

Z π∗
)]
.

The special form of the sufficient statistic in the homoskedastic case derives from the

form of the optimal estimator in the restricted seemingly unrelated regression (SUR)

model. The submodel for the direction π∗ is given by the SUR model Y

X

 =

 Zπ∗ 0

0 Zπ∗

 βt

t

+

 U

V

 .

Considering this as a SUR model with regressors Zπ∗ in both equations, the optimal

estimator of (βt, t)′ simply stacks the OLS estimator for the two equations, since the
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regressors Zπ∗ are the same and the parameter space for (βt, t) is unrestricted. Note

also that, in the homoskedastic case (with QZ = (Z ′Z)−1), ξ∗1(π∗) and ξ∗2(π∗) are pro-

portional to π∗′Z ′Zξ1 and π∗′Z ′Zξ2, which are the numerator and denominator of the

2SLS estimator with ξ2 replaced by π∗ in the first part of the quadratic form.

Thus, for certain parameter values π∗ in the homoskedastic case, the risk bound

in Theorem D.1 is obtained. In such cases, the estimator that obtains the bound is

unique, and depends on π∗ itself (for the absolute value loss function, which is not

strictly concave, uniqueness is shown in Section D.1 below). Thus, in contrast to

settings such as linear regression, where a single estimator minimizes the risk over

unbiased estimators simultaneously for all parameter values, no uniform minimum risk

unbiased estimator will exist. The reason for this is clear: knowledge of the direction

of π = π∗ helps with estimation of β, even if one imposes unbiasedness for all π.

It is interesting to note precisely how the parameter space over which the estimator

in the risk bound is unbiased depends on π∗. Suppose one wants an estimator that

minimizes the risk at π∗ while still remaining unbiased in a small neighborhood of π∗.

In the homoskedastic case, this can always be done so long as π∗ ∈ (0,∞)k, since

π∗′Q−1
Z π > 0 for π close enough to π∗. Where one can expand this neighborhood while

maintaining unbiasedness will depend on π∗ and QZ . In the case where π∗′Q−1
Z is in the

positive orthant, the assumption π ∈ (0,∞)k is enough to ensure that this estimator

is unbiased at π. However, if π∗′Q−1
Z is not in the positive orthant, there is a tradeoff

between precision at π∗ and the range of π ∈ (0,∞)k over which unbiasedness can be

maintained.

Put another way, in the homoskedastic case, for any π∗ ∈ Rk\{0}, minimizing the

risk of an estimator of β subject to the restriction that the estimator is unbiased in a

neighborhood of π∗ leads to an estimator that does not depend on this neighborhood,

so long as the neighborhood is small enough (this is true even if the restriction π∗ ∈

(0,∞)k does not hold). The resulting estimator depends on π∗, and is unbiased at π iff

π∗Q−1
Z π > 0.
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D.1 Uniqueness of the Minimum Risk Unbiased Estimator un-

der Absolute Value Loss

In the discussion above, we used the result that the minimum risk unbiased estimator in

the submodel with π/‖π‖ known is unique for absolute value loss. Because the absolute

value loss function is not strictly concave, this result does not, to our knowledge, follow

immediately from results in the literature. We therefore provide a statement and proof

here. In the following theorem, we consider a general setup where a random variable ξ is

observed, which follows a distribution Pµ for some µ ∈M . The family of distributions

{Pµ|µ ∈M} need not be a multivariate normal family, as in the rest of this paper.

Theorem D.3. Let θ̂ = θ̂(ξ) be an unbiased estimator of θ = θ(µ) where µ ∈ M for

some parameter space M and Θ = {θ|θ(µ) = θ some µ ∈M} ⊆ R, and where ξ has the

same support for all µ ∈M . Let θ̃(ξ, U) be another unbiased estimator, based on (ξ, U)

where ξ and U are independent and θ̂(ξ) = Eµ[θ̃(ξ, U)|ξ] =
∫
θ̃(ξ, U) dQ(U) where Q

denotes the probability measure of U , which is assumed not to depend on µ. Suppose

that θ̂(ξ) and θ̃(ξ, U) have the same risk under absolute value loss:

Eµ|θ̃(ξ, U)− θ(µ)| = Eµ|θ̂(ξ)− θ(µ)| for all µ ∈M.

Then θ̃(ξ, U) = θ̂(ξ) for almost every ξ with θ̂(ξ) ∈ Θ.

Proof. The display can be written as

Eµ

{
Eµ

[
|θ̃(ξ, U)− θ(µ)|

∣∣∣ξ]− |θ̂(ξ)− θ(µ)|
}

= 0 for all µ ∈M.

