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Abstract

We consider the problem of constructing confidence intervals (CIs) for a linear func-

tional of a regression function, such as its value at a point, the regression discontinuity

parameter, or a regression coefficient in a linear or partly linear regression. Our main

assumption is that the regression function is known to lie in a convex function class,

which covers most smoothness and/or shape assumptions used in econometrics. We

derive finite-sample optimal CIs and sharp efficiency bounds under normal errors with

known variance. We show that these results translate to uniform (over the function

class) asymptotic results when the error distribution is not known. When the function

class is centrosymmetric, these efficiency bounds imply that minimax CIs are close to

efficient at smooth regression functions. This implies, in particular, that it is impossi-

ble to form CIs that are substantively tighter using data-dependent tuning parameters,

and maintain coverage over the whole function class. We specialize our results to in-

ference on the regression discontinuity parameter, and illustrate them in simulations

and an empirical application.
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1 Introduction

In this paper, we study the problem of constructing confidence intervals (CIs) for a linear

functional Lf of a regression function f in a broad class of regression models with fixed

regressors, in which f is known to belong to some convex function class F . The linear func-

tional may correspond to the regression discontinuity parameter, an average treatment effect

under unconfoundedness, or a regression coefficient in a linear or partly linear regression.

The class F may contain smoothness restrictions (e.g. bounds on derivatives, or assuming

f is linear as in a linear regression), and/or shape restrictions (e.g. monotonicity, or sign

restrictions on regression coefficients in a linear regression). Often in applications, the func-

tion class will be indexed by a smoothness parameter C, such as when F = FLip(C), the

class of Lipschitz continuous functions with Lipschitz constant C.

Our main contribution is to derive finite-sample optimal CIs and sharp efficiency bounds

that have implications for data-driven model and bandwidth selection in both parametric

and nonparametric settings. To derive these results, we assume that the regression errors are

normal, with known variance. When the error distribution is unknown, we obtain analogous

uniform asymptotic results under high-level regularity conditions. We derive sufficient low-

level conditions in an application to regression discontinuity.

First, we characterize one-sided CIs that minimize the maximum β quantile of excess

length over a convex class G for a given quantile β. The lower limit ĉ of the optimal CI

[ĉ,∞) has a simple form: take an estimator L̂ that trades off bias and variance in a certain

optimal sense and is linear in the outcome vector, and subtract (1) the standard deviation of

L̂ times the usual critical value based on a normal distribution and (2) a bias correction to

ensure coverage. This bias correction, in contrast to bias corrections often used in practice,

is based on the maximum bias of L̂ over F , and is therefore non-random.

When G = F , this procedure yields minimax one-sided CIs. Setting G ⊂ F to a class

of smoother functions is equivalent to “directing power” at these smoother functions while

maintaining coverage over F , and gives a sharp bound on the scope for adaptation for one-

sided CIs. We show that when F is centrosymmetric (i.e. f ∈ F implies −f ∈ F), the

scope for adaptation is severely limited: when G is a class of functions that are, in a certain

formal sense, “sufficiently smooth” relative to F , CIs that are minimax for β quantile of

excess length also optimize excess length over G, but at a different quantile. Furthermore,

they are also highly efficient at such smooth functions for the same quantile. For instance,

a CI for the conditional mean at a point that is minimax over the Lipschitz class FLip(C) is

asymptotically 95.2% efficient at constant functions relative to a CI that directs all power
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at constant functions. For function classes that bound a derivative of higher order, the

efficiency is even higher.

Second, we derive a confidence set that minimizes its expected length at a single function

g. We compare its performance to the optimal fixed-length CI of Donoho (1994) (i.e. CI of

the form L̂±χ, where L̂ is an affine estimator, and χ, which doesn’t depend on the outcome

vector and is therefore non-random, is chosen to ensure coverage). Similarly, to the one-

sided case, we find that, when F is centrosymmetric, the optimal fixed-length CIs are highly

efficient at functions that are smooth relative to F . For instance, the optimal fixed-length

CI for a conditional mean at a point when f ∈ FLip(C) is asymptotically 95.6% efficient at

any constant function g relative to a confidence set that optimizes its expected length at g.

An important practical implication of these results is that explicit a priori specification

of the smoothness constant C cannot be avoided: procedures that try to determine the

smoothness of f from the data (and thus implicitly estimate C from the data), including

data-driven bandwidth or variable selectors, must either fail to substantively improve upon

the minimax CIs or fixed-length CIs (that effectively assume the worst case smoothness),

or else fail to maintain coverage over the whole parameter space. We illustrate this point

through a Monte Carlo study in a regression discontinuity (RD) setting, in which we show

that popular data-driven bandwidth selectors lead to substantial undercoverage, even when

combined with bias correction or undersmoothing (see Supplemental Appendix C.2). To

avoid having to specify C, one has to strengthen the assumptions on f . For instance, one

can impose shape restrictions that break the centrosymmetry, as in Cai et al. (2013) or

Armstrong (2015), or self-similarity assumptions that break the convexity, as in Giné and

Nickl (2010) or Chernozhukov et al. (2014). Alternatively, one can weaken the coverage

requirement in the definition of a CI, by, say, only requiring average coverage as in Cai et al.

(2014) or Hall and Horowitz (2013).

We apply these results to the problem of inference in RD. We show, in the context of an

empirical application from Lee (2008), that the fixed-length and minimax CIs are informative

and simple to construct, and we give a detailed guide to implementing them in practice. We

also consider CIs based on local linear estimators, which have been popular in RD due to

their high minimax asymptotic MSE efficiency, shown in Cheng et al. (1997). Using the

same function classes as in Cheng et al. (1997), we show that in the Lee application, when a

triangular kernel is used, such CIs are highly efficient relative to the optimal CIs discussed

above.

Our finite-sample approach allows us to use the same framework and methods to cover
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problems that are often seen as outside of the scope of nonparametric methods. For instance,

the same CIs can be used in RD whether the running variable is discrete or continuous; one

does not need a different modeling approach, such as that of Lee and Card (2008). Similarly,

we do not need to distinguish between “parametric” or “nonparametric” constraints on f ;

our results apply to inference in a linear regression model that efficiently use a priori bounds

and sign restrictions on the regression coefficients. Here our efficiency bounds imply that

the scope for efficiency improvements from CIs formed after model selection (Andrews and

Guggenberger, 2009; McCloskey, 2017) is severely limited unless asymmetric or non-convex

restrictions are imposed, and they also limit the scope for improvement under certain non-

convex restrictions such as the sparsity assumptions used in Belloni et al. (2014). We discuss

these issues in an earlier version of this paper (Armstrong and Kolesár, 2016a).

Our results and setup build on a large statistics literature on optimal estimation and

inference in the nonparametric regression model. This literature has mostly been concerned

with estimation (e.g., Stone (1980), Ibragimov and Khas’minskii (1985), Fan (1993), Donoho

(1994), Cheng et al. (1997)); the literature on inference has mostly been focused on bounding

rates of convergence. The results most closely related to ours are those in Low (1997), Cai

and Low (2004a) and Cai et al. (2013), who derive lower bounds on the expected length of a

two-sided CI over a convex class G subject to coverage over a convex class F . These results

imply that, when F is constrained only by bounds on a derivative, one cannot improve

the rate at which a two-sided CI shrinks by “directing power” at smooth functions. We

contribute to this literature by (1) deriving a sharp lower bound for one-sided CIs, and for

two-sided CIs when G is a singleton, (2) showing that the negative results for “directing

power” at smooth functions generalize to the case when F is centrosymmetric, and deriving

the sharp bound on the scope for improvement, (3) deriving feasible CIs under unknown error

distribution and showing their asymptotic validity and efficiency, including in non-regular

settings; and (4) computing the bounds and CIs in an application to RD.

The remainder of this paper is organized as follows. Section 2 illustrates our results in

an application to RD, and gives a detailed guide to implementing our CIs. Section 3 derives

the main results under a general setup. Section 4 considers an empirical application. Proofs,

long derivations, and additional results are collected in appendices. Appendix A contains

proofs for the main results in Section 3. Appendix B discusses extensions to incorporate

covariates in the RD application. Supplemental Appendix C compares our CIs to other

approaches, and includes a Monte Carlo study. Additional details for constructing CIs

studied in Section 3 are in Supplemental Appendix D. Supplemental Appendix E contains
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additional details for the RD application. Asymptotic results are collected in Supplemental

Supplemental Appendices F, G and H.

2 Application to regression discontinuity

In this section, we explain our results in the context of an application to sharp regression

discontinuity (RD). Section 2.1 illustrates the theoretical results, while Section 2.2 gives

step-by-step instructions for implementing our confidence intervals (CIs) in practice.

We observe {yi, xi}ni=1, where the running variable xi is deterministic, and

yi = f(xi) + ui, ui ∼ N (0, σ2(xi)) independent across i, (1)

with σ2(x) known.1 The running variable determines participation in a binary treatment:

units above a given cutoff, which we normalize to 0, are treated; units with xi < 0 are

controls. Let f+(x) = f(x)1(x ≥ 0) and f−(x) = f(x)1(x < 0) denote the part of the

regression function f above and below the cutoff, so that f = f+ + f−. The parameter of

interest is the jump of the regression function at zero, and we denote it by Lf = f+(0)−f−(0),

where f−(0) = limx↑0 f−(x). If the regression functions of potential outcomes are continuous

at zero, then Lf measures the average treatment effect for units with xi = 0.

We assume that f lies in the class of functions FRDT,p(C),

FRDT,p(C) =
{
f+ + f− : f+ ∈ FT,p(C;R+), f− ∈ FT,p(C;R−)

}
,

where FT,p(C;X ) consists of functions f such that the approximation error from a (p−1)th-

order Taylor expansion of f(x) about 0 is bounded by C|x|p, uniformly over X ,

FT,p(C;X ) =
{
f :
∣∣f(x)−∑p−1

j=0 f
(j)(0)xj/j!

∣∣ ≤ C|x|p all x ∈ X
}
.

This formalizes the notion that locally to 0, f is p-times differentiable with the pth derivative

at zero bounded by p!C. Sacks and Ylvisaker (1978) and Cheng et al. (1997) considered

minimax MSE estimation of f(0) in this class when 0 is a boundary point. Their results

formally justify using local polynomial regression to estimate the RD parameter. This class

does not impose any smoothness of f away from cutoff, which may be too conservative

1This assumption is made to deliver finite-sample results—when the distribution of ui is unknown, with
unknown conditional variance, we show in Supplemental Appendix E that these results lead to analogous
uniform-in-f asymptotic results.
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in applications. We consider inference under global smoothness in Armstrong and Kolesár

(2016b), where we show that for the p = 2 case, the resulting CIs are about 10% tighter in

large samples (see also Supplemental Appendix C.2 for a Monte Carlo study under global

smoothness).

