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This supplement provides appendices not included in the main text. Supplemental Ap-

pendix C compares our approach with other methods, and includes a Monte Carlo study.

Supplemental Appendix D contains details for the results in Section 3 not included in the

main text. Supplemental Appendix E contains details for the RD application. Supplemental

Appendix F considers feasible versions of the procedures in Section 3 in the case with un-

known error distribution and derives their asymptotic efficiency. Supplemental Appendix G

gives some auxiliary results used for relative asymptotic efficiency comparisons. Supplemen-

tal Appendix H gives the proof of Theorem E.1.

Appendix C Comparison with other methods

This section compares the CIs developed in this paper to other approaches to inference in

the RD application. We consider two popular approaches. The first approach is to form a

nominal 100 · (1 − α)% CI by adding and subtracting the 1 − α/2 quantile of the N (0, 1)

distribution times the standard error, thereby ignoring any bias. We refer to these CIs as

“conventional.” The second approach is the robust bias correction (RBC) method studied by

Calonico et al. (2014), which subtracts an estimate of the bias, and then takes into account

the estimation error in this bias correction in forming the interval.

The coverage of these CIs will depend on the smoothness class F as well as the choice

of bandwidth. Since CIs reported in applied work are typically based on local linear esti-
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mators, with relative efficiency results for minimax MSE in the class FT,2(C,R+) for esti-

mation of f(0) due to Cheng et al. (1997) often cited as justification, we focus on the class

FRDT,2(C) when computing coverage (in Supplemental Appendix C.2, we consider classes

that also impose bounds on smoothness away from the discontinuity point rather than just

placing bounds on the error of the Taylor approximation around the discontinuity point). If

the bandwidth choice is non-random, then finite sample coverage can be computed exactly

when errors are normal with known variance.1 We take this approach in Supplemental Ap-

pendix C.1. If a data-driven bandwidth is used, computing finite sample coverage exactly

becomes computationally prohibitive. We examine the coverage and relative efficiency of

CIs with data driven bandwidths in a Monte Carlo study in Supplemental Appendix C.2.

C.1 Exact coverage with nonrandom bandwidth

For a given CI, we examine coverage in the classes FRDT,2(C) by asking “what is the largest

value of C for which this CI has good coverage?” Since the conventional CI ignores bias,

there will always be some undercoverage, so we formalize this by finding the largest value of C

such that a nominal 95% CI has true coverage 90%. This calculation is easily done using the

formulas in Section 3.2: the conventional approach uses the critical value z0.975 = cv0.05(0) to

construct a nominal 95% CI, while a valid 90% CI uses cv0.1(biasFRDT,2(C)(L̂)/se(L̂)) (where

L̂ denotes the estimator and se(L̂) denotes its standard error), so we equate these two critical

values and solve for C.

The resulting value of C for which undercoverage is controlled will depend on the band-

width. To provide a simple numerical comparison to commonly used procedures, we consider

the (data-dependent) Imbens and Kalyanaraman (2012, IK) bandwidth ĥIK in the context

of the Lee application considered in Section 4, but treat it as if it were fixed a priori. The IK

bandwidth selector leads to ĥIK = 29.4 for local linear regression with the triangular kernel.

The conventional two-sided CI based on this bandwidth is given by 7.99 ± 1.71. Treating

the bandwidth as nonrandom, it achieves coverage of at least 90% over FRDT,2(C) as long as

C ≤ Cconv = 0.0018. This is a rather low value, lower than the lower bound estimate on C

from Supplemental Appendix E.3. It implies that even when x = 20%, the prediction error

based on a linear Taylor approximation to f can be reduced by less than 1% by using the

true conditional expectation.

1The resulting coverage calculations hold in an asymptotic sense with unknown error distribution in the
same way that, for example, coverage calculations in Stock and Yogo (2005) are valid in an asymptotic sense
in the instrumental variables setting.
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As an alternative to the conventional approach, one can use the robust-bias correction

method studied in Calonico et al. (2014). Calonico et al. (2014) show that if the pilot

bandwidth and the kernel used by the bias estimator equal those used by the local linear

estimator of Lf , this method is equivalent to running a quadratic instead of a linear local

regression, and then using the usual CI. In the Lee application with IK bandwidth, this

delivers the CI 6.68±2.52, increasing the half-length substantially relative to the conventional

CI. The maximum smoothness parameter under which these CIs have coverage at least 90%

is given by CRBC = 0.0023 > Cconv. By way of comparison, the optimal 95% fixed-length

CIs at CRBC leads to a much narrower CI given by 7.70± 2.11.

While the CCT CI maintains good coverage for a larger smoothness constant than the

conventional CI, both constants are rather small (equivalently, coverage is bad for moderate

values of C). This is an artifact of the large realized value of ĥIK : the CCT CI essentially

“undersmooths” relative to a given bandwidth by making the bias-standard deviation ratio

smaller. Since ĥIK is large to begin with, the amount of undersmoothing is not enough to

make the procedure robust to moderate values of C. In fact, the IK bandwidth is generally

quite sensitive to tuning parameter choices: we show in a Monte Carlo study in Supplemental

Appendix C.2 that the CCT implementation of the IK bandwidth yields smaller bandwidths

and achieves good coverage over a much larger set of functions, at the cost of larger length.

In finite samples, the tuning parameters drive the maximum bias of the estimator, and

hence its coverage properties, even though under standard pointwise asymptotics, the tuning

parameters shouldn’t affect coverage.

In contrast, if one performs the CCT procedure starting from a minimax MSE optimal

bandwidth based on a known smoothness constant C, the asymptotic coverage will be quite

good (above 94%), although the CCT CI ends up being about 30% longer than the optimal

CI (see Armstrong and Kolesár, 2016b). Thus, while using a data driven bandwidth selector

such as IK for inference can lead to severe undercoverage for smoothness classes used in RD

(even if one undersmooths or bias-corrects as in CCT), procedures such as RBC can have

good coverage if based on an appropriate bandwidth choice that is fixed ex ante.

C.2 Monte Carlo evidence with random bandwidth

Corollaries 3.2 and 3.3 imply that confidence intervals based on data-driven bandwidths

must either undercover or else cannot be shorter than fixed-length CIs that assume worst-

case smoothness. We now illustrate this implication with a Monte Carlo study.

We consider the RD setup from Section 2. To help separate the difficulty in constructing
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CIs for Lf due to unknown smoothness of f from that due to irregular design points or

heteroskedasticity, for all designs below, the distribution of xi is uniform on [−1, 1], and ui

is independent of xi, distributed N (0, σ2). The sample size is n = 500 in each case.

For σ2, we consider two values, σ2 = 0.1295, and σ2 = 4× 0.1295 = 0.518. We consider

conditional mean functions f that lie in the smoothness class

FRDH,2(C) = {f+ − f− : f+ ∈ FH,2(C;R+), f− ∈ FH,2(C;R−)} ,

where FH,p(C;X ) is the second-order Hölder class, the closure of twice-differentiable func-

tions with second derivative bounded by 2C, uniformly over X :

FH,p(C;X ) = {f : |f ′(x1)− f ′(x2)| ≤ 2C|x1 − x2| all x1, x2 ∈ X} .

Unlike the class FRDT,2(C), the class FRDH,2(C) also imposes smoothness away from the

cutoff, so that FRDH,2(C) ⊆ FRDT,2(C). Imposing smoothness away from the cutoff is

natural in many empirical applications. We consider C = 1 and C = 3, and for each C, we

consider 4 different shapes for f . In each case, f is odd, f+ = −f−. In Designs 1 through 3,

f+ is given by a quadratic spline with two knots, at b1 and b2,

f+(x) = 1(x ≥ 0) · C
(
x2 − 2(x− b1)2

+ + 2(x− b2)2
+

)
.

In Design 1 the knots are given by (b1, b2) = (0.45, 0.75), in Design 2 by (0.25, 0.65), and in

Design 3 by (0.4, 0.9). The function f+(x) is plotted in Figure S1 for C = 1. For C = 3, the

function f is identical up to scale. It is clear from the figure that although locally to the

cutoff, the functions are identical, they differ away from the cutoff (for |x| ≥ 0.25), which, as

we demonstrate below, affects the performance of data-driven methods. Finally, in Design

4, we consider f(x) = 0 to allow us to compare the performance of CIs when f is as smooth

as possible.

We consider four methods for constructing CIs based on data-driven bandwidths, and two

fixed-length CIs. All CIs are based on local polynomial regressions with a triangular kernel.

The variance estimators used to construct the CIs are based on the nearest-neighbor method

described in Remark 2.1. The results based on Eicker-Huber-White variance estimators are

very similar and not reported here.

The first two methods correspond to conventional CIs based on local linear regression

described in Supplemental Appendix C.1. The first CI uses Imbens and Kalyanaraman
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(2012, IK) bandwidth selector ĥIK , and the second CI uses a bandwidth selector proposed

in Calonico et al. (2014, CCT), ĥCCT . The third CI uses the robust bias correction (RBC)

studied in CCT, with both the pilot and the main bandwidth given by ĥIK (the main

estimate is based on local linear regression, and the bias correction is based on local quadratic

regression), so that the bandwidth ratio is given by ρ = 1. The fourth CI is also based on

RBC, but with the main and pilot bandwidth potentially different and given by the Calonico

et al. (2014) bandwidth selectors. Finally, we consider two fixed-length CIs with uniform

coverage under the class FRDH,2(C), with C = 1, 3, and bandwidth chosen to minimize their

half-length. Their construction is similar to the CIs considered in Section 2.2, except they

use the fact that under FRDH,2(C), the maximum bias for local linear estimators based on

a fixed bandwidth is attained at g∗(x) = Cx21(x ≥ 0) − Cx21(x < 0) (see Armstrong and

Kolesár, 2016b, for derivation).

The results are reported in Table S1 for C = 1 and S2 for C = 3. One can see from the

tables that CIs based on ĥIK may undercover severely even at the higher level of smoothness,

C = 1. In particular, the coverage of conventional CIs based on ĥIK is as low as 10.1% for

95% nominal CIs in Design 1, and the coverage of RBC CIs is as low as 64.4%, again in

Design 1. The undercoverage is even more severe when C = 3.

In contrast, CIs based on the CCT bandwidth selector perform much better in terms

of coverage under C = 1, with coverage over 90% for all designs. These CIs only start

undercovering once C = 3, with 80.7% coverage in Design 3 for conventional CIs, and 86.2%

coverage for RBC CIs. The cost for the good coverage properties, as can be seen from the

tables, is that the CIs are longer, sometimes much longer than optimal fixed-length CIs.

As discussed in Supplemental Appendix C.1, the dramatically different coverage proper-

ties of the CIs based on the IK and CCT bandwidths illustrates the point that the coverage

of CIs based on data-driven bandwidths is governed by the tuning parameters used in defin-

ing the bandwidth selector. These results can also be interpreted as showing the limits of

procedures that try to “estimate C” from the data. In particular, we show in Armstrong

and Kolesár (2016b) that for inference at a point based on local linear regression under the

second-order Hölder class, in large samples the MSE-optimal bandwidth (see Remark 2.2)

differs from the usual (infeasible) bandwidth minimizing the large-sample MSE under point-

wise asymptotics only in that it replaces f ′′(0) with C. Thus, plug-in rules that estimate

the infeasible pointwise bandwidth by plugging in an estimate of f ′′(0) can be interpreted as

data-driven bandwidths that try to estimate C from the data. Since the IK and CCT band-

widths are plug-in rules, to the extent that one can interpret them as trying to “estimate C”
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from the data, these simulation results also illustrate the point that attempts to estimate

C from the data cannot improve upon FLCIs (one can show that if these procedures were

successful at estimating C, conventional CIs with 95% nominal level based on them should

have coverage no less than 92.1% in large samples).

To assess sensitivity of these results to the normality and homoskedasticity of the errors,

we also considered Designs 1–4 with heteroskedastic and log-normal errors. The results (not

reported here) are similar in the sense that if a particular method achieved close to 95%

coverage under normal homoskedastic errors, the coverage remained good under alternative

error distributions. If a particular method undercovered in a given design, the amount of

undercoverage could be more or less severe, depending on the form of heteroskedasticity. In

particular, fixed-length CIs with C = 3 achieve excellent coverage for all designs and all error

distributions considered.

Appendix D Additional details for Section 3

This section contains details for the results in Section 3 not included in the main text.

D.1 Special cases

In addition to regression discontinuity, the regression model (1) covers several other impor-

tant models, including inference at a point (Lf = f(x0) with x0 given) and average treatment

effects under unconfoundedness (with Lf = 1
n

∑n
i=1(f(wi, 1)− f(wi, 0)) where xi = (w′i, di)

′,

di is a treatment indicator and wi are controls).

The setup (18) can also be used to study the linear regression model with restricted

parameter space. For simplicity, consider the case with homoskedastic errors,

Y = Xθ + σε, ε ∼ N (0, In), (S1)

where X is a fixed n × k design matrix and σ is known. This fits into our framework with

f = θ, X playing the role of K, taking θ ∈ Rk to Xθ ∈ Rn, and Y = Rn with the Euclidean

inner product 〈x, y〉 = x′y. We are interested in a linear functional Lθ = `′θ where ` ∈ Rk.

We consider this model in previous version of this paper (Armstrong and Kolesár, 2016a).

Furthermore, (18) covers the multivariate normal location model θ̂ ∼ N (θ,Σ), which obtains

as a limiting experiment of regular parametric models. Our finite-sample results could thus be

extended to local asymptotic results in regular parametric models with restricted parameter
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spaces.