By Jensen’s inequality, the term inside the outer expectation is nonnegative for µ-almost

every ξ. Thus, the equality implies that this term is zero for µ-almost every ξ (since

EX = 0 implies X = 0 a.e. for any nonnegative random variable X). This gives, noting

that
∫
|θ̃(ξ, U)− θ(µ)| dQ(U) = Eµ

[
|θ̃(ξ, U)− θ(µ)|

∣∣∣ξ],∫
|θ̃(ξ, U)− θ(µ)| dQ(U) = |θ̂(ξ)− θ(µ)| for µ-almost every ξ and all µ ∈M.
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Since the support of ξ is the same under all µ ∈M , the above statement gives∫
|θ̃(ξ, U)− θ| dQ(U) = |θ̂(ξ)− θ| for almost every ξ and all θ ∈ Θ.

Note that, for any random variable X, E|X| = |EX| implies that either X ≥ 0 a.e.

or X ≤ 0 a.e. Applying this to the above display, it follows that for all θ ∈ Θ and

almost every ξ, either θ̃(ξ, U) ≤ θ a.e. U or θ̃(ξ, U) ≥ θ a.e. U . In particular, whenever

θ̂(ξ) ∈ Θ, either θ̃(ξ, U) ≤ θ̂(ξ) a.e. U or θ̃(ξ, U) ≥ θ̂(ξ) a.e. U . In either case, the

condition
∫
θ̃(ξ, U) dQ(U) = θ̂(ξ) implies that θ̃(ξ, U) = θ̂(ξ) a.e. U . It follows that,

for almost every ξ such that θ̂(ξ) ∈ Θ, we have θ̃(ξ, U) = θ(ξ) a.e. U , as claimed.

Thus, if θ̂(ξ) ∈ Θ with probability one, we will have θ̃(ξ, U) = θ̂(ξ) a.e. (ξ, U).

However, if θ̂(ξ) can take values outside Θ this will not necessarily be the case. For

example, in the single instrument case of our setup, if we restrict our parameter space

to (π, β) ∈ (0,∞)× [c,∞) for some constant c, then forming a new estimator by adding

or subtracting 1 from β̂U with equal probability independently of ξ whenever β̂U ≤ c−1

gives an unbiased estimator with identical absolute value risk.

In our case, letting ξ(π∗) be as Theorem D.1, the support of ξ(π∗) is the same under

π∗t, β for any t ∈ (0,∞) and β ∈ R. If β̃(ξ(π∗), U) is unbiased in this restricted pa-

rameter space, we must have, letting β̂U(ξ∗(π),Σ∗(π)) be the unbiased nonrandomized

estimator in the submodel, E[β̃(ξ(π∗), U)|ξ(π∗)] = β̂U(ξ(π∗),Σ∗(π)) by completeness

for any random variable U with a distribution that does not depend on (t, β). Since

β̂U(ξ(π∗),Σ∗(π)) ∈ R with probability one, it follows that if β̃(ξ(π∗), U) has the same

risk as β̂U(ξ(π∗),Σ∗(π)) then β̃(ξ(π∗), U) = β̂U(ξ(π∗),Σ∗(π)) with probability one, so

long as we impose that β̃(ξ(π∗), U) is unbiased for all t ∈ (1− ε, 1 + ε) and β ∈ R.

E Reduction of the Parameter Space by Equivariance

In the appendix, we discuss how we can reduce the dimension of the parameter space

using an equivariance argument. We first consider the just-identified case and then note
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how such arguments may be extended to the over-identified case under the additional

assumption of homoskedasticity.

E.1 Just-Identified Model

For comparisons between
(
β̂U , β̂2SLS, β̂FULL

)
in the just-identified case, it suffices to

consider a two-dimensional parameter space. To see that this is the case let θ =

(β, π, σ2
1, σ12, σ

2
2) be the vector of model parameters and let gA, for A =

 a1 a2

0 a3

 ,
a1 6= 0, a3 > 0, be the transformation

gAξ = ξ̃ = A

 ξ1

ξ2

 =

 a1ξ1 + a2ξ2

a3ξ2


which leads to ξ̃ being distributed according to the parameters

θ̃ =
(
β̃, π̃, σ̃2

1, σ̃12, σ̃
2
2

)
where

β̃ =
(a1β + a2)

a3

π̃ = a3π

σ̃2
1 = a2

1σ
2
1 + a1a2σ12 + a2

2σ
2
2

σ̃12 = a1a3σ12 + a2a3σ
2
2

and

σ̃2
2 = a2

3σ
2
2.