2.1 Optimal CIs

For ease of exposition, we focus in this subsection on the case p = 1, so that the parameter

space is given by F = FRDT,1(C), and assume that the errors are homoskedastic, σ2(xi) = σ2.

In Section 2.2, we discuss implementation of the CIs in the general case where p ≥ 1.

Consider first the problem of constructing one-sided CIs for Lf . In particular, consider

the problem of constructing CIs [ĉ,∞) that minimize the maximum βth quantile of excess

length, supf∈F qf,β(Lf − ĉ), where qf,β denotes the βth quantile of the excess length Lf −
ĉ. We show in Section 3.3 that such CIs can be obtained by inverting tests of the null

hypothesisH0 : f+(0)−f−(0) ≤ L0 that maximize their minimum power under the alternative

H1 : f+(0) − f−(0) ≥ L0 + 2b, where the half-distance b to the alternative is calibrated so

that the minimum power of these tests equals β.

To construct such a test, note that if we set µ = (f(x1), . . . , f(xn))′, and Y = (y1, . . . , yn)′,

we can view the testing problem as an n-variate normal mean problem Y ∼ N (µ, σ2In), in

which the vector of means µ is constrained to take values in the convex setsM0 = {(f(x1), . . . ,

f(xn))′ : f ∈ F , f+(0) − f−(0) ≤ L0} under the null, and M1 = {(g(x1), . . . , g(xn))′ : g ∈
F , g+(0)− g−(0) ≥ L0 + 2b} under the alternative. The convexity of the null and alternative

sets implies that this testing problem has a simple solution: by Lemma A.2, the minimax

test is given by the uniformly most powerful test of the simple null µ = µ∗0 against the simple

alternative µ = µ∗1, where µ∗0 and µ∗1 minimize the Euclidean distance between the null and

alternative sets M0 and M1, and thus represent points in M0 and M1 that are hardest to

distinguish. By the Neyman-Pearson lemma, such test rejects for large values of (µ∗1−µ∗0)′Y .

Because by Lemma A.2, this test controls size over all of M0, the points µ∗1 and µ∗0 are called

“least favorable” (see Theorem 8.1.1 in Lehmann and Romano, 2005).

To compute µ∗0 = (f ∗(x1), . . . , f ∗(xn))′ and µ∗1 = (g∗(x1), . . . , g∗(xn))′, we thus need to

find functions f ∗ and g∗ that solve

(f ∗, g∗) = argmin
f,g∈F

n∑
i=1

(f(xi)− g(xi))
2 subject to Lf ≤ L0, Lg ≥ L0 + 2b. (2)
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A simple calculation shows that the least favorable functions solving this minimization prob-

lem are given by

g∗(x) = 1(x ≥ 0)(L0 + b) + Ch+ · k+(x/h+)− Ch− · k−(x/h−),

f ∗(x) = 2 · 1(x ≥ 0)(L0 + b)− g∗(x),
(3)

where k(u) = max{0, 1 − |u|} is the triangular kernel, k+(u) = k(u)1(u ≥ 0) and k−(u) =

k(u)1(u < 0), and the “bandwidths” h+, h− are determined by a condition ensuring that

Lg∗ ≥ L0 + 2b,

h+ + h− = b/C, (4)

and a condition ensuring that positive and negative observations are equally weighted,

h+

n∑
i=1

k+(xi/h+) = h−

n∑
i=1

k−(xi/h−). (5)

Intuitively, to make the null and alternative hardest to distinguish, the least favorable func-

tions f ∗ and g∗ converge to each other “as quickly as possible”, subject to the constraints

Lf ∗ ≤ L0 and Lg∗ ≥ b+ L0, and the Lipschitz constraint—see Figure 1.

By working out the appropriate critical value and rearranging, we obtain that the mini-

max test rejects whenever

L̂h+,h− − L0 − biasf∗(L̂h+,h−) ≥ sd(L̂h+,h−)z1−α. (6)

Here L̂h+,h− is a kernel estimator based on a triangular kernel and bandwidths h+ to the left

and h− to the right of the cutoff

L̂h+,h− =

∑n
i=1(g

∗(xi)− f ∗(xi))yi∑n
i=1(g

∗
+(xi)− f ∗+(xi))

=

∑n
i=1 k+(xi/h+)yi∑n
i=1 k+(xi/h+)

−
∑n

i=1 k−(xi/h−)yi∑n
i=1 k−(xi/h−)

, (7)

sd(L̂h+,h−) =
( ∑

i k+(xi/h+)2

(
∑
i k+(xi/h+))2

+
∑
i k−(xi/h−)

2

(
∑
i k−(xi/h−))

2

)1/2 ·σ is its standard deviation, z1−α is the 1−α
quantile of a standard normal distribution, and biasf∗(L̂h+,h−) = C

∑
i|xi| ·

( k+(xi/h+)∑
j k+(xj/h+)

+
k−(xi/h−)∑
j k−(xj/h−)

)
is the estimator’s bias under f ∗. The estimator L̂h+,h− is normally distributed

with variance that does not depend on the true function f . Its bias, however, does depend on

f . To control size under H0 in finite samples, it is necessary to subtract the largest possible

bias of L̂h under the null, which obtains at f ∗. Since the rejection probability of the test is

decreasing in the bias, its minimum power occurs when the bias is minimal under H1, which
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occurs at g∗, and is given by

β = Φ
(

2C
√
h2+
∑

i k+(xi/h+)2 + h2−
∑

i k−(xi/h−)2/σ − z1−α
)
. (8)

Since the estimator, its variance, and the non-random bias correction are all independent of

the particular null L0, the CI based on inverting these tests as H0 varies over R is given by

[ĉα,h+,h− ,∞), where ĉα,h+,h− = L̂h+,h− − biasf∗(L̂h+,h−)− sd(L̂h+,h−)z1−α. (9)

This CI minimizes the βth quantile maximum excess length with β given by the minimax

power of the tests (8). Equivalently, given a quantile β that we wish to optimize, let h+(β)

and h−(β) solve (5) and (8). The optimal CI is then given by [ĉα,h+(β),h−(β),∞), and the

half-distance b to the alternative of the underlying tests is determined by (4). The important

feature of this CI is that the bias correction is non-random: it depends on the worst-case

bias of L̂h+(β),h−(β), rather than an estimate of the bias. Furthermore, it doesn’t disappear

asymptotically. One can show that the squared worst-case bias of L̂h+(β),h−(β) and its variance

are both of the order n−2/3. Consequently, no CI that “undersmooths” in the sense that it is

based on an estimator whose bias is of lower order than its variance can be minimax optimal

asymptotically or in finite samples.

An apparent disadvantage of this CI is that it requires the researcher to choose the

smoothness parameter C. Addressing this issue leads to “adaptive” CIs. Adaptive CIs

achieve good excess length properties for a range of parameter spaces FRDT,1(Cj), C1 <

· · · < CJ , while maintaining coverage over their union, which is given by FRDT,1(CJ), where

CJ is some conservative upper bound on the possible smoothness of f . In contrast, a minimax

CI only considers worst-case excess length over FRDT,1(CJ). To derive an upper bound on

the scope for adaptivity, consider the problem of finding a CI that optimizes excess length

over FRDT,1(0) (the space of functions that are constant on either side of the cutoff), while

maintaining coverage over FRDT,1(C) for some C > 0.

To derive the form of such CI, consider the one-sided testing problem H0 : Lf ≤ L0 and

f ∈ FRDT,1(C) against the one-sided alternative H1 : f(0) ≥ L0 + b and f ∈ FRDT,1(0)

(so that now the half-distance to the alternative is given by b/2 rather than b). This is

equivalent to a multivariate normal mean problem Y ∼ N (µ, σ2In), with µ ∈ M0 under

the null as before, and µ ∈ M̃1 = {(f(x1), . . . , f(xn))′ : f ∈ FRDT,1(0), Lf ≥ L0 + b}. Since

the null and alternative are convex, by the same arguments as before, the least favorable

functions minimize the distance between the two sets. The minimizing functions are given by
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g̃∗(x) = 1(x ≥ 0)(L0+b), and f̃ ∗ = f ∗ (same function as before). Since g̃∗− f̃ ∗ = (g∗−f ∗)/2,

this leads to the same test and the same CI as before—the only difference is that we moved

the half-distance to the alternative from b to b/2. Hence, the minimax CI that optimizes a

given quantile of excess length over FRDT,1(C) also optimizes its excess length over the space

of constant functions, but at a different quantile. Furthermore, in Section 3.3, we show that

the minimax CI remains highly efficient if one compares excess length at the same quantile:

in large samples, the efficiency at constant functions is 95.2%. Therefore, it is not possible

to “adapt” to cases in which the regression function is smoother than the least favorable

function. Consequently, it is not possible to tighten the minimax CI by, say, using the data

to “estimate” the smoothness parameter C.

A two-sided CI can be formed as L̂h+,h− ± (biasf∗(L̂h+,h−) + sd(L̂h+,h−)z1−α/2), thereby

accounting for possible bias of L̂h+,h− . However, this is conservative, since the bias can-

not be in both directions at once. Since the t-statistic (L̂h+,h− − Lf)/ sd(L̂h+,h−) is nor-

mally distributed with variance one and mean at most biasf∗(L̂h+,h−)/ sd(L̂h+,h−) and least

− biasf∗(L̂h+,h−)/ sd(L̂h+,h−), a nonconservative CI takes the form

L̂h+,h− ± sd(L̂h+,h−) cvα(biasf∗(L̂h+,h−)/ sd(L̂h+,h−)),

where cvα(t) is the 1 − α quantile of the absolute value of a N (t, 1) distribution, which we

tabulate in Table 1. The optimal bandwidths h+ and h− simply minimize the CI’s length,

2 sd(L̂h+,h−) · cvα(biasf∗(L̂h+,h−)/ sd(L̂h+,h−)). It can be shown that the solution satisfies (5),

so choosing optimal bandwidths is a one-dimensional optimization problem. Since the length

doesn’t depend on the data Y , minimizing it does not impact the coverage properties of the

CI. This CI corresponds to the optimal affine fixed-length CI, as defined in Donoho (1994).

Since the length of the CI doesn’t depend on the data Y , it cannot be adaptive. In Section 3.4

we derive a sharp efficiency bound that shows that, similar to the one-sided case, these CIs

are nonetheless highly efficient relative to variable-length CIs that optimize their length at

smooth functions.