In addition to the regression models (1) and (S1), the setup (18) includes other nonpara-

metric and semiparametric regression models such as the partly linear model (where f takes

the form g(w1)+γ′w2, and we are interested in a linear functional of g or γ). It also includes

the Gaussian white noise model, which can be obtained as a limiting model for nonparamet-

ric density estimation (see Nussbaum, 1996) as well as nonparametric regression with fixed

or random regressors (see Brown and Low, 1996; Reiß, 2008). These white noise equivalence

results imply that our finite-sample results translate to asymptotic results in problems such

as inference at a point in density estimation or regression with random regressors. We refer

the reader to Donoho (1994, Section 9) for details of these and other models that fit into the

general setup (18).

D.2 Derivative of the modulus

The class of optimal estimators L̂δ,F ,G involves the superdifferential of the modulus. In the

case where the modulus is differentiable, the superdifferential is a singleton, so that L̂δ,F ,G is

defined uniquely. In this section, we introduce a condition that guarantees differentiability

and leads to a formula for the derivative. We also briefly discuss the case where the modulus

is not differentiable.

Definition 1 (Translation Invariance). The function class F is translation invariant if there

exists a function ι ∈ F such that Lι = 1 and f + cι ∈ F for all c ∈ R and f ∈ F .

Translation invariance will hold in most cases where the parameter of interest Lf is

unrestricted. For example, if Lf = f(0), it will hold with ι(x) = 1 if F places monotonicity

restrictions and/or restrictions on the derivatives of f . Under translation invariance, the

modulus is differentiable, and we obtain an explicit expression for its derivative:

Lemma D.1. Let f ∗ and g∗ solve the modulus problem with δ0 = ‖K(g∗ − f ∗)‖ > 0, and

suppose that f ∗+cι ∈ F for all c in a neighborhood of zero, where Lι = 1. Then the modulus

is differentiable at δ0 with ω′(δ0;F ,G) = δ0/〈Kι,K(g∗δ0 − f
∗
δ0

)〉.

Proof. Let d ∈ ∂ω(δ0;F ,G) and let fc = f ∗ − cι. Let η be small enough so that fc ∈ F for

|c| ≤ η. Then, for |c| ≤ η,

L(g∗ − f ∗) + d [‖K(g∗ − fc)‖ − δ0] ≥ ω(‖K(g∗ − fc)‖;F ,G) ≥ L(g∗ − fc) = L(g∗ − f ∗) + c
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where the first inequality follows from the definition of the superdifferential and the second

inequality follows from the definition of the modulus. Since the left-hand side of the above

display is greater than or equal to the right-hand side for |c| ≤ η, and the two sides are equal

at c = 0, the derivatives of both sides with respect to c must be equal. Since

d‖K(g∗ − fc)‖
dc

∣∣∣∣
c=0

=
d
dc
‖K(g∗ − fc)‖2

∣∣
c=0

2δ0

=
〈K(g∗ − f ∗), Kι〉

δ0

,

result follows.

The explicit expression for ω′(δ;F ,G) is useful in simplifying the expressions (23) and (25)

for the optimal estimators.

Translation invariance leads to a direct relation between optimal CIs and tests. In general,

it can be seen from Lemma A.2 that the test that rejects L0 when L0 /∈ [ĉα,δ,F ,G,∞) is

minimax for H0 : Lf ≤ L0 and f ∈ F against H1 : Lf ≥ L0 + ω(δ;F ,G) and f ∈ G, where

L0 = Lf ∗δ . If both F and G are translation invariant, f ∗δ + cι and g∗δ + cι achieve the ordered

modulus for any c ∈ R, so that, varying c, this test can be seen to be minimax for any L0.

Thus, under translation invariance, the CI in Theorem 3.1 inverts minimax one sided tests

with distance to the null given by ω(δ) (in general, the test based on the CI in Theorem 3.1

is minimax only when L0 = Lf ∗δ ).

If the modulus is not differentiable at some δ, the CIs defined in Sections 3.3 and 3.4

are valid with ω′(δ,F ,G) given by any element of the superdifferential, so long as the same

element of the superdifferential is used throughout the formula (in particular, the same

element used in the estimator (23) must be used in the worst-case bias formula (24)). For

the one-sided CI, Theorem 3.1 applies regardless of which element of the superdifferential is

used. In the two-sided case, when computing the optimal fixed-length affine CI described

in Section 3.4, the only additional detail in the case where the modulus is not everywhere

differentiable is that one optimizes the half-length over both δ and over elements in the

superdifferential.

Appendix E Additional details for RD

This section gives additional details for the RD application. Supplemental Appendix E.1

derives the worst-case bias formula given in (11). Supplemental Appendix E.2 derives the

optimal estimator and the solution to the modulus problem. Supplemental Appendix E.3

discusses lower bounds for the smoothness constant C. Supplemental Appendix E.4 shows
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the asymptotic validity of the feasible version of the estimator in which the variance is

estimated.

E.1 Worst-case bias for linear estimators

This section derives the worst-case bias formula (11) for linear estimators L̂h+,h− defined

in (10) in Section 2.2. We require the weights to satisfy w+(−x, h+) = w−(x, h−) = 0 for

x ≥ 0 and
n∑
i=1

w+(xi, h+) =
n∑
i=1

w−(xi, h−) = 1,

n∑
i=1

xjiw−(xi, h−) =
n∑
i=1

xjiw+(xi, h+) = 0 for j = 1, . . . , p− 1.

(S2)

Note that (S2) holds iff. L̂h+,h− is unbiased at all f = f+ + f− where f+ and f− are both

polynomials of order p − 1 or less, which is necessary to ensure that the worst-case bias is

finite. This condition holds if L̂h+,h− is based on a local polynomial estimator of order at

least p− 1.

We can write any function f ∈ FRDT,p(C) as f = f+ + f−, where

f+(x) = [

p−1∑
j=0

f
(j)
+ (0)xj/j! + r+(x)]1(x ≥ 0), f−(x) = [

p−1∑
j=0

f
(j)
− (0)xj/j! + r−(x)]1(x < 0),

and the remainder terms r+ and r− satisfy |r+(x)| ≤ C|x|p and |r−(x)| ≤ C|x|p. Under (S2),

we can therefore write

biasf (L̂h+,h−) =
n∑
i=1

w+(xi, h+)r+(x)−
n∑
i=1

w−(xi, h+)r−(x),

which is maximized subject to the conditions |r+(x)| ≤ C|x|p and |r−(x)| ≤ C|x|p by taking

r+(xi) = C|xi|p · sign(w+(xi, h+)) and r−(xi) = −C|xi|p · sign(w−(xi, h−)). This yields the

worst-case bias formula Equation (11).

E.2 Solution to the modulus problem and optimal estimators

This section derives the form of the optimal estimators and CIs. To that end, we first need

to find functions g∗δ and f ∗δ that solve the modulus problem. Since the class FRDT,p(C) is

centrosymmetric, f ∗δ = −g∗δ , and the (single-class) modulus of continuity ω(δ;FRDT,p(C)) is
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given by the value of the problem

sup
f++f−∈FRDT,p(C)

2(f+(0)− f−(0)) st
n∑
i=1

f−(xi)
2

σ2(xi)
+

n∑
i=1

f+(xi)
2

σ2(xi)
≤ δ2/4. (S3)

Let g∗δ,C denote the (unique up to the values at the xis) solution to this problem. This

solution can be obtained using a simple generalization of Theorem 1 of Sacks and Ylvisaker

(1978). To describe it, define gb,C(x) = g+,b,C(x) + g−,b,C(x) by

g+,b,C(x) =
(

(b− b− +
∑p−1

j=1 d+,jx
j − C|x|p)+ − (b− b− +

∑p−1
j=1 d+,jx

j + C|x|p)−
)

1(x ≥ 0),

g−,b,C(x) = −
(

(b− +
∑p−1

j=1 d−x
j − C|x|p)+ − (b− +

∑p−1
j=1 d−,jx

j + C|x|p)−
)

1(x < 0),

where we use the notation (t)+ = max{t, 0} and (t)− = −min{t, 0}. The solution is given

by g∗δ,C = gb(δ),C where the coefficients d+ = (d+,1, . . . , d−,p−1), d− = (d−,1, . . . , d−,p−1), and

b(δ) and b− solve a system of equations given below. To see that the solution must take the

form gb,C(x) for some b, b−, d+, d−, note that any function f+ ∈ FT,p(C) can be written as

f+(x) = b+ +

p−1∑
j=1

d+,jx
j + r+(x), |r+(x)| ≤ C|x|p. (S4)

Given b+, d+, in order to minimize |f+(xi)| simultaneously for all i, it must be that

r+(x) =


−C|x|p if b+ +

∑p=1
j=1 d+,jx

j ≥ C|x|p,

−b+ −
∑p=1

j=1 d+,jx
j if |b+ +

∑p=1
j=1 d+,jx

j| < C|x|p,

C|x|p if b+ +
∑p=1

j=1 d+,jx
j ≤ −C|x|p.

This form of r(x) is necessary for f+ to solve (S3): otherwise, one could strictly decrease∑n
i=1[f−(xi)

2/σ2(xi) + f+(xi)
2/σ2(xi)], thereby making this quantity strictly less than δ2/4.

But this would allow for a strictly larger value of 2(f+(0) + f−(0)) by increasing b+ and

leaving d+ and r+ the same. Plugging r+(x) from the above display into (S4) shows that

f+(x) = g+,b,C(x) for some b+, d+. Similar arguments apply for f−.

Setting up the Lagrangian for the problem with f constrained to the class of functions

that take the form gb,C for some b, b−, d+, d−, and taking first order conditions with respect
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to b−, d+ and d− gives

0 =
n∑
i=1

g−,b,C(xi)

σ2(xi)

(
xi, . . . , x

p−1
i

)′
, (S5)

0 =
n∑
i=1

g+,b,C(xi)

σ2(xi)

(
xi, . . . , x

p−1
i

)′
, (S6)

0 =
n∑
i=1

g+,b,C(xi)

σ2(xi)
+

n∑
i=1

g−,b,C(xi)

σ2(xi)
. (S7)

The constraint in (S3) must be binding at the optimum, which gives the additional equation

δ2/4 =
n∑
i=1

gb,C(xi)
2

σ2(xi)
= b

n∑
i=1

g+,b,C(xi)

σ2(xi)
− C

n∑
i=1

|gb,C(xi)||xi|p

σ2(xi)
, (S8)

where the second equality follows from (S5)–(S6). Note also that, since g∗δ,C = gb(δ),C solves

the modulus problem and gives the modulus as 2b(δ), it also gives the solution to the inverse

modulus problem

ω−1(2b;FRDT,p(C))2

4
= inf

f+−f−∈FRDT,p(C)

n∑
i=1

(
f 2

+(xi)

σ2(xi)
+
f 2
−(xi)

σ2(xi)

)
s.t. 2(f+(0)− f−(0)) ≥ 2b

(S9)

for b = b(δ). Since the objective for the inverse modulus is strictly convex, this shows that

the solution is unique up to the values at the xis.

Using the fact that the class FRDT,p(C) is translation invariant as defined in Supplemental

Appendix D.2 (we can take ι(x) = c0 + 1(x ≥ 0) for any c0), so that the derivative of the

modulus is given by Lemma D.1, along with (S7) implies that the class of estimators L̂δ can

be written as

L̂δ = L̂δ,FRDT,p(C) =

∑n
i=1 g

∗
+,δ,C(xi)yi/σ

2(xi)∑n
i=1 g

∗
+,δ,C(xi)/σ2(xi)

−
∑n

i=1 g
∗
−,δ,C(xi)yi/σ

2(xi)∑n
i=1 g

∗
−,δ,C(xi)/σ2(xi)

. (S10)

Note that Conditions (S5), (S6), and (S7) are simply the conditions (S2) applied to this class

of estimators.

To write the estimator L̂δ in the form (10), let w−(xi, h−) = g−,b,C(xi)/
∑n

i=1 g−,b,C(xi)

and w+(xi, h+) = g+,b,C(xi)/
∑n

i=1 g+,b,C(xi), where d+ and d− solve (S5) and (S6) with

b− b− = Chp+ and b− = Chp−. Then L̂δ = L̂h+(δ),h−(δ) where h+(δ) and h−(δ) are determined

by the additional conditions (S7) and (S8).
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To find the optimal estimators as described in Section 2.2, one can use the estimator

L̂h+,h− and optimize h+ and h− for the given performance criterion, using the variance

and worst-case bias formulas given in that section. Since the optimal estimator L̂δ (with δ

determined by the performance criterion) takes this form for some h+ and h−, the resulting

estimator and CI will be the same as the one obtained by computing L̂δ with δ determined

by solving the additional equation that corresponds to the performance criterion of interest.

E.3 Lower bound on C

While it is not possible to consistently estimate the smoothness constant C from the data,

it is possible to lower bound its value. Here we develop a simple estimator and lower CI for

this bound, focusing on the case f ∈ FRDT,2(C).