Define G as the set of all transformations gA of the form above. Note that the sign

restriction on π is preserved under gA ∈ G, and that for each gA, there exists another

transformation g−1
A ∈ G such that gAg−1

A is the identity transformation. We can see

that the model (2) is invariant under the transformation gA. Note further that the

estimators β̂U , β̂2SLS, and β̂FULL are all equivariant under gA, in the sense that

β̂ (gAξ) =
a1β̂ (ξ) + a2

a3

.
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Thus, for any properties of these estimators (e.g. relative mean and median bias, relative

dispersion) which are preserved under the transformations gA, it suffices to study these

properties on the reduced parameter space obtained by equivariance. By choosing A

appropriately, we can always obtain ξ̃1

ξ̃2

 ∼ N

 0

π̃

 ,

 1 σ̃12

σ12 1


for π̃ > 0, σ12 ≥ 0 and thus reduce to a two-dimensional parameter (π, σ12) with

σ12 ∈ [0, 1), π > 0.

E.2 Over-Identified Model under Homoskedasticity

As noted in Appendix D, under the assumption of iid homoskedastic errors Σ is of the

form Σ = QUV ⊗ QZ for matrix QUV = V ar((U1, V1)′) and QZ = (Z ′Z)−1. If we let

σ2
U = V ar(U1), σ2

V = V ar(V1), and σUV = Cov(U1, V1), then using an equivariance

argument as above we can eliminate the parameters σ2
U , σ2

V , and β for the purposes

of comparing β̂2SLS, β̂FULL, and the unbiased estimators. In particular, define θ =

(β, π, σ2
U , σUV , σ

2
V , QZ) and again let A =

 a1 a2

0 a3

 , a1 6= 0, a3 > 0 and consider the

transformation

gAξ = ξ̃ = (A⊗ Ik)

 ξ1

ξ2

 =

 a1ξ1 + a2ξ2

a3ξ2


which leads to ξ̃ being distributed according to the parameters

θ̃ =
(
β̃, π̃, σ̃2

U , σ̃UV , σ̃
2
V , Q̃Z

)
where

β̃ =
(a1β + a2)

a3

π̃ = a3π

σ̃2
U = a2

1σ
2
U + a1a2σUV + a2

2σ
2
V

σ̃UV = a1a3σUV + a2a3σ
2
V
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σ̃2
V = a2

3σ
2
V

and

Q̃Z = QZ .

Note that this transformation changes neither the direction of the fist stage, π/‖π‖,

nor QZ . If we again define G to be the class of such transformations, we again see

that the model is invariant under transformations gA ∈ G, and that the estimators for

β we consider are equivariant under these transformations. Thus, since relative bias

and MAD across estimators are preserved under these transformations, we can again

study these properties on the reduced parameter space obtained by equivariance. In

particular, by choosing A appropriately we can set σ̃2
U = σ̃2

V = 1 and β̃ = 0, so the

remaining free parameters are π̃, σ̃UV , and Q̃Z .

F Additional Simulation Results in Just-Identified Case

This appendix gives further results for our simulations in the just-identified case. We

first report median bias comparisons for the estimators β̂U , β̂2SLS, and β̂FULL, and then

report further dispersion and absolute deviation simulation results to complement those

in Section 4.1.2 of the paper.

F.1 Median Bias

Figure 3 plots the median bias of the single-instrument IV estimators against the mean

of the first stage F statistic. In all calibrations considered the unbiased estimator has a

smaller median bias than 2SLS when the first stage is very small and a larger median

bias for larger values of the first stage. By contrast the median bias of Fuller is larger

than that of both the unbiased and 2SLS estimators, though its median bias is quite

close to that of the unbiased estimator once the mean of the first stage F statistic

exceeds 10.
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Figure 3: Median bias of single-instrument estimators, plotted against mean E [F ] of first-stage F-

statistic, based on 10 million simulations.

F.2 Dispersion Simulation Results

The lack of moments for β̂2SLS complicates comparisons of dispersion, since we cannot

consider mean squared error or mean absolute deviation, and also cannot recenter β̂2SLS

around its mean. As an alternative, we instead consider the full distribution of the

absolute deviation of each estimator from its median. In particular, for the estimators

(β̂U , β̂2SLS, β̂FULL) we calculate the zero-median residuals

(εU , ε2SLS, εFULL) =
(
β̂U −med

(
β̂U

)
, β̂2SLS −med

(
β̂2SLS

)
, β̂FULL −med

(
β̂FULL

))
.

Our simulation results suggest a strong stochastic ordering between these residuals

(in absolute value). In particular we find that |ε2SLS| approximately dominates |εU |,

which in turn approximately dominates |εFULL|, both in the sense of first order stochas-

tic dominance. This numerical result is consistent with analytical results on the tail

behavior of the estimators. In particular, β̂2SLS has no moments, reflecting thick tails in

its sampling distribution, while β̂FULL has all moments, reflecting thin tails. As noted

in Section 2.3, the unbiased estimator β̂U has a first moment but no more, and so falls
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between these two extremes.