The key to these non-adaptivity results is that the class F is centrosymmetric (i.e. f ∈ F
implies −f ∈ F) and convex. For adaptivity to be possible, it is necessary (but perhaps not

sufficient) to impose shape restrictions like monotonicity, or non-convexity of F .
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2.2 Practical implementation

We now discuss some practical issues that arise when implementing optimal CIs.2 To describe

the form of the optimal CIs for general p ≥ 1, consider first the problem of constructing CIs

based on a linear estimator of the form

L̂h+,h− =
n∑
i=1

w+(xi, h+)yi −
n∑
i=1

w−(xi, h−)yi, (10)

where h+, h− are smoothing parameters, and the weights satisfy w+(−x, h+) = w−(x, h−) =

0 for x ≥ 0. The estimator L̂h+,h− is normally distributed with variance sd(L̂h+,h−)2 =∑n
i=1(w+(xi, h+)+w−(xi, h−))2σ2(xi), which does not depend on f . A simple argument (see

Supplemental Appendix E) shows that largest possible bias of L̂h+,h− over the parameter

space FRDT,p(C) is given by

biasFRDT,p(C)(L̂h+,h−) = C
n∑
i=1

|w+(xi, h+) + w−(xi, h−)| · |xi|p, (11)

provided that the weights are such that L̂h+,h− is unbiased for f that takes the form of a

(p − 1)th order polynomial on either side of cutoff (otherwise the worst-case bias will be

infinite). By arguments as in Section 2.1, one can construct one- and two-sided CIs based

on L̂h+,h− as

[c(L̂h+,h−),∞) c(L̂h+,h−) = L̂h+,h− − biasFRDT,p(C)(L̂h+,h−)− sd(L̂h+,h−)z1−α, (12)

and

L̂h+,h− ± cvα(biasFRDT,p(C)(L̂h+,h−)/ sd(L̂h+,h−)) · sd(L̂h+,h−). (13)

The problem of constructing optimal two- and one- sided CIs can be cast as a problem

of finding weights w+, w− and smoothing parameters h+ and h− that lead to CIs with

the shortest length, and smallest worst-case β quantile of excess length, respectively. The

solution to this problem follows from a generalization of results in Sacks and Ylvisaker

(1978). The optimal weights w+ and w− are given by a solution to a system of 2(p − 1)

equations, described in Supplemental Appendix E. When p = 1, they reduce to the weights

w+(xi, h+) = k+(xi/h+)/
∑

i k+(xi/h+) and w−(xi, h−) = k−(xi/h+)/
∑

i k−(xi/h+), where

k+(xi) = k(xi)1(xi ≥ 0) and k−(xi) = k(xi)1(xi < 0), and k(u) = max{0, 1 − |u|} is a

2An R package implementing these CIs is available at https://github.com/kolesarm/RDHonest.
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triangular kernel. This leads to the triangular kernel estimator (7). For p > 1, the optimal

weights depend on the empirical distribution of the running variable xi.

An alternative to using the optimal weights is to use a local polynomial estimator of

order p − 1, with kernel k and bandwidths h− and h+ to the left and to the right of the

cutoff. This leads to weights of the form

w+(xi, h+) = e′1

(∑
i

k+(xi/h+)rir
′
i

)−1∑
i

k+(xi/h+)ri, (14)

and similarly for w−(xi, h−), where ri = (1, xi, . . . , x
p−1
i ) and e1 is the first unit vector.

Using the efficiency bounds we develop in Section 3, it can be shown that, provided that the

bandwidths h+ and h− to the right and to the left of the cutoff are appropriately chosen,

in many cases the resulting CIs are highly efficient. In particular, for p = 2, using the

local linear estimator with the triangular kernel turns out to lead to near-optimal CIs (see

Section 4).

Thus, given smoothness constants C and p, one can construct optimal or near-optimal

CIs as follows:

1. Form a preliminary estimator of the conditional variance σ̂(xi). We recommend using

the estimator σ̂2(xi) = σ̂2
+(0)1(x ≥ 0) + σ̂2

−(0)1(x < 0) where σ̂2
+(0) and σ̂2

−(0) are

estimates of limx↓0 σ2(x) and limx↑0 σ2(x) respectively.3

2. Given smoothing parameters h+ and h−, compute the weights w+ and w− using ei-

ther (14) (for local polynomial estimator), or by solving the system of equations given

in Supplemental Appendix E (for the optimal estimator). Compute the worst case

bias (11), and estimate the variance as ŝd(L̂h+,h−)2 =
∑

i(w+(xi, h+)+w−(xi, h−))2σ̂2(xi).

3. Find the smoothing parameters h∗+ and h∗− that minimize the β-quantile of excess

length

2 biasFRDT,p(c)(L̂h+,h−) + sd(L̂h+,h−)(z1−α + zβ). (15)

for a given β. The choice β = 0.8, corresponds to a benchmark used in statistical

power analysis (see Cohen, 1988). For two-sided CIs, minimize the length

2ŝd(L̂h+,h−) cvα

(
biasFRDT,p(C)(L̂h+,h−)/ŝd(L̂h+,h−)

)
. (16)

3In the empirical application in Section 4, we use estimates based on local linear regression residuals.
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4. Construct the CI using (12) (for one-sided CIs), or (13) (for two-sided CIs), based on

L̂h∗+,h∗− , with ŝd(L̂h∗+,h∗−) in place of the (infeasible) true standard deviation.

Remark 2.1. The variance estimator in step 1 leads to asymptotically valid and optimal

inference even when σ2(x) is non-constant, so long as it is smooth on either side of the cutoff.

However, finite-sample properties of the resulting CI may not be good if heteroskedasticity is

important for the sample size at hand. We therefore recommend using the variance estimator

ŝdrobust(L̂h∗+,h∗−)2 =
n∑
i=1

(w+(xi, h+) + w−(xi, h−))2û2i (17)

instead of ŝd(L̂h∗+,h∗−) in step 4, where û2i is an estimate of σ2(xi). When using local poly-

nomial regression, one can set ûi to the ith regression residual, in which case (17) reduces

to the usual Eicker-Huber-White estimator. Alternatively, one can use the nearest-neighbor

estimator (Abadie and Imbens, 2006) û2i = J
J+1

(Yi − J−1
∑J

`=1 Yj`(i))
2, where j`(i) is the `th

closest unit to i among observations on the same side of the cutoff, and J ≥ 1 (we use J = 3

in the application in Section 4, following Calonico et al., 2014). This mirrors the common

practice of assuming homoskedasticity to compute the optimal weights, but allowing for het-

eroskedasticity when performing inference, such as using OLS in the linear regression model

(which is efficient under homoskedasticity) along with heteroskedasticity-robust standard

errors.

Remark 2.2. If one is interested in estimation, rather than inference, one can choose h+

and h− that minimize the worst-case mean-squared error (MSE) biasFRDT,p(C)(L̂h+,h−)2 +

sd(L̂h+,h−)2 instead of the CI criteria in step 3. One can form a CI around this estimator

by simply following step 4 with this choice of h+ and h−. In the application in Section 4,

we find that little efficiency is lost by using MSE-optimal smoothing parameters, relative to

using h+ and h− that minimize the CI length (16). Interestingly, we find that smoothing

parameters that minimize the CI length actually oversmooth slightly relative to the MSE

optimal smoothing parameters. We generalize these findings in an asymptotic setting in

Armstrong and Kolesár (2016b).

Remark 2.3. Often, a set of covariates zi will be available that does not depend on the

treatment, but that may be correlated with the outcome variable yi. If the parameter of

interest is still the average treatment effect for units with xi = 0, one can simply ignore

these covariates. Alternatively, to gain additional precision, as suggested in Calonico et al.

(2017), one can run a local polynomial regression, but with the covariates added linearly. In
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Appendix B, we show that this approach is near-optimal if one places smoothness assump-

tions on the conditional mean of ỹi given xi, where ỹi is the outcome with the effect of zi

partialled out. If one is interested in the treatment effect as a function of z (with x still set

to zero), one can use our general framework by considering the model yi = f(xi, zi) + ui,

specifying a smoothness class for f , and constructing CIs for limx↓0 f(x, z) − limx↑0 f(x, z)

for different values of z. See Appendix B for details.

A final consideration in implementing these CIs in practice is the choice of the smoothness

constants C and p. The choice of p depends on the order of the derivative the researcher

wishes to bound. Since much of empirical practice in RD is justified by asymptotic MSE

optimality results for FRDT,2(C) (in particular, this class justifies the use of local linear

estimators), we recommend p = 2 as a default choice. For C, generalizations of the non-

adaptivity results described in Section 2.1 show that the researcher must choose C a priori,

rather than attempting to use the data to choose C. To assess the sensitivity of the results

to different smoothness assumptions on f , we recommend considering a range of plausible

choices for C. We implement this approach for our empirical application in Section 4.

3 General characterization of optimal procedures

We consider the following setup and notation, much of which follows Donoho (1994). We

observe data Y of the form

Y = Kf + σε (18)

where f is known to lie in a convex subset F of a vector space, and K : F → Y is a linear

operator between F and a Hilbert space Y . We denote the inner product on Y by 〈·, ·〉, and

the norm by ‖ · ‖. The error ε is standard Gaussian with respect to this inner product: for

any g ∈ Y , 〈ε, g〉 is normal with E〈ε, g〉 = 0 and var (〈ε, g〉) = ‖g‖2. We are interested in

constructing a confidence set for a linear functional Lf .

The RD model (1) fits into this setup by setting Y = (y1/σ(x1), . . . , yn/σ(xn))′, Y = Rn,

Kf = (f(x1)/σ(x1), . . . , f(xn)/σ(xn))′, Lf = limx↓0 f(x) − limx↑0 f(x) and 〈x, y〉 given by

the Euclidean inner product x′y. As we discuss in detail in Supplemental Appendix D.1,

our setup covers a number of other important models, including average treatment effects

under unconfoundedness, the partly linear model, constraints on the sign or magnitude of

parameters in the linear regression model, and other parametric models.
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3.1 Performance criteria

Let us now define the performance criteria that we use to evaluate confidence sets for Lf . A

set C = C(Y ) is called a 100 · (1− α)% confidence set for Lf if inff∈F Pf (Lf ∈ C) ≥ 1− α.