As noted in Supplemental Appendix E.2, we can write f+(x) = f+(0) + f ′+(0)x+ r+(x),

where |r+(x)| ≤ Cx2. It therefore follows that for any three points 0 ≤ x1 ≤ x2 ≤ x3,

λf+(x1) + (1− λ)f+(x3)− f+(x2) = λr+(x1) + (1− λ)r+(x3)− r+(x2),

where λ = (x3−x2)/(x3−x1). The left-hand side measures the curvature of f by comparing

f(x2) to an approximation based on linearly interpolating between f(x1) and f(x3). Since

|r+(x)| ≤ Cx2, the right-hand side is bounded by C(λx2
1 + (1− λ)x3

3 + x2
2). Taking averages

of the preceding display over intervals Ik = [ak−1, ak) where a0 ≤ a1 ≤ a2 ≤ a3 and applying

this bound yields the lower bound

C ≥ |µ+|, µ+ =
λEn,1(f+(x)) + (1− λ)En,3(f+(x))− En,2(f+(x))

λEn,1(x2) + (1− λ)En,3(x2) + En,2(x2)
,

where we use the notation En,k(g(x)) =
∑

i1(xi ∈ Ik)g(xi)/nk, nk =
∑

i1(xi ∈ Ik)g(xi) to

denote sample average over Ik. Replacing En,k(f+(x)) with En,k(y) yields the estimator of

µ+

Z =
λEn,1(y) + (1− λ)En,3(y)− En,2(y)

λEn,1(x2) + (1− λ)En,3(x2) + En,2(x2)
∼ N

(
µ+, τ

2
)
,

where τ 2 = λ2En,1(σ2(x))/n1+(1−λ)2En,3(σ2(x))/n3−En,2(σ2(x))/n2

(λEn,1(x2)+(1−λ)En,3(x2)+En,2(x2))2
. Inverting tests of the hypotheses

H0 : |µ+| ≤ µ0 against H1 : |µ+| > µ0 then yields a one-sided CI for |µ+| of the form [µ̂+,α,∞),

where µ̂+,α solves |Z/τ | = cvα(µ/τ), with the convention that µ̂+,α = 0 if |Z/τ | ≤ cvα(0).

This CI can be used as a lower CI for C in model specification checks.

Since unbiased estimates of the lower bound |µ+| do not exist, following Chernozhukov
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et al. (2013), we take µ̂+,0.5 as an estimator of the lower bound, which has the property that

it’s half-median unbiased in the sense that P (|µ+| ≤ µ̂+,0.5) ≤ 0.5. An analogous bound

obtains by considering intervals below the cutoff. We leave the question of optimal choice of

the intervals Ik to future research. In the Lee (2008) application, we set a0 = 0, and set the

remaining interval endpoints ak such that each interval Ik contains 200 observations. This

yields estimates µ̂+,0.5 = 0.008 and µ̂−,0.5 = 0.017.

E.4 Asymptotic validity

We now give a theorem showing asymptotic validity of CIs from Section 2.2 under an un-

known error distribution. We consider uniform validity over regression functions in F and

error distributions in a sequence Qn, and we index probability statements with f ∈ F and

Q ∈ Qn. We make the following assumptions on the xis and the class of error distributions

Qn.

Assumption E.1. For some pX,+(0) > 0 and pX,−(0) > 0, the sequence {xi}ni=1 satisfies
1
nhn

∑n
i=1m(xi/hn)1(xi ≥ 0) → pX,+(0)

∫∞
0
m(u) du and 1

nhn

∑n
i=1m(xi/hn)1(xi < 0) →

pX,−(0)
∫ 0

−∞m(u) du for any bounded function m with bounded support and any hn with

0 < lim infn hnn
1/(2p+1) ≤ lim supn hnn

1/(2p+1) <∞.

Assumption E.2. For some σ(x) with limx↓0 σ(x) = σ+(0) > 0 and limx↑0 σ(x) = σ−(0) >

0,

(i) the uis are independent under any Q ∈ Qn with EQui = 0, varQ(ui) = σ2(xi)

(ii) for some η > 0, EQ|ui|2+η is bounded uniformly over n and Q ∈ Qn.

While the variance function σ2(x) is unknown, the definition of Qn is such that the

variance function is the same for all Q ∈ Qn. This is done for simplicity. One could consider

uniformity over classes Qn that place only smoothness conditions on σ2(x) at the cost of

introducing additional notation and making the optimality statements more cumbersome.

The estimators and CIs that we consider in the sequel are based on an estimate σ̂(x) of

the conditional variance in Step 1 of the procedure in Section 2.2. We make the following

assumption on this estimate.

Assumption E.3. The estimate σ̂(x) is given by σ̂(x) = σ̂+(0)1(x ≥ 0) + σ̂−(0)1(x < 0)

where σ̂+(0) and σ̂−(0) are consistent for σ+(0) and σ−(0) uniformly over f ∈ F and Q ∈ Qn.
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For asymptotic coverage, we consider uniformity over both F and Qn. Thus, a confidence

set C is said to have asymptotic coverage at least 1− α if

lim inf
n→∞

inf
f∈F ,Q∈Qn

Pf,Q (Lf ∈ C) ≥ 1− α.

Theorem E.1. Under Assumptions E.1, E.2 and E.3, CIs given in Section 2.2 based on

L̂δ have asymptotic coverage at least 1 − α. CIs based on local polynomial estimators have

asymptotic coverage at least 1 − α so long as the kernel is bounded and uniformly contin-

uous with bounded support and the bandwidths h+ and h− satisfy h+n
1/(2p+1) → h+,∞ and

h−n
1/(2p+1) → h−,∞ for some h+,∞ > 0 and h−,∞ > 0.

Let χ̂ denote the half-length of the optimal fixed-length CI based on σ̂(x). For χ∞ given

in Supplemental Appendix H, the scaled half-length np/(2p+1)χ̂ converges in probability to χ∞

uniformly over F and Qn. If, in addition, each Qn contains a distribution where the uis are

normal, then for any sequence of confidence sets C with asymptotic coverage at least 1− α,

we have the following bound on the asymptotic efficiency improvement at any f ∈ FRDT,p(0)

lim inf
n→∞

sup
Q∈Qn

np/(2p+1)Ef,Qλ(C)
2χ∞

≥ (1− α)2rE[(z1−α − Z)r | Z ≤ z1−α]

2r infδ>0 cvα ((δ/2)(1/r − 1)) δr−1
,

where Z ∼ N (0, 1) and r = 2p/(2p+ 1).

Letting ĉα,δ denote the lower endpoint of the one-sided CI corresponding to L̂δ, the CI

[ĉα,δ,∞) has asymptotic coverage at least 1 − α. If δ is chosen to minimax the β quantile

excess length, (i.e. δ = zβ + z1−α), then, if each Qn contains a distribution where the uis are

normal, any other one-sided CI [ĉ,∞) with asymptotic coverage at least 1 − α must satisfy

the efficiency bound

lim inf
n→∞

supf∈F ,Q∈Qn qf,Q,β (Lf − ĉ)
supf∈F ,Q∈Qn qf,Q,β (Lf − ĉα,δ)

≥ 1.

In addition, we have the following bound on the asymptotic efficiency improvement at any

f ∈ FRDT,p(0):

lim inf
n→∞

supQ∈Qn qf,Q,β (Lf − ĉ)
supQ∈Qn qf,Q,β (Lf − ĉα,δ)

≥ 2r

1 + r
.

The proof of Theorem E.1 is given in Supplemental Appendix H. The asymptotic effi-

ciency bounds correspond to those in Section 3 under (29) with r = 2p/(2p+ 1).
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Appendix F Unknown Error Distribution

The Gaussian regression model (1) makes the assumption of normal i.i.d. errors with a known

variance conditional on the xi’s, which is often unrealistic. This section considers a model

that relaxes these assumptions on the error distribution:

yi = f(xi) + ui, {ui}ni=1 ∼ Q, f ∈ F , Q ∈ Qn (S11)

where Qn denotes the set of possible joint distributions of {ui}ni=1 and, as before, {xi}ni=1 is

deterministic and F is a convex set. We derive feasible versions of the optimal CIs in Section 3

and show their asymptotic validity (uniformly over F ,Qn) and asymptotic efficiency. As we

discuss below, our results hold even in cases where the limiting form of the optimal estimator

is unknown or may not exist, and where currently available methods for showing asymptotic

efficiency, such as equivalence with Gaussian white noise, break down.

Since the distribution of the data {yi}ni=1 now depends on both f and Q, we now index

probability statements by both of these quantities: Pf,Q denotes the distribution under (f,Q)

and similarly for Ef,Q. The coverage requirements and definitions of minimax performance

criteria in Section 3 are the same, but with infima and suprema over functions f now taken

over both functions f and error distributions Q ∈ Qn. We will also consider asymptotic

results. We use the notation Zn
d→
F ,Qn

L to mean that Zn converges in distribution to L

uniformly over f ∈ F and Q ∈ Qn, and similarly for
p→

F ,Qn
.

If the variance function is unknown, the estimator L̂δ is infeasible. However, we can

form an estimate based on an estimate of the variance function, or based on some candidate

variance function. For a candidate variance function σ̃2(·), let Kσ̃(·),nf = (f(x1)/σ̃(x1), . . . ,

f(xn)/σ̃(xn))′, and let ωσ̃(·),n(δ) denote the modulus of continuity defined with this choice

of K. Let L̂δ,σ̃(·) = L̂δ,F ,G,σ̃(·) denote the estimator defined in (23) with this choice of K and

Y = (y1/σ̃(x1), . . . , yn/σ̃(xn))′, and let f ∗σ̃(·),δ and g∗σ̃(·),δ denote the least favorable functions

used in forming this estimate. We assume throughout this section that G ⊆ F . More

generally, we will consider affine estimators, which, in this setting, take the form

L̂ = an +
n∑
i=1

wi,nyi (S12)

where an and wi,n are a sequence and triangular array respectively. For now, we assume

that an and wi,n are nonrandom, (which, in the case of the estimator L̂δ,σ̃(·), requires that
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σ̃(·) and δ be nonrandom). We provide conditions that allow for random an and wi,n after

stating our result for nonrandom weights. For a class G, the maximum and minimum bias

are

biasG(L̂) = sup
f∈G

[
an +

n∑
i=1

wi,nf(xi)− Lf
]
, biasG(L̂) = inf

f∈G

[
an +

n∑
i=1

wi,nf(xi)− Lf
]
.

By the arguments used to derive the formula (24), we have

biasF(L̂δ,F ,G,σ̃(·)) = −biasG(L̂δ,F ,G,σ̃(·)) =
1

2
(ωn,σ̃(·)(δ;F ,G)− δω′n,σ̃(·)(δ;F ,G)).

This holds regardless of whether σ̃(·) is equal to the actual variance function of the ui’s.

In our results below, we allow for infeasible estimators in which an and wi,n depend on Q

(for example, when the unknown variance σQ(xi) = varQ(yi) is used to compute the optimal

weights), so that biasG(L̂) and biasG(L̂) may depend on Q. We leave this implicit in our

notation.

Let sn,Q denote the (constant over f) standard deviation of L̂ under Q and suppose that

the uniform central limit theorem∑n
i=1wi,nui
sn,Q

d→
F ,Qn

N (0, 1) (S13)

holds. To form a feasible CI, we will require an estimate ŝen of sn,Q satisfying

ŝen
sn,Q

p→
F ,Qn

1. (S14)

The following theorem shows that using ŝen to form analogues of the CIs treated in Section 3

gives asymptotically valid CIs.

Theorem F.1. Let L̂ be an estimator of the form (S12), and suppose that (S13) and (S14)

hold. Let ĉ = L̂− biasF(L̂)− ŝenz1−α, and let b = max{|biasF(L̂)|, |biasF(L̂)|}. Then

lim inf
n→∞

inf
f∈F ,Q∈Qn

Pf,Q (Lf ∈ [ĉ,∞)) ≥ 1− α (S15)

and

lim inf
n→∞

inf
f∈F ,Q∈Qn

Pf,Q

(
Lf ∈

{
L̂± ŝen cvα (b/ŝen)

})
≥ 1− α. (S16)
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The worst-case βth quantile excess length of the one-sided CI over G will satisfy

lim sup
n→∞

sup
Q∈Qn

supg∈G qg,Q,β(Lg − ĉ)
biasF(L̂)− biasG(L̂) + sn,Q(z1−α + zβ)

≤ 1 (S17)

and the length of the two-sided CI will satisfy

cvα (b/ŝen) ŝen
cvα (b/sn,Q) sn,Q

p→
F ,Qn

1.

Suppose, in addition, that L̂ = L̂δ,F ,G,σ̃(·) with σ̃(·) = σQ(·) where σ2
Q(xi) = varQ(ui) and,

for each n, there exists a Qn ∈ Qn such that {ui}ni=1 are independent and normal under Qn.

Then no one-sided CI satisfying (S15) can satisfy (S17) with the constant 1 replaced by a

strictly smaller constant on the right-hand side.

Proof. Let Zn =
∑n

i=1wi,nui/ŝen, and let Z denote a standard normal random variable. To

show asymptotic coverage of the one-sided CI, note that

Pf,Q (Lf ∈ [ĉ,∞)) = Pf,Q

(
ŝenz1−α ≥ L̂− Lf − biasF(L̂)

)
≥ Pf,Q (z1−α ≥ Zn)

using the fact that biasF(L̂) +
∑n

i=1wi,nui ≥ L̂−Lf for all f ∈ F by the definition of biasF .