To check for stochastic dominance in the distribution of (|εU |, |ε2SLS|, |εFULL|), we

simulated 106 draws of β̂U , β̂2SLS, and β̂FULL on a grid formed by the Cartesian product

of

σ12 ∈
{

0, (0.005)
1
2 , (0.01)

1
2 , ..., (0.995)

1
2

}
and π ∈

{
(0.01)2 , (0.02)2 , ..., 25

}
. We use

these grids for σ12 and π, rather than a uniformly spaced grid, because preliminary

simulations suggested that the behavior of the estimators was particularly sensitive to

the parameters for large values of σ12 and small values of π.

At each point in the grid we calculate (εU , ε2SLS, εFULL), using independent draws

to calculate εU and the other two estimators, and compute a one-sided Kolmogorov-

Smirnov statistic for the hypotheses that (i) |εIV | ≥ |εU | and (ii) |εU | ≥ |εFULL|, where

A ≥ B for random variables A and B denotes that A is larger than B in the sense of

first-order stochastic dominance. In both cases the maximal value of the Kolmogorov-

Smirnov statistic is less than 2× 10−3. Conventional Kolmogorov-Smirnov p-values are

not valid in the present context (since we use estimated medians to construct ε), but

are never below 0.25.

F.3 Containment of β̂U in Anderson-Rubin Confidence Set

As noted in Section 2.4, the Anderson-Rubin test is uniformly most powerful unbiased

in the just identified model. One can show, however, that the unbiased estimator β̂U

is not always contained in the Anderson-Rubin confidence set (that is, the confidence

set formed by collecting the set of all parameter values not rejected by the Anderson-

Rubin test). Specifically, consider the case where ξ2 is large and negative, ξ1 is large

and positive, and σ12 is non-negative. In this case, the Anderson-Rubin confidence set

will consist solely of negative values, while β̂U will be large and positive, and so will

necessarily lie outside the Anderson-Rubin confidence set.

While this sort of scenario can easily arise if our sign constraint is violated, it

occurs with only low probability when the sign constraint is satisfied. In particular, as
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in Section F.2 we consider a fine grid of values in the parameter space and simulate

the frequency with which the unbiased estimator is contained in the Anderson-Rubin

confidence set at each point (based on 100,000 simulations). We find that the probability

that the 95% Anderson-Rubin confidence set contains the unbiased estimator β̂U is

always at least 97%, and exceeds 99.8% when the mean of the first stage F statistic is

greater than two. Likewise, the probability that the 90% Anderson-Rubin confidence

set contains β̂U is always at least 94.5%, and exceeds 99.3% when the mean of the first

stage F statistic is greater than two.

G Multi-Instrument Simulation Design

This appendix gives further details for the multi-instrument simulation design used in

Section 4.2. We base our simulations on the Staiger & Stock (1997) specifications for

the Angrist & Krueger (1991) data. The instruments in all specifications are quarter

of birth and quarter of birth interacted with other dummy variables, and in all cases

the dummy for the fourth quarter (and the corresponding interactions) are excluded

to avoid multicollinearity. The rationale for the quarter of birth instrument in Angrist

& Krueger (1991) indicates that the first stage coefficients on the instruments should

therefore be negative.

We first calculate the OLS estimates π̂. All estimated coefficients satisfy the sign

restriction in specification I, but some of them violate it in specifications II, III, and

IV. To enforce the sign restriction, we calculate the posterior mean for π conditional on

the OLS estimates, assuming a flat prior on the negative orthant and an exact normal

distribution for the OLS estimates with variance equal to the estimated variance. This

yields an estimate

π̃i = π̂i − σ̂iφ
(
π̂i
σ̂i

)
/

(
1− Φ

(
π̂i
σ̂i

))
for the first-stage coefficient on instrument i, where π̂i is the OLS estimate and σ̂i is

its standard error. When π̂i is highly negative relative to σ̂i, π̃i will be close to π̂i,

but otherwise π̃i ensures that our first stage estimates all obey the sign constraint. We
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then conduct the simulations using π̃∗ = −π̃ to cast the sign constraint in the form

considered in Section 1.2.

Our simulations fix π̃∗/‖π̃∗‖ at its estimated value and fix Z ′Z at its value in the

data. By the equivariance argument in Appendix E we can fix σ2
U = σ2

V = 1 and β = 0

in our simulations, so the only remaining free parameters are ‖π‖ and σUV .We consider

σUV ∈ {0.1, 0.5, 0.95} and consider a grid of nine values for ‖π‖ such that the mean of

the first stage F statistic varies between 2 and 11.2. For each pair of these parameters

we set

Σ =

 1 σUV

σUV 1

⊗ (Z ′Z)−1

and draw of ξ as

ξ ∼ N

 0

‖π‖ · π̃∗

‖π̃∗‖

,Σ

 .
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