We denote the collection of all 100 · (1− α)% confidence sets by Iα.

We can compare performance of confidence sets at a particular f ∈ F using expected

length, Efλ(C), where λ is Lebesgue measure. Allowing confidence sets to have arbitrary

form may make them difficult to interpret or even compute. One way of avoiding this is to

restrict attention to confidence sets that take the form of a fixed-length confidence interval

(CI), an interval of the form [L̂ − χ, L̂ + χ] for some estimate L̂ and nonrandom χ (for

instance, in the RD model (1), χ may depend on the running variable xi and σ2(xi), but not

on yi). Let

χα(L̂) = min
{
χ : inf

f∈F
Pf
(
|L̂− Lf | ≤ χ

)
≥ 1− α

}
denote the half-length of the shortest fixed-length 100 · (1 − α)% CI centered around an

estimator L̂. Fixed-length CIs are easy to compare: one simply prefers the one with the

shortest half-length. On the other hand, their length cannot “adapt” to reflect greater

precision for different functions f ∈ F . To address this concern, in Section 3.4, we compare

the length of fixed-length CIs to sharp bounds on the optimal expected length infC∈Iα Ef (C).
If C is restricted to take the form of a one-sided CI [ĉ,∞), we cannot use expected length

as a criterion. We therefore measure performance at a particular parameter f using the

βth quantile of their excess length Lf − ĉ, which we denote by qf,β(Lf − ĉ). To measure

performance globally over some set G, we use the maximum βth quantile of the excess length,

qβ(ĉ,G) = sup
g∈G

qg,β(Lg − ĉ). (19)

If G = F , minimizing qβ(ĉ,F) over one-sided CIs in the set Iα gives minimax excess length.

If G ⊂ F is a class of smoother functions, minimizing qβ(ĉ,G) yields CIs that direct power:

they achieve good performance when f is smooth, while maintaining coverage over all of F .

A CI that achieves good performance over multiple classes G is said to be “adaptive” over

these classes. In Section 3.3, we give sharp bounds on (19) for a single class G, which gives

a benchmark for adapting over multiple classes (cf. Cai and Low, 2004a).
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3.2 Affine estimators and optimal bias-variance tradeoff

Many popular estimators are linear functions of the outcome variable Y , and we will see

below that optimal or near-optimal CIs are based on estimators of this form. In the general

framework (18), linear estimators take the form 〈w, Y 〉 for some non-random w ∈ Y , which

simplifies to (10) in the RD model. It will be convenient to allow for a recentering by some

constant a ∈ R, which leads to an affine estimator L̂ = a+ 〈w, Y 〉.
For any estimator L̂, let biasG(L̂) = supf∈G Ef (L̂−Lf) and biasG(L̂) = inff∈G Ef (L̂−Lf).

An affine estimator L̂ = a + 〈w, Y 〉 follows a normal distribution with mean Ef L̂ = a +

〈w,Kf〉 and variance var(L̂) = ‖w‖2σ2, which does not depend on f . Thus, the set of

possible distributions for L̂ − Lf as f varies over a given convex set G is given by the set

of normal distributions with variance ‖w‖2σ2 and mean between biasG(L̂) and biasG(L̂). It

follows that a one-sided CI based on an affine estimator L̂ is given by

[ĉ,∞) ĉ = L̂− biasF(L̂)− sd(L̂)z1−α, (20)

with z1−α denoting the 1−α quantile of a standard normal distribution, and that its worst-

case βth quantile excess length over a convex class G is

qβ(ĉ,G) = biasF(L̂)− biasG(L̂) + sd(L̂)(z1−α + zβ). (21)

The shortest fixed-length CI centered at the affine estimator L̂ is given by

L̂± χα(L̂), χα(L̂) = cvα

(
max{| biasF(L̂)|, | biasF(L̂)|}

sd(L̂)

)
· sd(L̂), (22)

where cvα(t) is the 1 − α quantile of the absolute value of a N (t, 1) random variable, as

tabulated in Table 1.

The fact that optimal CIs turn out to be based on affine estimators reduces the derivation

of optimal CIs to bias-variance calculations: since the performance of CIs based on affine

estimators depends only on the variance and worst-case bias, one simply minimizes worst-

case bias subject to a bound on variance, and then trades off bias and variance in a way

that is optimal for the given criterion. The main tool for doing this is the ordered modulus

of continuity between F and G (Cai and Low, 2004a),

ω(δ;F ,G) = sup {Lg − Lf : ‖K(g − f)‖ ≤ δ, f ∈ F , g ∈ G}
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for any sets F and G with a non-empty intersection (so that the set over which the supremum

is taken is non-empty). When G = F , ω(δ;F ,F) is the (single-class) modulus of continuity

over F (Donoho and Liu, 1991), and we denote it by ω(δ;F). The ordered modulus ω(·;F ,G)

is concave, which implies that the superdifferential at δ (the set of slopes of tangent lines

at (δ, ω(δ;F ,G))) is nonempty for any δ > 0. Throughout the paper, we let ω′(δ;F ,G)

denote an (arbitrary unless otherwise stated) element in this set. Typically, ω(·;F ,G) is

differentiable, in which case ω′(δ;F ,G) is defined uniquely as the derivative at δ. We use

g∗δ,F ,G and f ∗δ,F ,G to denote a solution to the ordered modulus problem (assuming it exists),

and f ∗M,δ,F ,G = (f ∗δ,F ,G + g∗δ,F ,G)/2 to denote the midpoint.4

We will show that optimal decision rules will in general depend on the data Y through

an affine estimator of the form

L̂δ,F ,G = Lf ∗M,δ,F ,G +
ω′(δ;F ,G)

δ

〈
K(g∗δ,F ,G − f ∗δ,F ,G), Y −Kf ∗M,δ,F ,G

〉
, (23)

with δ and G depending on the optimality criterion. When F = G, we denote the estimator

L̂δ,F ,F by L̂δ,F . When the sets F and G are clear from the context, we use ω(δ), L̂δ, f
∗
δ , g∗δ

and f ∗M,δ in place of ω(δ;F ,G), L̂δ,F ,G, f ∗δ,F ,G, g
∗
δ,F ,G and f ∗M,δ,F ,G to avoid notational clutter.

As we show in Lemma A.1 in the Appendix, a useful property of L̂δ,F ,G is that its maxi-

mum bias over F and minimum bias over G are attained at f ∗δ and g∗δ , respectively, and are

given by

biasF(L̂δ,F ,G) = − biasG(L̂δ,F ,G) =
1

2
(ω(δ;F ,G)− δω′(δ;F ,G)) . (24)

Its standard deviation equals sd(L̂δ,F ,G) = σω′(δ;F ,G), and doesn’t depend on f . As re-

marked by Cai and Low (2004b), no estimator can simultaneously achieve lower maximum

bias over F , higher minimum bias over G, and lower variance than the estimators in the

class {L̂δ,F ,G}δ>0. Estimators (23) can thus be used to optimally trade off various levels of

bias and variance.

A condition that will play a central role in bounding the gains from directing power at

smooth functions is centrosymmetry. We say that a class F is centrosymmetric if f ∈ F =⇒
−f ∈ F . Under centrosymmetry, the functions that solve the single-class modulus problem

4See Supplemental Appendix D.2 for sufficient conditions for differentiability and a discussion of the
non-differentiable case. Regarding existence of a solution to the modulus problem, we verify this directly for
our RD application in Supplemental Appendix E.2; see also Donoho (1994), Lemma 2 for a general set of
sufficient conditions.
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can be taken to satisfy g∗δ = −f ∗δ , and the modulus is given by

ω(δ;F) = sup {2Lf : ‖Kf‖ ≤ δ/2, f ∈ F} . (25)

Since f ∗δ = −g∗δ , f ∗M,δ is the zero function and L̂δ,F is linear:

L̂δ,F =
2ω′(δ;F)

δ
〈Kg∗δ , Y 〉. (26)

In the RD model (1) the class FRDT,p(C) is centrosymmetric, and the estimator L̂δ,FRDT,p(C)

takes the form L̂h+,h− given in (10) for a certain class of weights w+(x, h+) and w−(x, h−),

with the smoothing parameters h+ and h− both determined by δ (see Supplemental Ap-

pendix E).

3.3 Optimal one-sided CIs

Given β, a one-sided CI that minimizes (19) among all one-sided CIs with level 1 − α is

based on L̂δβ ;F ,G, where δβ = σ(zβ + z1−α).

Theorem 3.1. Let F and G be convex with G ⊆ F , and suppose that f ∗δ and g∗δ achieve the

ordered modulus at δ with ‖K(f ∗δ − g∗δ )‖ = δ. Let

ĉα,δ,F ,G = L̂δ,F ,G − biasF(L̂δ,F ,G)− z1−ασω′(δ;F ,G).

Then ĉα,δ,F ,G minimizes qβ(ĉ,G) for β = Φ(δ/σ−z1−α) among all one-sided 1−α CIs, where

Φ denotes the standard normal cdf. The minimum coverage is taken at f ∗δ and equals 1−α.

All quantiles of excess length are maximized at g∗δ . The worst case βth quantile of excess

length is qβ(ĉα,δ,F ,G,G) = ω(δ;F ,G).

Since the worst-case bias of L̂δ,F ,G is given by (24), and its standard deviation equals

σω′(δ;F ,G), it can be seen that ĉα,δ,F ,G takes the form given in (20), and its worst-case excess

length follows (21). The assumption that the modulus is achieved with ‖K(f ∗δ − g∗δ )‖ = δ

rules out degenerate cases: if ‖K(f ∗δ − g∗δ )‖ < δ, then relaxing this constraint does not

increase the modulus, which means that ω′(δ;F ,G) = 0 and the optimal CI does not depend

on the data.

Implementing the CI from Theorem 3.1 requires the researcher to choose a quantile β to

optimize, and to choose the set G. There are two natural choices for β. If the objective is to

optimize the performance of the CI “on average”, then optimizing the median excess length
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(β = 0.5) is a natural choice. Since for any CI [ĉ,∞) such that ĉ is affine in the data Y , the

median and expected excess lengths coincide, and since ĉα,δ,F ,G is affine in the data, setting

β = 0.5 also has the advantage that it minimizes the expected excess length among affine

CIs. Alternatively, if the CI is being computed as part of a power analysis, then setting

β = 0.8 is natural, as, under conditions given in Supplemental Appendix D.2, it translates

directly to statements about 80% power, a standard benchmark in such analyses (Cohen,

1988).