The right-hand side converges to 1 − α uniformly over f ∈ F and Q ∈ Qn by (S13) and

(S14). For the two-sided CI, first note that∣∣∣∣ cvα (b/ŝen) ŝen
cvα (b/sn,Q) sn,Q

− 1

∣∣∣∣ =

∣∣∣∣cvα (b/ŝen)− cvα (b/sn,Q) + cvα (b/sn,Q) (1− sn,Q/ŝen)

cvα (b/sn,Q) (sn,Q/ŝen)

∣∣∣∣
which converges to zero uniformly over f ∈ F , Q ∈ Qn since cvα(t) is bounded from below

and uniformly continuous with respect to t. Thus, cvα(b/ŝen)ŝen

cvα(b/sn,Q)sn,Q
p→

F ,Qn
1 as claimed. To show

coverage of the two-sided CI, note that

Pf,Q

(
Lf ∈

{
L̂± cvα (b/ŝen) ŝen

})
= Pf,Q

(∣∣∣Z̃n + r
∣∣∣ ≤ cvα (b/sn,Q) · cn

)
where cn = cvα(b/ŝen)ŝen

cvα(b/sn,Q)sn,Q
, Z̃n =

∑n
i=1 wi,nui/sn,Q and r = (an +

∑n
i=1wi,nf(xi)− Lf) /sn,Q.

By (S13) and the fact that cn
p→

F ,Qn
1, this is equal to Pf,Q (|Z + r| ≤ cvα (b/sn,Q)) (where

Z ∼ N (0, 1)) plus a term that converges to zero uniformly over f,Q (this can be seen by

using the fact that convergence in distribution to a continuous distribution implies uniform

convergence of the cdfs; see Lemma 2.11 in van der Vaart 1998). Since |r| ≤ b/sn,Q, (S16)
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follows.

To show (S17), note that,

Lg − ĉ = Lg − an −
n∑
i=1

wi,ng(xi)− ŝenZn + biasF(L̂) + ŝenz1−α

≤ biasF(L̂)− biasG(L̂) + ŝen(z1−α − Zn)

for any g ∈ G. Thus,

Lg − ĉ
biasF(L̂)− biasG(L̂) + sn,Q(z1−α + zβ)

− 1 ≤ ŝen(z1−α − Zn)− sn,Q(z1−α + zβ)

biasF(L̂)− biasG(L̂) + sn,Q(z1−α + zβ)

=
(ŝen/sn,Q) · (z1−α − Zn)− (z1−α + zβ)

[biasF(L̂)− biasG(L̂)]/sn,Q + (z1−α + zβ)
.

The β quantile of the above display converges to 0 uniformly over f ∈ F and Q ∈ Qn, which

gives the result.

For the last statement, let [c̃,∞) be a sequence of CIs with asymptotic coverage 1−α. Let

Qn be the distribution from the conditions in the theorem, in which the ui’s are independent

and normal. Then, by Theorem 3.1,

sup
g∈F

qf,Qn,β(c̃− Lg) ≥ ωσQn (·),n(δ̃n),

where δ̃n = z1−αn +zβ and 1−αn is the coverage of [c̃,∞) over F ,Qn. When L̂ = L̂δ,F ,G,σQ(·),

the denominator in (S17) for Q = Qn is equal to ωσQn (·),n(z1−α + zβ), which gives

supg∈G qg,Qn,β(ĉ− Lg)

biasF(L̂)− biasG(L̂) + sn,Qn(z1−α + zβ)
≥
ωσQn (·),n(z1−αn + zβ)

ωσQn (·),n(z1−α + zβ)
.

If αn ≤ α, then z1−αn +zβ ≥ z1−α−zβ so that the above display is greater than one by mono-

tonicity of the modulus. If not, then by concavity, ωσQn (·),n(z1−αn + zβ) ≥ [ωσQn (·),n(z1−α +

zβ)/(z1−α + zβ)] · (z1−αn + zβ), so the above display is bounded from below by (z1−αn +

zβ)/(z1−α + zβ), and the lim inf of this is at least one by the coverage requirement.

The efficiency bounds in Theorem F.1 use the assumption that the class of possible

distributions contains a normal law, as is often done in the literature on efficiency in non-

parametric settings (see, e.g., Fan, 1993, pp. 205–206). We leave the topic of relaxing this

assumption for future research.
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Theorem F.1 requires that a known candidate variance function σ̃(·) and a known δ be

used when forming CIs based on the estimate L̂δ. However, the theorem does not require

that the candidate variance function be correct in order to get asymptotic coverage, so

long as the standard error ŝen is consistent. If it turns out that σ̃(·) is indeed the correct

variance function, then it follows from the last part of the theorem that the resulting CI is

efficient. In the special case where F imposes a (otherwise unconstrained) linear model, this

corresponds to the common practice of using ordinary least squares with heteroskedasticity

robust standard errors.

In some cases, one will want to use a data dependent σ̃(·) and δ in order to get efficient

estimates with unknown variance. The asymptotic coverage and efficiency of the resulting CI

can then be derived by showing equivalence with the infeasible estimator L̂δ∗,F ,G,σQ(·), where

δ∗ is chosen according to the desired performance criterion. The following theorem gives

conditions for this asymptotic equivalence. We verify them for our regression discontinuity

example in Supplemental Appendix H.

Theorem F.2. Suppose that L̂ and ŝen satisfy (S13) and (S14). Let L̃ and s̃en be another

estimator and standard error, and let b̃iasn and b̃iasn be (possibly data dependent) worst-case

bias formulas for L̃ under F . Suppose that

L̂− L̃
sn,Q

p→
F ,Qn

0,
biasF(L̂)− b̃iasn

sn,Q

p→
F ,Qn

0,
biasF(L̂)− b̃iasn

sn,Q

p→
F ,Qn

0,
ŝen
s̃en

p→
F ,Qn

1.

Let c̃ = L̃ − b̃iasn − s̃enz1−α, and let b̃ = max{|b̃iasn|, |b̃iasn|}. Then (S15) and (S16) hold

with ĉ replaced by c̃, L̂ replaced by L̃, b replaced by b̃ and ŝen replaced by s̃en. Furthermore,

the performance of the CIs is asymptotically equivalent in the sense that

supQ∈Qn supg∈G qg,Q,β(c̃− Lg)

supQ∈Qn supg∈G qg,Q,β(ĉ− Lg)
→ 1 and

cvα(b/ŝen)ŝen

cvα(b̃/s̃en)s̃en

p→
F ,Qn

1.

Proof. By the conditions of the theorem, we have, for some cn that converges in probability

to zero uniformly over F ,Qn,

c̃− Lf = L̃− Lf − b̃iasn − s̃enz1−α = L̂− Lf − biasF(L̂)− sn,Qz1−α + cnsn,Q

≤
n∑
i=1

wi,nui − sn,Qz1−α + cnsn,Q.
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Thus,

Pf,Q (Lf ∈ [c̃,∞)) = Pf,Q (0 ≥ c̃− Lf) ≥ Pf,Q

(
0 ≥

∑n
i=1 wi,nui
sn,Q

− z1−α + cn

)
,

which converges to 1 − α uniformly over F ,Qn. By Theorem F.1, supg∈G qg,Q,β(ĉ − Lg) is

bounded from below by a constant times sn,Q. Thus,
∣∣∣ supQ∈Qn supg∈G qg,Q,β(c̃−Lg)

supQ∈Qn supg∈G qg,Q,β(ĉ−Lg) − 1
∣∣∣ is bounded

from above by a constant times

sup
Q∈Qn

sup
g∈G

∣∣∣∣qg,Q,β(c̃− Lg)− qg,Q,β(ĉ− Lg)

sn,Q

∣∣∣∣ = sup
Q∈Qn

sup
g∈G
|qg,Q,β(c̃/sn,Q)− qg,Q,β(ĉ/sn,Q)| ,

which converges to zero since (c̃− ĉ)/sn,Q
p→

F ,Qn
0.

The claim that cvα(b/ŝen)ŝen
cvα(b̃/s̃en)s̃en

p→
F ,Qn

1 follows using similar arguments to the proof of Theo-

rem F.1. To show coverage of the two-sided CI, note that

Pf,Q

(
Lf ∈

{
L̃± cvα

(
b̃/s̃en

)
s̃en

})
= Pf,Q

(
|L̃− Lf |
sn,Q

≤ cvα (b/sn,Q) · cn

)
,

where cn = cvα(b̃/s̃en)s̃en
cvα(b/sn,Q)sn,Q

p→
F ,Qn

1. Since |L̃−Lf |
sn,Q

= |Vn + r| where r = (an +
∑n

i=1wi,nf(xi) −

Lf)/sn,Q and Vn =
∑n

i=1 wi,nui/sn,Q + (L̃ − L̂)/sn,Q
d→
F ,Qn

N (0, 1), the result follows from

arguments in the proof of Theorem F.1.

The results above give high-level conditions that can be applied to a wide range of

estimators and CIs. We now introduce an estimator and standard error formula that give

asymptotic coverage for essentially arbitrary functionals L under generic low level conditions

on F and the xi’s. The estimator is based on a nonrandom guess for the variance function

and, if this guess is correct up to scale (e.g. if the researcher correctly guesses that the errors

are homoskedastic), the one-sided CI based on this estimator will be asymptotically optimal

for some quantile of excess length.

Let σ̃(·) be some nonrandom guess for the variance function bounded away from 0 and∞,

and let δ > 0 be a deterministic constant specified by the researcher. Let f̂ be an estimator

of f . The variance of L̂δ,σ̃(·) under some Q ∈ Qn is equal to

varQ(L̂δ,σ̃(·),n) =

(
ω′σ̃(·),n(δ)

δ

)2 n∑
i=1

(g∗σ̃(·),δ(xi)− f ∗σ̃(·),δ(xi))
2σ2

Q(xi)

σ̃4(xi)
.
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We consider the estimate

ŝe2
δ,σ̃(·),n =

(
ω′σ̃(·),n(δ)

δ

)2 n∑
i=1

(g∗σ̃(·),δ(xi)− f ∗σ̃(·),δ(xi))
2(yi − f̂(xi))

2

σ̃4(xi)
.

Suppose that f : X → R where X is a metric space with metric dX such that the functions

f ∗σ̃(·),δ and g∗σ̃(·),δ satisfy the uniform continuity condition

sup
n

sup
x,x′ : dX(x,x′)≤η

max
{∣∣f ∗σ̃(·),δ(x)− f ∗σ̃(·),δ(x

′)
∣∣ , ∣∣g∗σ̃(·),δ(x)− g∗σ̃(·),δ(x

′)
∣∣} ≤ g(η), (S18)

where limη→0 g(η) = 0 and, for all η > 0,

min
1≤i≤n

n∑
j=1

I (dX(xj, xi) ≤ η)→∞. (S19)

We also assume that the estimator f̂ used to form the variance estimate satisfies the uniform

convergence condition

max
1≤i≤n

|f̂(xi)− f(xi)|
p→

F ,Qn
0. (S20)

Finally, we impose conditions on the moments of the error distribution. Suppose that there

exist K and η > 0 such that, for all n, Q ∈ Qn, the errors {ui}ni=1 are independent with, for

each i,

1/K ≤ σ2
Q(xi) ≤ K and EQ|ui|2+η ≤ K. (S21)

In cases where function class F imposes smoothness on f , (S18) will often follow directly

from the definition of F . For example, it holds for the Lipschitz class {f : |f(x) − f(x′)| ≤
CdX(x, x′)}. The condition (S19) will hold with probability one if the xi’s are sampled

from a distribution with density bounded away from zero on a sufficiently regular bounded

support. The condition (S20) will hold under regularity conditions for a variety of choices

of f̂ . It is worth noting that smoothness assumptions on F needed for this assumption are

typically weaker than those needed for asymptotic equivalence with Gaussian white noise.

For example, if X = Rk with the Euclidean norm, (S18) will hold automatically for Hölder

classes with exponent less than or equal to 1, while equivalence with Gaussian white noise

requires that the exponent be greater than k/2 (see Brown and Zhang, 1998). Furthermore,

we do not require any explicit characterization of the limiting form of the optimal CI. In

particular, we do not require that the weights for the optimal estimator converge to a limiting
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optimal kernel or efficient influence function.

The condition (S21) is used to verify a Lindeberg condition for the central limit theorem

used to obtain (S13), which we do in the next lemma.

Lemma F.1. Let Zn,i be a triangular array of independent random variables and let an,j,

1 ≤ j ≤ n be a triangular array of constants. Suppose that there exist constants K and η > 0

such that, for all i,

1/K ≤ σ2
n,i ≤ K and E|Zn,i|2+η ≤ K

where σ2
n,i = EZ2

n,i, and that

lim
n→∞

max1≤j≤n a
2
n,j∑n

j=1 a
2
n,j

= 0.

Then ∑n
i=1 an,iZn,i√∑n
i=1 a

2
n,iσ

2
n,i

d→ N (0, 1).

Proof. We verify the conditions of the Lindeberg-Feller theorem as stated on p. 116 in

Durrett (1996), with Xn,i = an,iZn,i/
√∑n

j=1 a
2
n,jσ

2
j . To verify the Lindeberg condition, note

that

n∑
i=1

E
(
|Xn,m|21(|Xn,m| > ε)

)
=

∑n
i=1E

[
|an,iZn,i|2I

(
|an,iZn,i| > ε

√∑n
j=1 a

2
n,jσ

2
j

)]
∑n

i=1 a
2
n,iσ

2
n,i

≤
∑n

i=1E (|an,iZn,i|2+η)

εη
(∑n

i=1 a
2
n,iσ

2
n,i

)1+η/2
≤ K2+η/2

εη

∑n
i=1 |an,i|2+η(∑n
i=1 a

2
n,i

)1+η/2
≤ K2+η/2

εη

(
max1≤i≤n a

2
n,i∑n

i=1 a
2
n,i

)1+η/2

.

This converges to zero under the conditions of the lemma.