For the set G, there are two leading choices. First, setting G = F yields minimax CIs:

Corollary 3.1 (One-sided minimax CIs). Let F be convex, and suppose that f ∗δ and g∗δ
achieve the single-class modulus at δ with ‖K(f ∗δ − g∗δ )‖ = δ. Let

ĉα,δ,F = L̂δ,F −
1

2
(ω(δ;F)− δω′(δ;F))− z1−ασω′(δ;F).

Then, for β = Φ(δ/σ − z1−α), ĉα,δ,F minimizes the maximum βth quantile of excess length

among all 1− α CIs for Lf . The minimax excess length is given by ω(δ;F).

The minimax criterion may be considered overly pessimistic: it focuses on controlling the

excess length under the least favorable function. This leads to the second possible choice for

G, a smaller convex class of smoother functions G ⊂ F . The resulting CIs will then achieve

the best possible performance when f is smooth, while maintaining coverage over all of F .

Unfortunately, there is little scope for improvement for such a CI when F is centrosymmetric.

In particular, suppose that g∗δ,F ,G is “sufficiently smooth” relative to F , in the sense that

f − g∗δ,F ,G ∈ F for all f ∈ F . (27)

Since F is centrosymmetric, this condition is equivalent to the requirement that the sets

{f − g∗δ,F ,G : f ∈ F} and F are the same.5 For instance, (27) holds if G contains the zero

function only. In the RD model (1) with F = FRDT,p(C), (27) holds if G = FRDT,p(0), the

class of piecewise polynomial functions.

Corollary 3.2. Let F be centrosymmetric, and let G ⊆ F be any convex set such that

the solution to the ordered modulus problem exists and satisfies (27) with ‖K(f ∗δβ − g∗δβ)‖ =

δβ, where δβ = σ(zβ + z1−α). Then the one-sided CI ĉα,δβ ,F that is minimax for the βth

quantile also optimizes qβ̃(ĉ;G), where β̃ = Φ((zβ − z1−α)/2). In particular, ĉα,δβ ,F optimizes

5We thank a referee for pointing this out.
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qβ̃(ĉ; {0}). Moreover, the efficiency of ĉα,δβ ,F for the βth quantile of maximum excess length

over G is given by

inf ĉ : [ĉ,∞)∈Iα qβ(ĉ,G)

qβ(ĉα,δβ ,F ,G)
=

ω(δβ;F ,G)

qβ(ĉα,δβ ,F ,G)
=

ω(2δβ;F)

ω(δβ;F) + δβω′(δβ;F)
. (28)

The first part of Corollary 3.2 states that minimax CIs that optimize a particular quantile

β will also minimize the maximum excess length over G at a different quantile β̃. For

instance, a CI that is minimax for median excess length among 95% CIs also optimizes

Φ(−z0.95/2) ≈ 0.205 quantile under the zero function. Vice versa, the CI that optimizes

median excess length under the zero function is minimax for the Φ(2z0.5 + z0.95) = 0.95

quantile.

The second part of Corollary 3.2 gives the exact cost of optimizing the “wrong” quantile

β̃. Since the one-class modulus is concave, δω′(δ) ≤ ω(δ), and we can lower bound the

efficiency of ĉα,δβ ,F given in (28) by ω(2δβ)/(2ω(δβ)) ≥ 1/2. Typically, the efficiency is much

higher. In particular, in the regression model (1), the one-class modulus satisfies

ω(δ;F) = n−r/2Aδr(1 + o(1)) (29)

for many choices of F and L, as n → ∞ for some constant A, where r/2 is the rate of

convergence of the minimax root MSE. This is the case under regularity conditions in the

RD model with r = 2p/(2p+ 1) by Lemma H.6 (see Donoho and Low, 1992, for other cases

where (29) holds). In this case, (28) evaluates to 2r

1+r
(1 + o(1)), so that the asymptotic

efficiency depends only on r. Figure 2 plots the asymptotic efficiency as a function of r.

Since adapting to the zero function easier than adapting to any set G that includes it, if F
is convex and centrosymmetric, “directing power” yields very little gain in excess length no

matter how optimistic one is about where to direct it.

This result places a severe bound on the scope for adaptivity in settings in which F is

convex and centrosymmetric: any CI that performs better than the minimax CI by more

than the ratio in (28) must fail to control coverage at some f ∈ F .
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3.4 Two-sided CIs

A fixed-length CI based on L̂δ,F can be computed by plugging its worst-case bias (24)

into (22),6

L̂δ,F ± χα(L̂δ,F), χα(L̂δ,F) = cvα

(
ω(δ;F)

2σω′(δ;F) − δ
2σ

)
· σω′(δ;F).

The optimal δ minimizes the half-length, δχ = argminδ>0 χα(L̂δ,F). It follows from Donoho

(1994) that this CI is the shortest possible in the class of fixed-length CIs based on affine

estimators. Just as with minimax one-sided CIs, one may worry that since its length is driven

by the least favorable functions, restricting attention to fixed-length CIs may be costly when

the true f is smoother. The next result characterizes confidence sets that optimize expected

length at a single function g, and thus bounds the possible performance gain.

Theorem 3.2. Let g ∈ F , and assume that a minimizer fL0 of ‖K(g − f)‖ subject to

Lf = L0 and f ∈ F exists for all L0 ∈ R. Then the confidence set Cg that minimizes Egλ(C)
subject to C ∈ Iα inverts the family of tests φL0 that reject for large values of 〈K(g−fL0), Y 〉
with critical value given by the 1− α quantile under fL0. Its expected length is

Eg[λ(Cg)] = (1− α)E [(ω(σ(z1−α − Z);F , {g}) + ω(σ(z1−α − Z); {g} ,F)) | Z ≤ z1−α] ,

where Z is a standard normal random variable.

This result solves the problem of “adaptation to a function” posed by Cai et al. (2013),

who obtain bounds for this problem if C is required to be an interval. The theorem uses the

observation in Pratt (1961) that minimum expected length CIs are obtained by inverting

a family of uniformly most powerful tests of H0 : Lf = L0 and f ∈ F against H1 : f = g,

which, as shown in the proof, is given by φL0 ; the expression for the expected length of

Cg follows by computing the power of these tests. The assumption on the existence of the

minimizer fL0 means that Lf is unbounded over F , and it is made to simplify the statement;

a truncated version of the same formula holds when F places a bound on Lf .

Directing power at a single function is seldom desirable in practice. Theorem 3.2 is

very useful, however, in bounding the efficiency of other procedures. In particular, suppose

f−g ∈ F for all f , so that (27) holds with G = {g} (such as when g is the zero function), and

6We assume that ω′(δ;F) = sd(L̂δ,F )/σ 6= 0. Otherwise, the estimator L̂δ,F doesn’t depend on the data,
and the only valid fixed-length CI around it is the trivial CI that reports the whole parameter space for Lf .
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that F is centrosymmetric. Then, by arguments in the proof of Corollary 3.2, ω(δ;F , {g}) =

ω(δ; {g} ,F) = 1
2
ω(2δ;F), which yields:

Corollary 3.3. Consider the setup in Theorem 3.2 with the additional assumption that F
is centrosymmetric and g satisfies f −g ∈ F for all f . Then the efficiency of the fixed-length

CI around L̂δχ,F at g relative to all confidence sets is

infC∈Iα Egλ(C(Y ))

2χα(L̂δχ,F)
=

(1− α)E [ω(2σ(z1−α − Z);F) | Z ≤ z1−α]

2 cvα

(
ω(δχ;F)

2σω′(δχ;F) −
δχ
2σ

)
· σω′(δχ;F)

. (30)

The efficiency ratio (30) can easily be computed in particular applications, and we do so

in the empirical application in Section 4. When the one-class modulus satisfies (29), then,

as in the case of one-sided CIs, the asymptotic efficiency of the fixed-length CI around L̂δχ

can be shown to depend only on r and α, and we plot it in Figure 2 for α = 0.05 (see

Theorem E.1 for the formula). When r = 1 (parametric rate of convergence) and α = 0.05,

the asymptotic efficiency equals 84.99%, as in the normal mean example in Pratt (1961,

Section 5).

Just like with minimax one-sided CIs, this result places a severe bound on the scope for

improvement over fixed-length CIs when F is centrosymmetric. It strengthens the finding in

Low (1997) and Cai and Low (2004a), who derive bounds on the expected length of random

length 1 − α CIs. Their bounds imply that when F is constrained only by bounds on a

derivative, the expected length of any CI in Iα must shrink at the minimax rate n−r/2 for

any g in the interior of F .7 Figure 2 shows that for smooth functions g, this remains true

whenever F is centrosymmetric, even if we don’t require C to take the form of an interval.

Importantly, the figure also shows that not only is the rate the same as the minimax rate,

the constant must be close to that for fixed-length CIs. Since adapting to a single function

g is easier than adapting to any class G that includes it, this result effectively rules out

adaptation to subclasses of F that contain smooth functions.

4 Empirical illustration

In this section, we illustrate the theoretical results in an RD application using a dataset

from Lee (2008). The dataset contains 6,558 observations on elections to the US House

7One can use Theorem 3.2 to show that this result holds even if we don’t require C to take the form of
an interval. For example, in the RD model with F = FRDT,p(C) and g ∈ FRDT,p(Cg), Cg < C, the result
follows from lower bounding Eg[λ(Cg)] using ω(δ;F , {g}) + ω(δ; {g},F) ≥ ω(2δ,FRDT,p(C − Cg)).
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of Representatives between 1946 and 1998. The running variable xi ∈ [−100, 100] is the

Democratic margin of victory (in percentages) in election i. The outcome variable yi ∈
[0, 100] is the Democratic vote share (in percentages) in the next election. Given the inherent

uncertainty in final vote counts, the party that wins is essentially randomized in elections

that are decided by a narrow margin, so that the RD parameter Lf measures the incumbency

advantage for Democrats for elections decided by a narrow margin—the impact of being the

current incumbent party in a congressional district on the vote share in the next election.