Theorem F.3. Let L̂δ,σ̃(·) and ŝe2
δ,σ̃(·),n be defined above. Suppose that, for each n, f ∗σ̃(·),δ,

g∗σ̃(·),δ achieve the modulus under σ̃(·) with ‖Kσ̃(·),n(g∗σ̃(·),δ − f ∗σ̃(·),δ)‖ = δ, and that (S18) and

(S19) hold. Suppose the errors satisfy (S21) and are independent over i for all n and Q ∈ Qn.

Then (S13) holds. If, in addition, the estimator f̂ satisfies (S20), then (S14) holds with ŝen

given by ŝeδ,σ̃(·),n.

Proof. Condition (S13) will follow by applying Lemma F.1 to show convergence under arbi-
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trary sequences Qn ∈ Qn so long as

max1≤i≤n(g∗σ̃(·),δ(xi)− f ∗σ̃(·),δ(xi))
2/σ̃(xi)

4∑n
i=1(f ∗σ̃(·),δ(xi)− g∗σ̃(·),δ(xi))

2/σ̃(xi)4
→ 0.

Since the denominator is bounded from below by δ2/max1≤i≤n σ̃
2(xi), and σ̃2(xi) is bounded

away from 0 and∞ over i, it suffices to show that max1≤i≤n(g∗σ̃(·),δ(xi)−f ∗σ̃(·),δ(xi))
2 → 0. To

this end, suppose, to the contrary, that there exists some c > 0 such that max1≤i≤n(g∗σ̃(·),δ(xi)

− f ∗σ̃(·),δ(xi))
2 > c2 infinitely often. Let η be small enough so that g(η) ≤ c/4. Then, for n

such that this holds and kn achieving this maximum,

n∑
i=1

(g∗σ̃(·),δ(xi)− f ∗σ̃(·),δ(xi))
2 ≥

n∑
i=1

(c− c/2)21(dX(xi, xkn) ≤ η)→∞.

But this is a contradiction since
∑n

i=1(g∗σ̃(·),δ(xi)−f ∗σ̃(·),δ(xi))
2 is bounded by a constant times∑n

i=1(g∗σ̃(·),δ(xi)− f ∗σ̃(·),δ(xi))
2/σ̃2(xi) = δ2.

To show convergence of ŝe2
δ,σ̃(·),n/varQ(L̂δ,σ̃(·)), note that

ŝe2
δ,σ̃(·),n

varQ(L̂δ,σ̃(·))
− 1 =

∑n
i=1 an,i

[
(yi − f̂(xi))

2 − σ2
Q(xi)

]
∑n

i=1 an,iσ
2
Q(xi)

where an,i =
(g∗
σ̃(·),δ(xi)−f

∗
σ̃(·),δ(xi))

2

σ̃4(xi)
. Since the denominator is bounded from below by a constant

times
∑n

i=1 an,iσ̃
2(xi) = δ2, it suffices to show that the numerator, which can be written as

n∑
i=1

an,i
[
u2
i − σQ(xi)

2
]

+
n∑
i=1

an,i(f(xi)− f̂(xi))
2 + 2

n∑
i=1

an,iui(f(xi)− f̂(xi)),

converges in probability to zero uniformly over f and Q. The second term is bounded by a

constant times max1≤i≤n(f(xi)− f̂(xi))
2
∑n

i=1 an,iσ̃
2(xi) = max1≤i≤n(f(xi)− f̂(xi))

2δ2, which

converges in probability to zero uniformly over f and Q by assumption. Similarly, the last

term is bounded by max1≤i≤n |f(xi)− f̂(xi)| times 2
∑n

i=1 an,i|ui|, and the expectation of the

latter term is bounded uniformly over F and Q. Thus, the last term converges in probability

to zero uniformly over f and Q as well. For the first term in this display, an inequality of

von Bahr and Esseen (1965) shows that the expectation of the absolute 1 + η/2 moment of
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this term is bounded by a constant times

n∑
i=1

a
1+η/2
n,i EQ

∣∣u2
i − σQ(xi)

2
∣∣1+η/2 ≤

(
max
1≤i≤n

a
η/2
n,i

)
max
1≤i≤n

EQ
∣∣ε2
i − σ2

Q(xi)
∣∣1+η/2

n∑
i=1

an,i,

which converges to zero since max1≤i≤n an,i → 0 as shown earlier in the proof and
∑n

i=1 an,i

is bounded by a constant times
∑n

i=1 an,iσ̃
2(xi) = δ2.

If the variance function used by the researcher is correct up to scale (for example, if the

variance function is known to be constant), the one-sided confidence intervals in (F.3) will

be asymptotically optimal for some level β, which depends on δ and the magnitude of the

true error variance relative to the one used by the researcher. We record this as a corollary.

Corollary F.1. If, in addition to the conditions in Theorem F.3, σ2
Q(x) = σ2 · σ̃2(x) for all

n and Q ∈ Qn, then, letting β = Φ(δ/σ− z1−α), no CI satisfying (S15) can satisfy S17 with

the constant 1 replaced by a strictly smaller constant on the right-hand side.

Appendix G Asymptotics for the Modulus and Effi-

ciency Bounds

As discussed in Section 3, asymptotic relative efficiency comparisons can often be performed

by calculating the limit of the scaled modulus. Here, we state some lemmas that can be used

to obtain asymptotic efficiency bounds and limiting behavior of the value of δ that optimizes

a particular performance criterion. We use these results in the proof of Theorem E.1 in

Supplemental Appendix H.

Before stating these results, we recall the characterization of minimax affine performance

given in Donoho (1994). To describe the results, first consider the normal model Z ∼ N (µ, 1)

where µ ∈ [−τ, τ ]. The minimax affine mean squared error for this problem is

ρA(τ) = min
δ(Y ) affine

max
µ∈[−τ,τ ]

Eµ(δ(Y )− µ)2.

The solution is achieved by shrinking Y toward 0, namely δ(Y ) = cρ(τ)Y , with cρ(τ) =

τ 2/(1 + τ 2), which gives ρA(τ) = τ 2/(1 + τ 2). The length of the smallest fixed-length affine
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100 · (1− α)% confidence interval is

χA,α(τ) = min

{
χ : there exists δ(Y ) affine s.t. inf

µ∈[−τ,τ ]
Pµ(|δ(Y )− µ| ≤ χ) ≥ 1− α

}
.

The solution is achieved at some δ(Y ) = cχ(τ)Y , and it is characterized in Drees (1999).

Using these definitions, the minimax affine root MSE is given by

sup
δ>0

ω(δ)

δ

√
ρA

(
δ

2σ

)
σ,

and the MSE optimal estimate is given by L̂δ,χ where χ maximizes the above display. Simi-

larly, the optimal fixed-length affine CI has half-length

sup
δ>0

ω(δ)

δ
χA,α

(
δ

2σ

)
σ,

and is centered at L̂δχ where δχ maximizes the above display (it follows from our results

and those of Donoho 1994 that this leads to the same value of δχ as the one obtained by

minimizing CI length as described in Section 3.4).

The results below give the limiting behavior of these quantities as well as the bound

on expected length in Corollary 3.3 under pointwise convergence of a sequence of functions

ωn(δ) that satisfy the conditions of a modulus scaled by a sequence of constants.

Lemma G.1. Let ωn(δ) be a sequence of concave nondecreasing nonnegative functions on

[0,∞) and let ω∞(δ) be a concave nondecreasing function on [0,∞) with range [0,∞). Then

the following are equivalent.

(i) For all δ > 0, limn→∞ ωn(δ) = ω∞(δ).

(ii) For all b ∈ (0,∞), b is in the range of ωn for large enough n, and limn→∞ ω
−1
n (b) =

ω−1
∞ (b).

(iii) For any δ > 0, limn→∞ supδ∈[0,δ] |ωn(δ)− ω∞(δ)| = 0.

Proof. Clearly (iii) =⇒ (i). To show (i) =⇒ (iii), given ε > 0, let 0 < δ1 < δ2 < · · · < δk = δ

be such that ω(δj) − ω(δj−1) ≤ ε for each j. Then, using monotonicity of ωn and ω∞, we
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have supδ∈[0,δ1] |ωn(δ)− ω∞(δ)| ≤ max {|ωn(δ1)|, |ωn(0)− ω∞(δ1)|} → ω∞(δ1) and

sup
δ∈[δj−1,δj ]

|ωn(δ)− ω∞(δ)| ≤ max {|ωn(δj)− ω∞(δj−1)|, |ωn(δj−1)− ω∞(δj)|}

→ |ω∞(δj−1)− ω∞(δj)| ≤ ε.

The result follows since ε can be chosen arbitrarily small. To show (i) =⇒ (ii), let δ` and δu

be such that ω∞(δ`) < b < ω∞(δu). For large enough n, we will have ωn(δ`) < b < ωn(δu) so

that b will be in the range of ωn and δ` < ω−1
n (b) < δu. Since ω∞ is strictly increasing, δ` and

δu can be chosen arbitrarily close to ω−1
∞ (b), which gives the result. To show (ii) =⇒ (i), let b`

and bu be such that ω−1
∞ (b`) < δ < ω−1

∞ (bu). Then, for large enough n, ω−1
n (b`) < δ < ω−1

n (bu),

so that b` < ωn(δ) < bu, and the result follows since b` and bu can be chosen arbitrarily close

to ω∞(δ) since ω−1
∞ is strictly increasing.

Lemma G.2. Suppose that the conditions of Lemma G.1 hold with limδ→0 ω∞(δ) = 0 and

limδ→∞ ω∞(δ)/δ = 0. Let r be a nonnegative function with 0 ≤ r(δ/2) ≤ rmin{δ, 1} for

some r <∞. Then

lim
n→∞

sup
δ>0

ωn(δ)

δ
r

(
δ

2

)
= sup

δ>0

ω∞(δ)

δ
r

(
δ

2

)
.

If, in addition r is continuous, ω∞(δ)
δ
r
(
δ
2

)
has a unique maximizer δ∗, and, for each n, δn

maximizes ωn(δ)
δ
r
(
δ
2

)
, then δn → δ∗ and ωn(δn) → ω∞(δ∗). In addition, for any σ > 0 and

0 < α < 1 and Z a standard normal variable,

lim
n→∞

(1− α)E[ωn(2σ(z1−α − Z))|Z ≤ z1−α] = (1− α)E[ω∞(2σ(z1−α − Z))|Z ≤ z1−α].

Proof. We will show that the objective can be made arbitrarily small for δ outside of [δ, δ]

for δ small enough and δ large enough, and then use uniform convergence over [δ, δ]. First,

note that, if we choose δ < 1, then, for δ ≤ δ,

ωn(δ)

δ
r

(
δ

2

)
≤ ωn(δ)r ≤ ωn(δ)r → ω∞(δ),

which can be made arbitrarily small by making δ small. Since ωn(δ) is concave and nonneg-
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ative, ωn(δ)/δ is nonincreasing, so, for δ > δ,

ωn(δ)

δ
r

(
δ

2

)
≤ ωn(δ)

δ
r ≤ ωn(δ)

δ
r → ω∞(δ)

δ
r,

which can be made arbitrarily small by making δ large. Applying Lemma G.1 to show

convergence over [δ, δ] gives the first claim. The second claim follows since δ and δ can be

chosen so that δn ∈ [δ, δ] for large enough n (the assumption that ω∞(δ)
δ
r
(
δ
2

)
has a unique

maximizer means that it is not identically zero), and uniform convergence to a continuous

function with a unique maximizer on a compact set implies convergence of the sequence of

maximizers to the maximizer of the limiting function.

For the last statement, note that, by positivity and concavity of ωn, we have, for large

enough n, 0 ≤ ωn(δ) ≤ ωn(1) max{δ, 1} ≤ (ω∞(1) + 1) max{δ, 1} for all δ > 0. The result

then follows from the dominated convergence theorem.

Lemma G.3. Let ωn(δ) be a sequence of nonnegative concave functions on [0,∞) and let

ω∞(δ) be a nonnegative concave differentiable function on [0,∞). Let δ0 > 0 and suppose

that ωn(δ)→ ω∞(δ) for all δ in a neighborhood of δ0. Then, for any sequence dn ∈ ∂ωn(δ0),

we have dn → ω′∞(δ0). In particular, if ωn(δ)→ ω∞(δ) in a neighborhood of δ0 and 2δ0, then
ωn(2δ0)

ωn(δ0)+δ0ω′n(δ0)
→ ω∞(2δ0)

ω∞(δ0)+δ0ω′∞(δ0)
.

Proof. By concavity, for η > 0 we have [ωn(δ0)−ωn(δ0−η)]/η ≥ dn ≥ [ωn(δ0 +η)−ωn(δ0)]/η.

For small enough η, the left and right-hand sides converge, so that [ω∞(δ0)−ω∞(δ0−η)]/η ≥
lim supn dn ≥ lim infn dn ≥ [ω∞(δ0 + η) − ω∞(δ0)]/η. Taking the limit as η → 0 gives the

result.

Appendix H Asymptotics for Regression Discontinu-

ity

This section proves Theorem E.1. We first give a general result for linear estimators under

high-level conditions in Supplemental Appendix H.1. We then consider local polynomial

estimators in Supplemental Appendix H.2 and optimal estimators with a plug-in variance

estimate in Supplemental Appendix H.3. Theorem E.1 follows immediately from the results

in these sections.

Throughout this section, we consider the RD setup where the error distribution may

be non-normal as in Supplemental Appendix E.4, using the conditions in that section. We
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repeat these conditions here for convenience.

Assumption H.1. For some pX,+(0) > 0 and pX,−(0) > 0, the sequence {xi}ni=1 satisfies
1
nhn

∑n
i=1m(xi/hn)1(xi > 0) → pX,+(0)

∫∞
0
m(u) du and 1

nhn

∑n
i=1m(xi/hn)1(xi < 0) →

pX,−(0)
∫ 0

−∞m(u) du for any bounded function m with bounded support and any hn with

0 < lim infn hnn
1/(2p+1) ≤ lim supn hnn

1/(2p+1) <∞.

Assumption H.2. For some σ(x) with limx↓0 σ(x) = σ+(0) > 0 and limx↑0 σ(x) = σ−(0) >

0, we have

(i) the uis are independent under any Q ∈ Qn with EQui = 0, varQ(ui) = σ2(xi)

(ii) for some η > 0, EQ|ui|2+η is bounded uniformly over n and Q ∈ Qn.

Theorem E.1 considers affine estimators that are optimal under the assumption that the

variance function is given by σ̂+1(x > 0) + σ̂−1(x < 0), which covers the plug-in optimal

affine estimators used in our application. Here, it will be convenient to generalize this slightly

by considering the class of affine estimators that are optimal under a variance function σ̃(x),

which may be misspecified or data-dependent, but which may take some other form. We

consider two possibilities for how σ̃(·) is calibrated.

Assumption H.3. σ̃(x) = σ̂+1(x > 0) + σ̂−1(x < 0) where σ̂+
p→

F ,Qn
σ̃+(0) > 0 and σ̂−

p→
F ,Qn

σ̃−(0) > 0.

Assumption H.4. σ̃(x) is a deterministic function with limx↓0 σ̃(x) = σ̃−(0) > 0 and

limx↑0 σ̃(x) = σ̃+(0) > 0.

Assumption H.3 corresponds to the estimate of the variance function used in the applica-

tion. It generalizes Assumption E.3 slightly by allowing σ̂+ and σ̂− to converge to something

other than the left- and right-hand limits of the true variance function. Assumption H.4 is

used in deriving bounds based on infeasible estimates that use the true variance function.

Note that, under Assumption H.3, σ̃+(0) is defined as the probability limit of σ̂+ as

n→∞, and does not give the limit of σ̃(x) as x ↓ 0 (and similarly for σ̃−(0)). We use this

notation so that certain limiting quantities can be defined in the same way under each of

the Assumptions H.4 and H.3.
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H.1 General Results for Kernel Estimators

We first state results for affine estimators where the weights asymptotically take a kernel

form. We consider a sequence of estimators of the form

L̂ =

∑n
i=1 k

+
n (xi/hn)1(xi > 0)yi∑n

i=1 k
+
n (xi/hn)1(xi > 0)

−
∑n

i=1 k
−
n (xi/hn)1(xi < 0)yi∑n

i=1 k
−
n (xi/hn)1(xi < 0)

where k+
n and k−n are sequences of kernels. The assumption that the same bandwidth is used

on each side of the discontinuity is a normalization: it can always be satisfied by redefining

one of the kernels k+
n or k−n . We make the following assumption on the sequence of kernels.

Assumption H.5. The sequences of kernels and bandwidths k+
n and hn satisfy

(i) k+
n has support bounded uniformly over n. For a bounded kernel k+ with

∫
k+(u) du >

0, we have supx |k+
n (x)− k+(x)| → 0

(ii) 1
nhn

∑n
i=1 k

+
n (xi/hn)1(xi > 0)(xi, . . . , x

p−1
i )′ = 0 for each n

(iii) hnn
1/(2p+1) → h∞ for some constant 0 < h∞ <∞,

and similarly for k−n for some k−.

Let

biasn =

∑n
i=1 |k+

n (xi/hn)|1(xi > 0)C|xi|p∑n
i=1 k

+
n (xi/hn)1(xi > 0)

+

∑n
i=1 |k−n (xi/hn)|1(xi < 0)C|xi|p∑n

i=1 k
−
n (xi/hn)1(xi < 0)

= Chpn

(∑n
i=1 |k+

n (xi/hn)|1(xi > 0)|xi/hn|p∑n
i=1 k

+
n (xi/hn)1(xi > 0)

+

∑n
i=1 |k−n (xi/hn)|1(xi < 0)|xi/hn|p∑n

i=1 k
−
n (xi/hn)1(xi < 0)

)
and

vn =

∑n
i=1 k

+
n (xi/hn)21(xi > 0)σ2(xi)

[
∑n

i=1 k
+
n (xi/hn)1(xi > 0)]

2 +

∑n
i=1 k

−
n (xi/hn)21(xi < 0)σ2(xi)

[
∑n

i=1 k
−
n (xi/hn)1(xi < 0)]

2

=
1

nhn

 1
nhn

∑n
i=1 k

+
n (xi/hn)21(xi > 0)σ2(xi)[

1
nhn

∑n
i=1 k

+
n (xi/hn)1(xi > 0)

]2 +
1
nhn

∑n
i=1 k

−
n (xi/hn)21(xi < 0)σ2(xi)[

1
nhn

∑n
i=1 k

−
n (xi/hn)1(xi < 0)

]2


Note that vn is the (constant over Q ∈ Qn) variance of L̂, and that, by arguments in

Supplemental Appendix E.1, biasn = supf∈F(Ef,QL̂− Lf) = − inff∈F(Ef,QL̂− Lf) for any

Q ∈ Qn under Assumption H.5 (ii).
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To form a feasible CI, we need an estimate of vn. While the results below go through

with any variance estimate that is consistent uniformly over f,Qn, we propose one here for

concreteness. For a possibly data-dependent guess σ̃(·) of the variance function, let ṽn denote

vn with σ(·) replaced by σ̃(·). We record the limiting behavior of biasn, vn and ṽn in the

following lemma. Let

bias∞ = Chp∞

(∫∞
0
|k+(u)||u|p du∫∞
0
k+(u) du

+

∫ 0

−∞ |k
−(u)||u|p du∫ 0

−∞ k
−(u) du

)

and

v∞ =
1

h∞

 σ2
+(0)

∫∞
0
k+(u)2 du

pX,+(0)
[∫∞

0
k+(u) du

]2 +
σ2
−(0)

∫ 0

−∞ k
−(u)2 du

pX,−(0)
[∫ 0

−∞ k
−(u) du

]2

 .

Lemma H.1. Suppose that Assumption H.1 holds. If Assumption H.5 also holds, then

limn→∞ n
p/(2p+1)biasn = bias∞ and limn→∞ n

2p/(2p+1)vn = v∞. If, in addition, σ̃(·) sat-

isfies Assumption H.3 or Assumption H.4 with σ̃+(0) = σ+(0) and σ̃−(0) = σ−(0), then

n2p/(2p+1)ṽn
p→

F ,Qn
v∞ under Assumption H.3 and limn→∞ n

2p/(2p+1)ṽn = v∞ under Assump-

tion H.4.

Proof. The results follow from applying the convergence in Assumption H.1 along with As-

sumption H.5(i) to the relevant terms in biasn and ṽn.

Theorem H.1. Suppose that Assumptions H.1, H.2 and H.5 hold, and that ṽn is formed

using a variance function σ̃(·) that satisfies Assumption H.3 or H.4 with σ̃+(0) = σ+(0) and

σ̃−(0) = σ−(0). Then

lim inf
n→∞

inf
f∈FRDT,p(C),Q∈Qn

Pf,Q

(
Lf ∈

{
L̂± cvα

(
biasn/ṽn

)√
ṽn

})
≥ 1− α

and, letting ĉ = L̂− biasn − z1−α
√
ṽn,

lim inf
n→∞

inf
f∈FRDT,p(C),Q∈Qn

Pf,Q (Lf ∈ [ĉ,∞)) ≥ 1− α.

In addition, np/(2p+1) cvα(biasn/ṽn)ṽn
p→

F ,Qn
cvα(bias∞/v∞)v∞ if σ̃(·) satisfies Assumption H.3

and np/(2p+1) cvα(biasn/ṽn)ṽn → cvα(bias∞/v∞)v∞ if σ̃(·) satisfies Assumption H.4. The
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minimax β quantile of the one-sided CI satisfies

lim sup
n→∞

np/(2p+1) sup
f∈FRDT,p(C),Q∈Qn

qf,Q,β(Lf − ĉ) ≤ 2bias∞ + (zβ + z1−α)
√
v∞.

The worst-case β quantile over FRDT,p(0) satisfies

lim sup
n→∞

np/(2p+1) sup
f∈FRDT,p(0),Q∈Qn

qf,Q,β(Lf − ĉ) ≤ bias∞ + (zβ + z1−α)
√
v∞.

Furthermore, the same holds with L̂, biasn and ṽn replaced by any L̂∗, bias
∗
n and ṽ∗n such that

np/(2p+1)
(
L̂− L̂∗

)
p→

F ,Qn
0, np/(2p+1)

(
biasn − bias

∗
n

)
p→

F ,Qn
0,

ṽn
ṽ∗n

p→
F ,Qn

1.

Proof. We verify the conditions of Theorem F.1. Condition (S14) follows from Lemma H.1.

To verify (S13), note that L̂ takes the general form in Theorem F.1 with wn,i given by wn,i =

k+
n (xi/hn)/

∑n
j=1 k

+
n (xj/hn)1(xj > 0) for xi > 0 and wn,i = k−n (xi/hn)/

∑n
j=1 k

−
n (xj/hn) ·

1(xj < 0) for xi < 0. The uniform central limit theorem in (S13) with wn,i taking this form

follows from Lemma F.1. This gives the asymptotic coverage statements.

For the asymptotic formulas for excess length of the one-sided CI and length of the

two-sided CI, we apply Theorem F.2 with n−p/(2p+1)bias∞ playing the role of b̃iasn and

n−p/(2p+1)v∞ playing the role of s̃en. Finally, the last statement of the theorem is immediate

from Theorem F.2.

H.2 Local Polynomial Estimators

The (p− 1)th order local polynomial estimator of f+(0) based on kernel k∗+ and bandwidth

h+,n is given by

f̂+(0) =e′1

(
n∑
i=1

p(xi/h+,n)p(xi/h+,n)′k∗+(xi/h+,n)1(xi > 0)

)−1

n∑
i=1

k∗+(xi/h+,n)1(xi > 0)p(xi/h+,n)yi

where e1 = (1, 0, . . . , 0)′ and p(x) = (1, x, x2, . . . , xp−1)′. Letting the local polynomial es-

timator of f−(0) be defined analogously for some kernel k∗− and bandwidth h−,n, the local
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polynomial estimator of Lf = f+(0)− f−(0) is given by

L̂ = f̂+(0)− f̂−(0).

This takes the form given in Supplemental Appendix H.1, with hn = hn,+,

k+
n (u) = e′1

(
1

nhn

n∑
i=1

p(xi/h+,n)p(xi/h+,n)′k∗+(xi/h+,n)1(xi > 0)

)−1

k∗+(u)p(u)1(u > 0)

and

k−n (u) =e′1

(
1

nhn

n∑
i=1

p(xi/h−,n)p(xi/h−,n)′k∗+(xi/h−,n)1(xi < 0)

)−1

k∗+(u(hn,+/hn,−))p(u(hn,+/hn,−))1(u < 0).

Let M+ be the (p−1)×(p−1) matrix with
∫∞

0
uj+k−2k∗+(u) as the i, jth entry, and let M− be

the (p−1)×(p−1) matrix with
∫ 0

−∞ u
j+k−2k∗−(u) as the i, jth entry. Under Assumption H.1,

for k∗+ and k∗− bounded with bounded support, 1
nhn

∑n
i=1 p(xi/h+,n)p(xi/h+,n)′k∗+(xi/h+,n) ·

1(xi > 0) → M+pX,+(0) and similarly 1
nhn

∑n
i=1 p(xi/h−,n)p(xi/h−,n)′k∗+(xi/h−,n) · 1(xi <

0) → M−pX,−(0). Furthermore, Assumption H.5 (ii) follows immediately from the normal

equations for the local polynomial estimator. This gives the following result.

Theorem H.2. Let k∗+ and k∗− be bounded and uniformly continuous with bounded support.

Let hn,+n
1/(2p+1) → h∞ > 0 and suppose hn,−/hn,+ converges to a strictly positive constant.

Then Assumption H.5 holds for the local polynomial estimator so long as Assumption H.1

holds.

H.3 Optimal Affine Estimators

We now consider the class of affine estimators that are optimal under the assumption that the

variance function is given by σ̃(·), which satisfies either Assumption H.3 or Assumption H.4.

We use the same notation as in Supplemental Appendix E, except that n and/or σ̃(·) are

added as subscripts for many of the objects under consideration to make the dependence on

{xi}ni=1 and σ̃(·) explicit.

The modulus problem is given by Equation (S3) in Supplemental Appendix E.2 with

σ̃(·) in place of σ(·). We use ωσ̃(·),n(δ) to denote the modulus, or ωn(δ) when the context is
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clear. The corresponding estimator L̂δ,σ̃(·) is then given by Equation (S10) in Supplemental

Appendix E.2 with σ̃(·) in place of σ(·).
We will deal with the inverse modulus, and use Lemma G.1 to obtain results for the

modulus itself. The inverse modulus ω−1
σ̃(·),n(2b) is given by Equation (S9) in Supplemental

Appendix E.2, with σ̃2(xi) in place of σ2(xi), and the solution takes the form given in

that section. Let hn = n−1/(2p+1). We will consider a sequence b = bn, and will define

b̃n = np/(2p+1)bn = h−pn bn. Under Assumption H.4, we will assume that b̃n → b̃∞ for some

b̃∞ > 0. Under Assumption H.3, we will assume that b̃n
p→

F ,Qn
b̃∞ for some b̃∞ > 0. We will

then show that this indeed holds for 2bn = ωσ̃(·),n(δn) with δn chosen as in Theorem H.3

below.