We consider inference under the Taylor class FRDT,p(C), with p = 2. We report results

for the optimal estimators and CIs, as well as CIs based on local linear estimators, using the

formulas described in Section 2.2 (which follow from the general results in Section 3). We

use the preliminary estimates σ̂2
+(x) = 12.62 and σ̂2

−(x) = 10.82 in Step 1, which are based

on residuals form a local linear regression with bandwidth selected using the Imbens and

Kalyanaraman (2012) selector. In Step 4, we use the nearest-neighbor variance estimator

with J = 3.

Let us briefly discuss the interpretation of the smoothness constant C in this application.

By definition of the class FRDT,2(C), C determines how large the approximation error can be

if we approximate the regression functions f+ and f− on either side of the cutoff by a linear

Taylor approximation at the cutoff: the approximation error is no greater than Cx2. One way

of gauging the magnitude of this approximation error is to look at its effect on prediction error

when using the Taylor approximation to predict the vote share in the next election, and the

margin in the previous election was x0. If one uses the Taylor approximation, the prediction

MSE is at most C2x40 + σ2(x0), whereas using the true conditional mean to predict the vote

share would lead to prediction MSE σ2(x0). Thus, using the true conditional mean leads to

a MSE reduction in this prediction problem by a factor of at most C2x40/(C
2x40 + σ2(x0)).

If C = 0.05 for instance, this implies MSE reductions of at most 13.6% at x0 = 10%, and

71.5% at x0 = 20%, assuming that σ2(x0) equals our estimate of 12.62. To the extent that

researchers agree that the vote share in the next election varies smoothly enough with the

margin of victory in the current election to make such large reductions in MSE unlikely,

C = 0.05 is quite a conservative choice.

Our adaptivity bounds imply that one cannot use data-driven methods to tighten our

CIs, by say, estimating C. It is, however, possible to lower-bound the value of C. We derive

a simple estimate of this lower bound in Supplemental Appendix E.3, which in the Lee data

yields the lower bound estimate 0.017. As detailed in the appendix, the lower bound estimate

can also be used in a model specification test to check whether a given chosen value of C is
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too low. To examine sensitivity of the results to different choices of C, we present the results

for the range C ∈ [0.0002, 0.1] that, by the argument in the preceding paragraph, includes

most plausible values.

4.1 Optimal and near-optimal confidence intervals

The top panel in Figure 3 plots the optimal one- and two-sided CIs defined in Section 2, as

well as estimates based on minimizing the worst-case MSE (see Remark 2.2). The estimates

vary between 5.8% and 7.4% for C ≥ 0.005, which is close to the original Lee estimate of

7.7% that was based on a global fourth degree polynomial. Interestingly, the lower and

upper limits ĉu and ĉ` of the one-sided CIs [ĉ`,∞) and (−∞, ĉu] are not always within the

corresponding limits for the two-sided CIs. The reason for this is that for any given C, the

optimal smoothing parameters h+ and h− are smaller for one-sided CIs than for two-sided

fixed-length CIs. Thus, when the point estimate decreases with the amount of smoothing

as is the case for low values of C, then one-sided CIs are effectively centered around a lower

estimate, which explains why at first the one-sided CI limits are both below the two-sided

limits. This reverses once the point estimate starts increasing with the amount of smoothing.

Furthermore, the optimal smoothing parameters for the minimax MSE estimator are slightly

smaller than those for fixed-length CIs throughout the entire range of Cs, albeit by a small

amount. This matches the asymptotic predictions in Armstrong and Kolesár (2016b).

As we discussed in Remark 2.2, it may be desirable to report an estimate with good MSE,

with a CI centered at this estimate (without reoptimizing the smoothing parameters). The

bottom panel in Figure 3 gives CIs with the smoothing parameters chosen so that the L̂h+,h−

minimizes the maximum MSE. The limits of the one-sided CIs are now contained within

the two-sided CIs, as they are both based on the same estimator, although they are less

than (z1−α/2 − z1−α) sd(L̂h+,h−) apart as would be the case if L̂h+,h− were unbiased. Finally,

Figure 4 considers CIs based on local linear estimators with triangular kernel; these CIs are

very close to the optimal CIs in Figure 3.

4.2 Efficiency comparisons and bounds on adaptation

We now consider the relative efficiency of the different CIs reported in Figures 3 and 4. To

keep the efficiency comparisons meaningful, we assume that the variance is homoskedastic

on either side of the cutoff, and equal to the initial estimates.

First, comparing half-length and excess length of CIs based on choosing h+, h− to min-
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imize the MSE to that of CIs based on optimally chosen h+ and h−, we find that over the

range of C’s considered, for both optimal and local linear estimators, two-sided CIs based

on MSE-optimal estimators are at least 99.9% efficient, and one-sided CIs are at least 97.7%

efficient. These results are in line with the asymptotic results in Armstrong and Kolesár

(2016b), which imply that the asymptotic efficiency of two-sided fixed-length CIs is 99.9%,

and it is 98.0% for one-sided CIs.

Second, comparing half-length and excess length of the CIs based on local linear estimates

to that of CIs based on optimal estimators, we find that one- and two-sided CIs based on local

linear estimators with triangular kernel are at least 96.9% efficient. This is very close to the

asymptotic efficiency result in Armstrong and Kolesár (2016b) that the local linear estimator

with a triangular kernel is 97.2% efficient, independently of the performance criterion.

Third, since the class FRDT,2(C) is centrosymmetric, we can use Corollaries 3.2 and 3.3

to bound the scope for adaptation to the class of piecewise linear functions, G = FRDT,2(0).

We find that the relative efficiency of CIs that minimax the 0.8 quantile is between 96%

and 97.4%, and the efficiency of fixed-length two-sided CIs at any g ∈ G is between 95.5%

and 95.9% for the range of C’s considered. This is very close to the asymptotic efficiency

predictions, 96.7% and 95.7%, respectively, implied by Figure 2 (with r = 4/5). Thus, one

cannot avoid choosing C a priori.
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Appendix A Proofs for main results

This section contains proofs of the results in Section 3. Appendix A.1 contains auxiliary

lemmas used in the proofs. The proofs of the results in Section 3 are given in the remainder

of the section. Proofs of Corollaries 3.1 and 3.3 follow immediately from the theorems and

arguments in the main text, and their proofs are omitted. We assume throughout this section

that the sets F and G are convex.

Before proceeding, we recall that ω′(δ;F ,G) was defined in Section 3 to be an arbitrary

element of the superdifferential. We denote this set by

∂ω(δ;F ,G) = {d : for all η > 0, ω(η;F ,G) ≤ ω(δ;F ,G) + d(η − δ)} .

It is nonempty since ω(·;F ,G) is concave—if f ∗δ , g
∗
δ attain the modulus at δ and similarly for

δ̃, then, for λ ∈ [0, 1], fλ = λf ∗δ + (1− λ)f ∗
δ̃

and gλ = λg∗δ + (1− λ)g∗
δ̃

satisfy ‖K(gλ− fλ)‖ ≤
λδ + (1− λ)δ̃ so that ω(λδ + (1− λ)δ̃) ≥ Lgλ − Lfλ = λω(δ) + (1− λ)ω(δ̃).

The definition of L̂δ,F ,G in (23) depends on the choice of ω′(δ;F ,G) ∈ ∂ω(δ;F ,G) and

f ∗δ,F ,G, g
∗
δ,F ,G. As we explain in Supplemental Appendix D.2, Theorem 3.1 holds for any

choice of ω′(δ;F ,G) so long as the same element is used in the definition of the estimator

and worst-case bias formula. Regarding the choice of the particular solution f ∗δ,F ,G, g
∗
δ,F ,G used

to construct the estimator and CIs, it turns out that, under the conditions of Theorem 3.1,

the choice does not affect the definition of L̂δ,F ,G or the CIs based on it, as we now explain.

If (f ∗0 , g
∗
0) and (f ∗1 , g

∗
1) solve the modulus problem with K(g∗0 − f ∗0 ) 6= K(g∗1 − f ∗1 ), a strict

convex combination (fλ, gλ) will satisfy ‖K(fλ − gλ)‖ ≤ δ − η for some η > 0, which implies

ω(δ − η;F ,G) = L(gλ − fλ) = ω(δ;F ,G). Since the modulus is nondecreasing, this implies

that it is constant in a neighborhood of δ, so that ∂ω(δ;F ,G) = {0}. Thus, either K(g∗δ−f ∗δ )

is defined uniquely or ∂ω(δ;F ,G) = {0}. In either case, ω′(δ;F ,G) ·K(f ∗δ − g∗δ ) is defined

uniquely up to the choice of ω′(δ;F ,G), which means that, for any two estimators L̂0 and

L̂1 that satisfy the definition of L̂δ,F ,G with the same choice of ω′(δ;F ,G), we must have

L̂1 = L̂0 + a for some constant a. The bias formula (24), which follows from Lemma A.1

below, then implies that a = 0. Similarly, the CIs [ĉα,F ,G,∞) and L̂δ,F ,G ± χα(L̂δ,F ,G) are

defined uniquely up to the choice of ω′(δ;F ,G).

25



A.1 Auxiliary lemmas

The following lemma extends Lemma 4 in Donoho (1994) to the two class modulus (see also

Theorem 2 in Cai and Low, 2004b, for a similar result in the Gaussian white noise model).

The proof is essentially the same as for the single class case.

Lemma A.1. Let F and G be convex sets and let f ∗ and g∗ solve the optimization problem

for ω(δ0;F ,G) with ‖K(f ∗ − g∗)‖ = δ0, and let d ∈ ∂ω(δ0;F ,G). Then, for all f ∈ F and

g ∈ G,

Lg − Lg∗ ≤ d
〈K(g∗ − f ∗), K(g − g∗)〉

‖K(g∗ − f ∗)‖ and Lf − Lf ∗ ≥ d
〈K(g∗ − f ∗), K(f − f ∗)〉

‖K(g∗ − f ∗)‖ . (31)

In particular, L̂δ,F ,G achieves maximum bias over F at f ∗ and minimum bias over G at g∗.

Proof. Denote the ordered modulus ω(δ;F ,G) by ω(δ). Suppose that the first inequality

in (31) does not hold for some g. Then, for some ε > 0,

Lg − Lg∗ > (d+ ε)
〈K(g∗ − f ∗), K(g − g∗)〉

‖K(g∗ − f ∗)‖ . (32)

Let gλ = (1 − λ)g∗ + λg. Since gλ − g∗ = λ(g − g∗), we have λL(g − g∗) = Lgλ − Lf ∗ −
L(g∗ − f ∗) = Lgλ − Lf ∗ − ω(δ0). Furthermore, since gλ ∈ G by convexity, Lgλ − Lf ∗ ≤
ω(‖K(gλ − f ∗)‖) so multiplying (32) by λ gives

ω(‖K(gλ − f ∗)‖)− ω(δ0) ≥ λL(g − g∗) > λ(d+ ε)
〈K(g∗ − f ∗), K(g − g∗)〉

‖K(g∗ − f ∗)‖ . (33)

Note that

d

dλ
‖K(gλ − f ∗)‖

∣∣∣∣
λ=0

=
1

2

d
dλ
‖K(gλ − f ∗)‖2

∣∣∣∣
λ=0

‖K(g∗ − f ∗)‖ =
〈K(g∗ − f ∗), K(g − g∗)〉

‖K(g∗ − f ∗)‖ (34)

so that ‖K(gλ − f ∗)‖ = δ0 + λ 〈K(g∗−f∗),K(g−g∗)〉
‖K(g∗−f∗)‖ + o(λ). Combining this with (33), we have

ω

(
δ0 + λ

〈K(g∗ − f ∗), K(g − g∗)〉
‖K(g∗ − f ∗)‖ + o(λ)

)
− ω(δ0) > λ(d+ ε)

〈K(g∗ − f ∗), K(g − g∗)〉
‖K(g∗ − f ∗)‖ ,

which is a contradiction unless 〈K(g∗ − f ∗), K(g − g∗)〉 = 0.

If 〈K(g∗ − f ∗), K(g − g∗)〉 = 0, then (32) gives Lg − Lg∗ > 0, which, by the first
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inequality in (33) implies ω(‖K(gλ − f ∗)‖) − ω(δ0) ≥ λc where c = Lg − Lg∗ > 0. But in

this case (34) implies ‖K(gλ − f ∗)‖ = δ0 + o(λ), again giving a contradiction. This proves

the first inequality, and a symmetric argument applies to the inequality involving Lf −Lf ∗,
thereby giving the first result.

Now consider the test statistic L̂δ,F ,G. Under g ∈ G, the bias of this statistic is equal to

a constant that does not depend on g plus

d
〈K(g∗ − f ∗), K(g − g∗)〉

‖K(g∗ − f ∗)‖ − (Lg − Lg∗).

It follows from (31) that this is minimized over g ∈ G by taking g = g∗. Similarly, the

maximum bias over F is taken at f ∗.

The next lemma is used in the proof of Theorem 3.2.

Lemma A.2. Let F̃ and G̃ be convex sets, and suppose that f ∗ and g∗ minimize ‖K(f −g)‖
over f ∈ F̃ and g ∈ G̃. Then, for any level α, the minimax test of H0 : F̃ vs H1 : G̃ is given

by the Neyman-Pearson test of f ∗ vs g∗. It rejects when 〈K(f ∗ − g∗), Y 〉 is greater than its

1− α quantile under f ∗. The minimum power of this test over G̃ is taken at g∗.

Proof. The result is immediate from results stated in Section 2.4.3 in Ingster and Suslina

(2003), since the sets {Kf : f ∈ F̃} and {Kg : g ∈ G̃} are convex.

A.2 Proof of Theorem 3.1

For ease of notation in this proof, let f ∗ = f ∗δ and g∗ = g∗δ denote the functions that solve

the modulus problem with ‖K(f ∗ − g∗)‖ = δ, and let d = ω′(δ;F ,G) ∈ ∂ω(δ;F ,G) so that,

plugging the worst-case bias formula (24) into the definition of ĉα, we have

ĉα = ĉα,δ,F ,G = Lf ∗ + d
〈K(g∗ − f ∗), Y 〉
‖K(g∗ − f ∗)‖ − d

〈K(g∗ − f ∗), Kf ∗〉
‖K(g∗ − f ∗)‖ − z1−ασd.

Note that ĉα = L̂δ,F ,G + a for a chosen so that the 1 − α quantile of ĉα − Lf ∗ under f ∗

is zero. Thus, it follows from Lemma A.1 that [ĉα,∞) is a valid 1 − α CI for Lf over F ,

and that all quantiles of excess coverage Lg − ĉα are maximized over G at g∗. In particular,

qβ(ĉα;G) = qg∗,β(Lg∗− ĉα). To calculate this quantile, note that, under g∗, Lg∗− ĉα is normal

with variance d2σ2 and mean

Lg∗ − Lf ∗ − d〈K(g∗ − f ∗), K(g∗ − f ∗)〉
‖K(g∗ − f ∗)‖ + z1−ασd = ω(δ;F ,G) + d(z1−ασ − δ).
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The probability that this normal variable is less than or equal to ω(δ;F ,G) is given by the

probability that a normal variable with mean d(z1−ασ− δ) and variance d2σ2 is less than or

equal to zero, which is Φ(δ/σ − z1−α) = β. Thus, qβ(ĉα;G) = ω(δ;F ,G) as claimed.

It remains to show that no other 1 − α CI can strictly improve on this. Suppose that

some other 1− α CI [c̃,∞) obtained qβ(c̃;G) < qβ(ĉα;G) = ω(δ;F ,G). Then the β quantile

of excess length at g∗ would be strictly less than ω(δ;F ,G), so that, for some η > 0,

Pg∗(Lg
∗ − c̃ ≤ ω(δ;F ,G)− η) ≥ β.

Let f̃ be given by a convex combination between g∗ and f ∗ such that Lg∗−Lf̃ = ω(δ;F ;G)−
η/2. Then the above display gives

Pg∗(c̃ > Lf̃) ≥ Pg∗(c̃ ≥ Lf̃ + η/2) = Pg∗(Lg
∗ − c̃ ≤ Lg∗ − Lf̃ − η/2) ≥ β.

But this would imply that the test that rejects when c̃ > Lf̃ is level α for H0 : f̃ and has

power β at g∗. This can be seen to be impossible by calculating the power of the Neyman-

Pearson test of f̃ vs g∗, since β is the power of the Neyman-Pearson test of f ∗ vs g∗, and f̃

is a strict convex combination of these functions.

A.3 Proof of Corollary 3.2

Under (27), if f ∗δ,F ,G and g∗δ,F ,G solve the modulus problem ω(δ,F ,G), then f ∗δ,F ,G − g∗δ,F ,G and

0 (the zero function) solve ω(δ;F , {0}). Thus, ω(δ;F ,G) = ω(δ;F , {0}), and the estimators

L̂δ,F ,G and L̂δ,F ,{0} and the corresponding CIs are equal up to the choice of the element in

the superdifferential. It therefore suffices to prove the result for G = {0}.
We have

ω(δ;F , {0}) = sup {−Lf : ‖Kf‖ ≤ δ, f ∈ F} =
1

2
ω(2δ;F),

where the last equality obtains because under centrosymmetry, maximizing −Lf = L(−f)

and maximizing Lf are equivalent, so that the maximization problem is equivalent to (25).

Furthermore, we can take g∗2δ,F , f
∗
2δ,F to satisfy g∗2δ,F = −f ∗2δ,F with f ∗2δ,F solving the above

optimization problem, so that g∗δ,F ,{0} − f ∗δ,F ,{0} = −f ∗δ,F ,{0} = −f ∗2δ,F = 1
2
(g∗2δ,F − f ∗2δ,F).

Thus, L̂δ,F ,{0} and L̂2δ,F are equal up to a constant, which implies ĉα,δ,F ,{0} = ĉα,2δ,F . This

proves the first part of the corollary. The second part of the corollary follows by plugging

bias{0}(L̂δβ ,F) = 0 and the formulas for biasF(L̂δβ ,F) and sd(L̂δβ ,F) given in Section 3.2 into

the expression (21) to obtain qβ(ĉα,δβ ,F , {0}) = (ω(δβ;F) + δβω
′(δβ;F))/2.
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A.4 Proof of Theorem 3.2

Following Pratt (1961), note that, for any confidence set C for ϑ = Lf , we have

Egλ(C) = Eg

∫
(1− φC(ϑ)) dϑ =

∫
Eg(1− φC(ϑ)) dϑ

by Fubini’s theorem, where φC(ϑ) = 1(ϑ /∈ C). Thus, the CI that minimizes this inverts the

family of most powerful tests of H0 : Lf = ϑ, f ∈ F against H1 : f = g. By Lemma A.2 since

the sets {f : Lf = ϑ, f ∈ F} and {g} are convex, the least favorable function fϑ minimize

‖K(g − f)‖ subject to Lf = ϑ, which gives the first part of the theorem.

To derive the expression for expected length, note that if Lg ≤ ϑ, then the minimization

problem is equivalent to solving the inverse ordered modulus problem ω−1(ϑ− Lg; {g} ,F),

and if Lg ≥ ϑ, it is equivalent to solving ω−1(Lg − ϑ;F , {g}). This follows because if the

ordered modulus ω(δ;F , {g}) is attained at some f ∗δ and g, then the inequality ‖K(f−g)‖ ≤
δ must be binding: otherwise a convex combination of f̃ and f ∗δ , where f̃ is such that

L(g − f ∗δ ) < L(g − f̃) would achieve a strictly larger value, and similarly for ω(δ; {g} ,F).

Such f̃ always exists since by the assumption that fϑ exists for all ϑ. The above argument

assumes that ϑ − Lg ≥ ω(0; {g},F) so that ϑ − Lg is in the range of the modulus; if

0 ≤ ϑ − Lg ≤ ω(0; {g},F), then ‖K(fϑ − g)‖ = 0 so the minimization problem is still

equivalent to the inverse modulus if we define the inverse to be 0 in this case (and similarly

for 0 ≤ Lg − ϑ ≤ ω(0;F , {g})).
Next, it follows from the proof of Theorem 3.1 that the power of the test φϑ at g is given

by Φ(δϑ/σ − z1−α), where δϑ = ‖fϑ − g‖. Therefore,

Eg[λ(Cg(Y ))] =

∫
Φ

(
z1−α −

δϑ
σ

)
dϑ =

∫∫
1(δϑ ≤ σ(z1−α − z)) dϑ dΦ(z),

where the second equality swaps the order of integration. Splitting the inner integral, using

fact that δϑ = ω−1(Lg − ϑ;F , {g}) for ϑ ≤ Lg and δϑ = ω−1(ϑ − Lg; {g} ,F) for ϑ ≥ Lg,

and taking a modulus on both sides of the inequality of the integrand then yields

Eg[λ(Cg(Y ))] =

∫∫
ϑ≤Lg

1(Lg − ϑ ≤ ω (σ(z1−α − z);F , {g}))1(z ≤ z1−α) dϑ dΦ(z)

+

∫∫
ϑ>Lg

1(ϑ− Lg ≤ ω (σ(z1−α − z); {g} ,F))1(z ≤ z1−α) dϑ dΦ(z)

= (1− α)E [(ω(σ(z1−α − Z);F , {g}) + ω(σ(z1−α − Z); {g} ,F)) | Z ≤ z1−α] ,
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where Z is standard normal, which yields the result.