Let b̃n = np/(2p+1)bn = h−pn bn, b̃−,n = np/(2p+1)b−,n = h−pn b−,n, d̃+,j,n = n(p−j)/(2p+1)d+,j,n =

hj−pn d+,j,n and d̃−,j,n = n(p−j)/(2p+1)d−,j,n = hj−pn d−,j,n for j = 1, . . . , p − 1, where bn, b−,n,

d+,n, and d−n correspond to the function gb,C that solves the inverse modulus problem,

given in Supplemental Appendix E.2. These values of b̃+,n, b̃−,n, d̃+,n and d̃−,n minimize

Gn(b+, b−, d+, d−) subject to b+ + b− = b̃n where, letting A(xi, b, d) = hpnb+
∑p−1

j=1 h
p−j
n djx

j
i ,

Gn(b+, b−, d+, d−) =
n∑
i=1

σ̃−2(xi)
(
(A(xi, b+, d+)− C|xpi |)+ + (A(xi, b+, d+) + C|xi|p)−

)2
1(xi > 0)

+
n∑
i=1

σ̃−2(xi)
(
(A(xi, b−, d−)− C|xi|p) + (A(xi, b−, d−) + C|xi|p)−

)2
1(xi < 0)

=
1

nhn

n∑
i=1

k+
σ̃(·)(xi/hn; b+, d+)2σ̃2(xi) +

1

nhn

n∑
i=1

k−σ̃(·)(xi/hn; b−, d−)2σ̃2(xi)

with

k+
σ̃(·)(u; b, d) = σ̃−2(uhn)

(b+

p−1∑
j=1

dju
j − C|u|p

)
+

−

(
b+

p−1∑
j=1

dju
j + C|u|p

)
−

 1(u > 0),

k−σ̃(·)(u; b, d) = σ̃−2(uhn)

(b+

p−1∑
j=1

dju
j − C|u|p

)
+

−

(
b+

p−1∑
j=1

dju
j + C|u|p

)
−

 1(u < 0).

We use the notation k+
c for a scalar c to denote k+

σ̃(·) where σ̃(·) is given by the constant

function σ̃(x) = c.

With these definitions, the estimator L̂δ,σ̃(·) with ωσ̃(·),n(δ) = 2bn takes the general kernel
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form in Supplemental Appendix H.1 with k+
n (u) = k+

σ̃(·)(u; b̃+,n, d̃+,n) and similarly for k−n . In

the notation of Supplemental Appendix H.1, biasn is given by 1
2
(ωσ̃(·),n(δ)− δω′σ̃(·),n(δ)) and

ṽn is given by ω′σ̃(·),n(δ)2 (see Equation (24) in the main text). If δ is chosen to minimize the

length of the fixed-length CI, the half-length will be given by

cvα(biasn/
√
ṽn)
√
ṽn = inf

δ>0
cvα

(
ωσ̃(·),n(δ)

2ω′σ̃(·),n(δ)
− δ

2

)
ω′σ̃(·),n(δ),

and δ will achieve the minimum in the above display. Similarly, if the MSE criterion is used,

δ will minimize bias
2

n + vn.

We proceed by verifying the conditions of Theorem H.1 for the case where σ̃(·) is nonran-

dom and satisfies Assumption H.4, and then verifying the conditions in the last display of

Theorem H.1 for the case where σ̃(·) satisfies Assumption H.3. The limiting kernel k+ and

k− in Assumption H.5 will correspond to an asymptotic version of the modulus problem,

which we now describe. Let

G∞(b+, b−, d+, d−) = pX,+(0)

∫ ∞
0

σ̃2
+(0)k+

σ̃+(0)(u; b+, d+)2 du

+ pX,−(0)

∫ ∞
0

σ̃2
−(0)k+

σ̃−(0)(u; b+, d+)2 du.

Consider the limiting inverse modulus problem

ω−1
σ̃+(0),σ̃−(0),∞(2b̃∞) = min

f+,f−∈FRDT,p(C)

√
pX,+(0)

σ̃2
+(0)

∫ ∞
0

f+(u)2 du+
pX,−(0)

σ̃2
−(0)

∫ 0

−∞
f−(u)2 du

s.t. f+(0) + f−(0) ≥ b̃∞.

We use ω∞(δ) = ωσ̃+(0),σ̃−(0),∞(δ) to denote the limiting modulus corresponding to this

inverse modulus. The limiting inverse modulus problem is solved by the functions f+(u) =

σ̃2
+(0)k+

σ̃+(0)(u; b+, d+) = k+
1 (u; b+, d+) and f−(u) = σ̃2

−(0)k+
σ̃−(0)(u; b−, d−) = k−1 (u; b+, d+)

for some (b+, b−, d+, d−) with b+ + b− = b̃∞ (this holds by the same arguments as for the

modulus problem in Supplemental Appendix E.2). Thus, for any minimizer of G∞, the

functions k+
1 (·; b+, d+) and k+

1 (·; b+, d+) must solve the above inverse modulus problem. The

solution to this problem is unique by strict convexity, which implies that G∞ has a unique

minimizer. Similarly, the minimizer of Gn is unique for each n. Let (b̃+,∞, b̃−,∞, d̃+,∞, d̃−,∞)

denote the minimizer of G∞. The limiting kernel k+ in Assumption H.5 will be given by
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k+
σ̃+(0)(·; b̃+,∞, d̃+,∞) and similarly for k−.

To derive the form of the limiting modulus of continuity, we argue as in Donoho and Low

(1992). Let k+
1 (·; b̃+,∞,1, d̃+,∞,1) and k+

1 (·; b̃+,∞,1, d̃+,∞,1) solve the inverse modulus problem

ω−1
∞ (2b̃∞) for b̃∞ = 1. The feasible set for a given b̃∞ consists of all b+, b−, d+, d− such that

b+ + b− ≥ b̃∞, and a given b+, b−, d+, d− in this set achieves the value√
pX,+(0)

σ̃2
+(0)

∫ ∞
0

k+
1 (u; b+, d+)2 du+

pX,−(0)

σ̃2
−(0)

∫ 0

−∞
k−1 (u; b−, d−)2 du

=

√
pX,+(0)

σ̃2
+(0)

∫ ∞
0

k+
1 (vb

1/p
∞ ; b+, d+)2 d(vb

1/p
∞ ) +

pX,−(0)

σ̃2
−(0)

∫ 0

−∞
k−1 (vb

1/p
∞ ; b−, d−)2 d(vb

1/p
∞ )

=

√
pX,+(0)

σ̃2
+(0)

b̃
1/p
∞

∫ ∞
0

b̃2
∞k

+
1 (v; b+/b̃∞, d̄+)2 dv +

pX,−(0)

σ̃2
−(0)

b̃
1/p
∞

∫ 0

−∞
b̃2
∞k
−
1 (v; b−/b̃∞, d̄−)2 dv,

where d̄+ = (d+,1/b̃
(p−1)/p
∞ , . . . , d+,p−1/b̃

1/p
∞ )′ and similarly for d̄−. This uses the fact that, for

any h > 0, hpk+
1 (u/h; b+, d+) = k+

1 (u; b+h
p, d+,1h

p−1, d+,2h
p−2, . . . , d+,p−1h) and similarly for

k−1 . This can be seen to be b̃
(2p+1)/(2p)
∞ times the objective evaluated at (b+/b̃∞, b−/b̃∞, d̄+, d̄−),

which is feasible under b̃∞ = 1. Similarly, for any feasible function under b̃∞ = 1, there is a

feasible function under a given b̃∞ that achieves b̃
(2p+1)/(2p)
∞ times the value of under b̃∞ = 1. It

follows that ω−1
∞ (2b) = b(2p+1)/(2p)ω∞(2). Thus, ω−1

∞ is invertible and the inverse ω∞ satisfies

ω∞(δ) = ωσ̃+(0),σ̃−(0),∞(δ) = δ2p/(2p+1)ωσ̃+(0),σ̃−(0),∞(1).

If b̃∞ = ω∞(δ∞) for some δ∞, then it can be checked that the limiting variance and

worst-case bias defined in Supplemental Appendix H.1 correspond to the limiting modulus

problem:

bias∞ =
1

2
(ω∞(δ∞)− δ∞ω′∞(δ∞)) ,

√
v∞ = ω′∞(δ∞). (S22)

Furthermore, we will show that, if δ is chosen to optimize FLCI length for ωσ̃(·),n, then this

will hold with δ∞ optimizing cvα(bias∞/
√
v∞)
√
v∞. Similarly, if δ is chosen to optimize MSE

for ωσ̃(·),n, then this will hold with δ∞ optimizing bias
2

∞ + v∞.

We are now ready to state the main result concerning the asymptotic validity and effi-

ciency of feasible CIs based on the estimator given in this section.

Theorem H.3. Suppose Assumptions H.1 and H.2 hold. Let L̂ = L̂δn,σ̃(·) where δn is chosen

to optimize one of the performance criteria for ωσ̃(·),n (FLCI length, RMSE, or a given

quantile of excess length), and suppose that σ̃(·) satisfies Assumption H.3 or Assumption H.4
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with σ̃+(0) = σ+(0) and σ̃+(0) = σ−(0). Let biasn = 1
2
(ωσ̃(·),n(δn) − δnω′σ̃(·),n(δn)) and ṽn =

ω′σ̃(·),n(δn)2 denote the worst-case bias and variance formulas. Let ĉα,δn = L̂−biasn−z1−α
√
ṽn

and χ̂ = cvα(biasn/
√
ṽn)
√
ṽn so that [ĉα,δn ,∞) and [L̂− χ̂, L̂+ χ̂] give the corresponding CIs.

The CIs [ĉα,δn ,∞) and [L̂− χ̂, L̂+ χ̂] have uniform asymptotic coverage at least 1−α. In

addition, np/(2p+1)χ̂
p→

F ,Qn
χ∞ where χ∞ = cvα(bias∞/

√
v∞)
√
v∞ with bias∞ and

√
v∞ given

in (S22) and δ∞ = zβ + z1−α if excess length is the criterion, δ∞ = arg minδ cvα( ω∞(δ)
2ω′∞(δ)

−
δ
2
)ω′∞(δ) if FLCI length is the criterion, and δ∞ = arg minδ[

1
4

(ω∞(δ∞)− δ∞ω′∞(δ∞))2 +

ω′∞(δ)2] if RMSE is the criterion.

Suppose, in addition, that each Qn contains a distribution where the uis are normal. If

the FLCI criterion is used, then no other sequence of linear estimators L̃ can satisfy

lim inf
n→∞

inf
f∈F ,Q∈Qn

Pf,Q

(
Lf ∈

{
L̃± n−p/(2p+1)χ

})
≥ 1− α

with χ a constant with χ < χ∞. In addition, for any sequence of confidence sets C with

lim infn→∞ inff∈F ,Q∈Qn Pf,Q (Lf ∈ C) ≥ 1−α, we have the following bound on the asymptotic

efficiency improvement at any f ∈ FRDT,p(0):

lim inf
n→∞

sup
Q∈Qn

np/(2p+1)Ef,Qλ(C)
2χ∞

≥ (1− α)22p/(2p+1)E[(z1−α − Z)2p/(2p+1) | Z ≤ z1−α]
4p

2p+1
infδ>0 cvα (δ/(4p)) δ−1/(2p+1)

where Z ∼ N (0, 1).

If the excess length criterion is used with quantile β (i.e. δn = zβ + z1−α), then any

one-sided CI [ĉ,∞) with

lim inf
n→∞

inf
f∈F ,Q∈Qn

Pf,Q (Lf ∈ [ĉ,∞)) ≥ 1− α

must satisfy

lim inf
n→∞

supf∈F ,Q∈Qn qf,Q,β (Lf − ĉ)
supf∈F ,Q∈Qn qf,Q,β (Lf − ĉα,δn)

≥ 1

and, for any f ∈ FRDT,p(0),

lim inf
n→∞

supQ∈Qn qf,Q,β (Lf − ĉ)
supQ∈Qn qf,Q,β (Lf − ĉα,δn)

≥ 22p/(2p+1)

1 + 2p/(2p+ 1)
.

To prove this theorem, we first prove a series of lemmas. To deal with the case where δ
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is chosen to optimize FLCI length or MSE, we will use the characterization of the optimal δ

for these criteria from Donoho (1994), which is described at the beginning of Supplemental

Appendix G. In particular, for ρA and χA,α given in Supplemental Appendix G, the δ that

optimizes FLCI length is given by the δ that maximizes ωσ̃(·),n(δ)χA,α(δ)/δ, and the result-

ing FLCI half-length is given by supδ>0 ωσ̃(·),n(δ)χA,α(δ)/δ. In addition, when δ is chosen

to optimize FLCI length, χ∞ in Theorem H.3 is given by supδ>0 ω∞(δ)χA,α(δ)/δ, and δ∞

maximizes this expression. If δ is chosen according to the MSE criterion, then δ maximizes

ωσ̃(·),n(δ)
√
ρA(δ)/δ and δ∞ maximizes ω∞(δ)

√
ρA(δ)/δ.