Appendix B Extension to RD with covariates

This section discusses extensions to the RD setup when we have available a set of covariates zi

that are independent of the treatment. If the object of interest is still the average treatment

effect at x = 0, then ignoring the additional covariates will still lead to a valid CI. However,

one may want to use the information that zi is independent of treatment to gain precision.

We discuss this in Appendix B.1. Alternatively, one may want to estimate the treatment

effect at x = 0 conditional on different values of z, which leads to a different approach,

discussed in Appendix B.2.

B.1 Using covariates to improve precision

As argued by Calonico et al. (2017), if zi is independent of treatment, the conditional mean

of zi given the running variable xi should be smooth near the cutoff. We can fit this into

our setup using the model

yi = hy(xi) + ui,

zi = hz(xi) + vi,

(
ui

vi

)
∼ N (0,Σ(xi)) , hy ∈ Hy, hz ∈ Hz,

where Hy and Hz are convex smoothness classes, and we treat Σ(·) as known. We incor-

porate the constraint that zi is independent of treatment by choosing a class Hz such that

limx↓0 hz(x)− limx↑0 hz(x) = 0 for all hz ∈ Hz. For example, we can take Hy = FRDT,p(Cy)
and Hz = FRDT,p(Cz) ∩ {h : limx↓0 hz(x)− limx↑0 hz(x) = 0} for some constants Cy and Cz.

Using our general results, one can compute optimal CIs and bounds for adaptation. For

example, our adaptation bounds show that, when Hy and Hz are centrosymmetric, there are

severe limitations to adapting to the smoothness constant for either class. Thus, CIs that

take into account the covariates zi will have to depend explicitly on the smoothness constant

that hz is assumed to satisfy.

In the remainder of this section, we consider a particular smoothness class, and we

construct CIs that are optimal or near-optimal when Σ(x) is constant as well as feasible

versions of these CIs that are valid when Σ(x) is unknown and may not be constant. Given

Σ, let Σ22 denote the bottom-right dz×dz submatrix of Σ and let Σ21 denote the bottom-left

30



dz × d1 submatrix of Σ, where dz is the dimension of zi. Let ỹi = yi − z′iΣ−122 Σ21 so that

ỹi = hy(xi)− hz(yi)′Σ−122 Σ21 + ui − v′iΣ−122 Σ21 = h̃y(xi) + ũi

where h̃y(xi) = hy(xi)−hz(yi)′Σ−122 Σ21 and ũi = ui−v′iΣ−122 Σ21. Note also that limx↓0 h̃y(x)−
limx↑0 h̃y(x) = limx↓0 hy(x) − limx↑0 hy(x), so that the RD parameter for h̃y is the same as

the RD parameter for hy. Suppose that we model the smoothness of h̃y directly, and take

the parameter space for (h̃y, hz) to be FRDT,p(C̃)×Hz. Since ũi is independent of vi and the

RD parameter depends only on h̃y, it can be seen that minimax optimal estimators and CIs

can be formed by ignoring the zi’s after this transformation is made. Thus, one can proceed

as in Section 2.2 with ỹi in place of yi.
8

To make this procedure feasible, we need an estimate of Σ−122 Σ21. We propose the estimates

Σ̂22 = 1
nh

∑n
i=1 v̂iv̂

′
ik(xi/h) and Σ̂21 = 1

nh

∑n
i=1 v̂iyik(xi/h) where v̂i is the residual from

the local polynomial regression of zi on a pth order polynomial of xi and its interaction

with 1(xi > 0), with weight k(xi/h). To form CIs, one proceeds as in Section 2.2 with

ỹi = yi − z′iΣ̂−122 Σ̂21 in place of yi and C̃ playing the role of C. A simple calculation shows

that, if one uses the local polynomial weights (14), with the same kernel and bandwidth

used to estimate Σ, the resulting CIs will be centered at a local polynomial estimate where

zi is included as a regressor in the local polynomial regression. This corresponds exactly to

an estimator proposed by Calonico et al. (2017). Thus, our relative efficiency results can be

used to show that this estimator is close to optimal under these assumptions.

B.2 Estimating the treatment effect conditional on zi = z

If one is interested in how the treatment effect at x = 0 varies with z, one can use the

model yi = f(xi, zi) + ui where f is placed in a smoothness class and the object of interest

is Lzf = limx↓0 f(x, z) − limx↑0 f(x, z) for different values of z. This fits into our general

framework once one fixes the point z at which Lzf is evaluated, and one can use our results

to obtain CIs for different values of z. A natural smoothness class is to place a bound on the

pth order multivariate Taylor approximation of f(x, z)1(x > 0) and f(x, z)1(x < 0) at x = 0

and z equal to the value of interest. The analysis of optimal and near optimal estimators

8If one places smoothness assumptions on hy rather than h̃y by taking Hy = FRDT,p(Cy) and Hz =

FRDT,p(Cz)∩{h : limx↓0 hz(x)− limx↑0 hz(x) = 0}, then h̃y ∈ FRDT,p(Cy +Czι
′Σ−122 Σ21) where ι is a vector

of ones. It follows that the CIs discussed here will be valid for C̃ ≥ Cy +Czι
′Σ−122 Σ21. However, the resulting

parameter space for (h̃y, hz) will be different (in particular, it will not take the form Hy × Hz), so that
optimal estimators will be different for this class.
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then follows from a generalization of the results described in Section 2.2. In particular, one

can use multivariate local polynomial estimators (with worst-case bias computed using a

generalization of the calculations in Supplemental Appendix E.1), or optimal weights can be

computed by generalizing the calculations in Supplemental Appendix E.2.

Estimating the treatment effect conditional on different values of z can be a useful way

of exploring treatment effect heterogeneity. However, unless one places some additional

parametric structure on f(x, z), the resulting estimates will suffer from imprecision when

the dimension of z is moderate due to the curse of dimensionality.
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Giné, E. and R. Nickl (2010): “Confidence bands in density estimation,” The Annals of

Statistics, 38, 1122–1170.

Hall, P. and J. Horowitz (2013): “A simple bootstrap method for constructing non-

parametric confidence bands for functions,” The Annals of Statistics, 41, 1892–1921.

Ibragimov, I. A. and R. Z. Khas’minskii (1985): “On Nonparametric Estimation of

the Value of a Linear Functional in Gaussian White Noise,” Theory of Probability & Its

Applications, 29, 18–32.

Imbens, G. W. and K. Kalyanaraman (2012): “Optimal bandwidth choice for the

regression discontinuity estimator,” The Review of Economic Studies, 79, 933–959.

Ingster, Y. I. and I. A. Suslina (2003): Nonparametric goodness-of-fit testing under

Gaussian models, New York: Springer.

Lee, D. S. (2008): “Randomized experiments from non-random selection in U.S. House

elections,” Journal of Econometrics, 142, 675–697.

34



Lee, D. S. and D. Card (2008): “Regression discontinuity inference with specification

error,” Journal of Econometrics, 142, 655–674.

Lehmann, E. L. and J. P. Romano (2005): Testing statistical hypotheses, New York:

Springer, third ed.

Low, M. G. (1997): “On nonparametric confidence intervals,” The Annals of Statistics, 25,

2547–2554.

McCloskey, A. (2017): “Bonferroni-Based Size-Correction for Nonstandard Testing Prob-

lems,” Journal of Econometrics, 200, 17–35.

Pratt, J. W. (1961): “Length of confidence intervals,” Journal of the American Statistical

Association, 56, 549–567.

Sacks, J. and D. Ylvisaker (1978): “Linear Estimation for Approximately Linear Mod-

els,” The Annals of Statistics, 6, 1122–1137.

Stone, C. J. (1980): “Optimal Rates of Convergence for Nonparametric Estimators,” The

Annals of Statistics, 8, 1348–1360.

35



α

b 0.01 0.05 0.1

0.0 2.576 1.960 1.645
0.1 2.589 1.970 1.653
0.2 2.626 1.999 1.677
0.3 2.683 2.045 1.717
0.4 2.757 2.107 1.772
0.5 2.842 2.181 1.839
0.6 2.934 2.265 1.916
0.7 3.030 2.356 2.001
0.8 3.128 2.450 2.093
0.9 3.227 2.548 2.187
1.0 3.327 2.646 2.284
1.5 3.826 3.145 2.782
2.0 4.326 3.645 3.282

Table 1: Critical values cvα(b) for selected confidence levels and values of maximum absolute
bias b. For b ≥ 2, cvα(b) ≈ b+ z1−α up to 3 decimal places for these values of α.
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Figure 1: The least favorable null and alternative functions f ∗ and g∗ from Equation (3) in
Section 2.1.
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Figure 2: Asymptotic efficiency bounds for one-sided and fixed-length CIs as function of the
optimal rate of convergence r under centrosymmetry. Minimax one-sided refers to ratio of
β-quantile of excess length of CIs that direct power at smooth functions relative to minimax
one-sided CIs given in (28). Shortest fixed-length refers the ratio of expected length of CIs
that direct power at a given smooth function relative to shortest fixed-length affine CIs given
in Theorem E.1.
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Figure 3: Lee (2008) RD example. Top panel displays minimax MSE estimator (estimator),
and lower and upper limits of minimax one-sided confidence intervals for 0.8 quantile (one-
sided), and fixed-length CIs (two-sided) as function of smoothness C. Bottom panel displays
one-and two-sided CIs around the minimax MSE estimator. h+, h− correspond to the optimal
smoothness parameters for the minimax MSE estimator.
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Figure 4: Lee (2008) RD example: local linear regression with triangular kernel. Top panel
displays estimator based on minimax MSE bandwidths (estimator), lower and upper limits
of one-sided CIs with bandwidths that are minimax for 0.8 quantile of excess length (one-
sided), and shortest fixed-length CIs (two-sided) as function of smoothness C. Bottom panel
displays one-and two-sided CIs around and estimator based on minimax MSE bandwidths.
h+, h− correspond to the minimax MSE bandwidths.
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