Lemma H.2. For any constant B, the following holds. Under Assumption H.4,

lim
n→∞

sup
‖(b+,b−,d+,d−)‖≤B

|Gn(b+, b−, d+, d−)−G∞(b+, b−, d+, d−)| = 0.

Under Assumption H.3,

sup
‖(b+,b−,d+,d−)‖≤B

|Gn(b+, b−, d+, d−)−G∞(b+, b−, d+, d−)| p→
F ,Qn

0.

Proof. Define G̃+
n (b+, d+) = 1

nhn

∑n
i=1 k

+
1 (xi/hn; b+, d+)2, and define G̃−n analogously. Also,

G̃+
∞(b+, d+) = pX,+(0)

∫∞
0
k+

1 (u; b+, d+)2 du, with G−∞ defined analogously. For each (b+, d+),

G̃n(b+, d+) → G∞(b+, d+) by Assumption H.1. To show uniform convergence, first note

that, for some constant K1, the support of k+
1 (·; b+, d+) is bounded by K1 uniformly over

‖(b+, d+)‖ ≤ B and similarly for k−1 (·; b−, d−). Thus, for any (b+, d+) and (b̄+, d̄+),

|G+
n (b+, d+)−G+

n (b̄+, d̄+)| ≤

[
1

nhn

n∑
i=1

1(|xi/hn| ≤ K1)

]
sup
|u|≤K1

|k+
1 (u; b+, d+)− k+

1 (u; b̄+, d̄+)|.

Since the term in brackets converges to a finite constant by Assumption H.1 and k+
1 is

Lipschitz continuous on any bounded set, it follows that there exists a constant K2 such

that |G+
n (b+, d+)−G+

n (b̄+, d̄+)| ≤ K2‖(b+, d+)− (b̄+, d̄+)‖ for all n. Using this and applying

pointwise convergence of G+
n (b+, d+) on a small enough grid along with uniform continuity

of G∞(b+, d+) on compact sets, it follows that

lim
n→∞

sup
‖(b+,b−,d+,d−)‖≤B

|G̃n(b+, d+)− G̃∞(b+, d+)| = 0,
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and similar arguments give the same statement for G̃−n and G̃−∞. Under Assumption H.4,∣∣∣Gn(b+, b−, d+, d−)−
[
G̃n(b+, d+)σ̃2

+(0) + G̃n(b−, d−)σ̃2
−(0)

]∣∣∣ ≤
k ·

[
1

nhn

n∑
i=1

1(|xi/hn| ≤ K1)

] [
sup

0<x≤K1hn

∣∣σ̃2
+(0)− σ̃2

+(x)
∣∣+ sup

−K1hn≤x<0

∣∣σ̃2
−(0)− σ̃2

−(x)
∣∣]

where k is an upper bound for |k+
1 (x)| and |k−1 (x)|. This converges to zero by left- and right-

continuity of σ̃ at 0. The result then follows since G∞(b+, b−, d+, d−) = σ̃2
+(0)G̃+

∞(b+, d+) +

σ̃2
−(0)G̃−∞(b−, d−). Under Assumption H.3, we have Gn(b+, b−, d+, d−) = G̃+

n (b+, d+)σ̂2
+ +

G̃+
n (b−, d−)σ̂2

−, and the result follows from uniform convergence in probability of σ̂2
+ and σ̂2

−

to σ̃2
+(0) and σ̃2

−(0).

Lemma H.3. Under Assumption H.4, ‖(b̃+,n, b̃−,n, d̃+,n, d̃−,n)‖ ≤ B for some constant B

and n large enough. Under Assumption H.3, the same statement holds with probability

approaching one uniformly over F ,Qn.

Proof. Let A(x, b, d) = b+
∑p−1

i=1 d(x/hn)j, where d = (d1, . . . , dp−1). Note Gn(b+, b−, d+, d−)

is bounded from below by 1/ sup|x|≤hn σ̃
2(x) times

1

nhn

∑
i:0<xi≤hn

(|A(xi, b+, d+)| − C)2
+ +

1

nhn

∑
i:−hn≤xi<0

(|A(xi, b−, d−)| − C)2
+

≥ 1

4nhn

∑
i:0<xi≤hn

[
A(xi, b+, d+)2 − 4C2

]
+

1

4nhn

∑
i:−hn≤xi<0

[
A(xi, b−, d−)2 − 4C2

]
(the inequality follows since, for any s ≥ 2C, (s − C)2 ≥ s2/4 ≥ s2/4 − C2 and, for

2C ≥ s ≥ C, (s− C)2 ≥ 0 ≥ s2/4− C2). Note that, for any B > 0

inf
max{|b+|,|d+,1|,...,|d+,p−1|}≥B

1

4nhn

∑
i:0<xi≤hn

A(xi, b+, d+)2

= B2 inf
max{|b+|,|d+,1|,...,|d+,p−1|}≥1

1

4nhn

∑
i:0<xi≤hn

A(xi, b+, d+)2

→ pX,+(0)

4
B2 inf

max{|b+|,|d+,1|,...,|d+,p−1|}≥1

∫ ∞
0

(
b+ +

p−1∑
i=1

d+,ju
j

)2

du

and similarly for the term involving A(xi, b−, d−) (the convergence follows since the infi-

mum is taken on the compact set where max{|b+|, |d+,1|, . . . , |d+,p−1|} = 1). Combining
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this with the previous display and the fact that 1
nh

∑
i:|xi|≤hn C

2 converges to a finite con-

stant, it follows that, for some η > 0, infmax{|b+|,|d+,1|,...,|d+,p−1|}≥B Gn(b+, b−, d+, d−) ≥ (B2η−
η−1)/ sup|x|≤hn σ̃

2(x) for large enough n. Let K be such that G∞(b̃+,∞, b̃−,∞, d̃+,∞, d̃−,∞) ≤
K/2 and max{σ̃2

+(0), σ̃2
−(0)} ≤ K/2. Under Assumption H.4, Gn(b̃+,∞, b̃−,∞, d̃+,∞, d̃−,∞) <

K and sup|x|≤hn σ̃
2(x) ≤ K for large enough n. Under Assumption H.3, Gn(b̃+,∞, b̃−,∞, d̃+,∞,

d̃−,∞) < K and sup|x|≤hn σ̃
2(x) ≤ K with probability approaching one uniformly over F ,Qn.

Let B be large enough so that (B2η−η−1)/K > K. Then, when Gn(b̃+,∞, b̃−,∞, d̃+,∞, d̃−,∞) ≤
K and sup|x|≤hn σ̃

2(x) ≤ K, (b̃+,∞, b̃−,∞, d̃+,∞, d̃−,∞) will give a lower value of Gn than any

(b+, b−, d+, d−) with max{|b+|, |d+,1|, . . . , |d+,p−1|, |b−|, |d−,1|, . . . , |d−,p−1|} ≥ B. The result

follows from the fact that the max norm on R2p is bounded from below by a constant times

the Euclidean norm.

Lemma H.4. If Assumption H.4 holds and b̃n → b̃∞, then (b̃+,n, b̃−,n, d̃+,n, d̃−,n) → (b̃+,∞,

b̃−,∞, d̃+,∞, d̃−,∞). If Assumption H.3 holds and b̃n
p→

F ,Qn
b̃∞ > 0, (b̃+,n, b̃−,n, d̃+,n, d̃−,n)

p→
F ,Qn

(b̃+,∞, b̃−,∞, d̃+,∞, d̃−,∞).

Proof. By Lemma H.3, B can be chosen so that ‖(b̃+,n, b̃−,n, d̃+,n, d̃−,n)‖ ≤ B for large enough

n under Assumption H.4 and ‖(b̃+,n, b̃−,n, d̃+,n, d̃−,n) ≤ B‖ with probability one uniformly

over F ,Qn under Assumption H.3. The result follows from Lemma H.2, continuity of G∞

and the fact that G∞ has a unique minimizer.

Lemma H.5. If Assumption H.4 holds and b̃n → b̃∞ > 0, then ω−1
n (np/(2p+1)b̃n)→ ω−1

∞ (b̃∞).

If Assumption H.3 holds and b̃n
p→

F ,Qn
b∞ > 0, then ω−1

n (np/(2p+1)b̃n)
p→

F ,Qn
ω−1
∞ (b̃∞).

Proof. The result is immediate from Lemmas H.2 and H.4.

Lemma H.6. Under Assumption H.4, we have, for any δ > 0,

sup
0<δ≤δ

∣∣np/(2p+1)ωn(δ)− ω∞(δ)
∣∣→ 0.

Under Assumption H.3, we have, for any δ > 0,

sup
0<δ≤δ

∣∣np/(2p+1)ωn(δ)− ω∞(δ)
∣∣ p→
F ,Qn

0.

Proof. The first statement is immediate from Lemma H.5 and Lemma G.1 (with np/(2p+1)ωn

playing the role of ωn in that lemma). For the second claim, note that, if |σ̂+ − σ+(0)| ≤ η

and |σ̂− − σ−(0)| ≤ η, ωn,σ(·)(δ) ≤ ωσ̃(·),n(δ) ≤ ωn,σ(·)(δ), where σ(x) = (σ+(0) − η)1(x >
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0) + (σ−(0) − η)1(x < 0) and σ(x) is defined similarly. Applying the first statement in the

lemma and the fact that |σ̂+−σ+(0)| ≤ η and |σ̂−−σ−(0)| ≤ η with probability approaching

one uniformly over F ,Qn, it follows that, for any ε > 0, we will have

ωσ+(0),σ−(0),∞(δ)− ε ≤ np/(2p+1)ωn(δ) ≤ ωσ+(0),σ−(0),∞(δ) + ε

for all 0 < δ < δ with probability approaching one uniformly over F ,Qn. By making η and

ε small, both sides can be made arbitrarily close to ω∞(δ) = ω∞,σ+(0),σ−(0)(δ).

Lemma H.7. Let r denote
√
ρA or χA,α. Under Assumption H.4,

sup
δ>0

np/(2p+1)ωn(δ)r(δ/2)/δ → sup
δ>0

ω∞(δ)r(δ/2)/δ.

Let δn minimize the left-hand side of the above display, and let δ∗ minimize the right-hand

side. Then δn → δ∗ under Assumption H.4 and δn
p→

F ,Qn
δ∗ under Assumption H.3. In

addition, for any 0 < α < 1 and Z a standard normal variable,

lim
n→∞

(1− α)E[np/(2p+1)ωn(2(z1−α − Z))|Z ≤ z1−α] = (1− α)E[ω∞(2(z1−α − Z))|Z ≤ z1−α].

Proof. All the statements are immediate from Lemmas H.6 and G.2 except for the statement

that δn
p→

F ,Qn
δ∗ under Assumption H.3. The statement that δn

p→
F ,Qn

δ∗ under Assumption H.3

follows by using Lemma H.6 and analogous arguments to those in Lemma G.2 to show that

there exist 0 < δ < δ such that δn ∈ [δ, δ] with probability approaching on uniformly in

F ,Qn, and that supδ∈[δ,δ]

∣∣np/(2p+1)ωn(δ)r(δ/2)/δ − ω(δ)r(δ/2)/δ
∣∣ p→
F ,Qn

0.

Lemma H.8. Under Assumptions H.1 and H.2, the following hold. If Assumption H.4 holds

and b̃n is a deterministic sequence with b̃n → b̃∞ > 0, then

sup
x
|k+
σ̃(·)(x; b̃+,n, d̃+,n)− k+

σ̃+(0)(x; b̃+,∞, d̃+,∞)| → 0,

sup
x
|k−σ̃(·)(x; b̃−,n, d̃−,n)− k−σ̃−(0)(x; b̃−,∞, d̃−,∞)| → 0.

If Assumption H.3 holds and b̃n is a random sequence with b̃n
p→

F ,Qn
b̃∞ > 0, then

sup
x
|k+
σ̃(·)(x; b̃+,n, d̃+,n)− k+

σ̃+(0)(x; b̃+,∞, d̃+,∞)| p→
F ,Qn

0,

sup
x
|k−σ̃(·)(x; b̃−,n, d̃−,n)− k−σ̃−(0)(x; b̃−,∞, d̃−,∞)| p→

F ,Qn
0
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Proof. Note that

|k+
σ̃(·)(x; b̃+,n, d̃+,n)− k+

σ̃+(0)(x; b̃+,∞, d̃+,∞)| ≤ |k+
σ̃(·)(x; b̃+,n, d̃+,n)− k+

σ̃+(0)(x; b̃+,n, d̃+,n)|

+ |k+
σ̃+(0)(x; b̃+,n, d̃+,n)− k+

σ̃+(0)(x; b̃+,∞, d̃+,∞)|.

Under Assumption H.4, the first term is, for large enough n, bounded by a constant times

sup0<x<hnK |σ̃−2(x)− σ̃−2
+ (0)|, where K is bound on the support of k+

1 (·; b+, d+) over b+, d+ in

a neighborhood of b̃+,∞, d̃+,∞. This converges to zero by Assumption H.4. The second term

converges to zero by Lipschitz continuity of k+
σ̃+(0). Under Assumption H.3, the first term is

bounded by a constant times |σ̂−2
+ − σ̃+(0)|, which converges in probability to zero uniformly

over F ,Qn by assumption. The second term converges in probability to zero uniformly over

F ,Qn by Lipschitz continuity of k+
σ̃+(0). Similar arguments apply to k−σ̃(·) in both cases.

Lemma H.9. Under Assumptions H.1 and H.2, the following holds. Let L̂ denote the

estimator L̂δn,σ̃(·) where σ̃(·) satisfies Assumption H.4 and δn = ω−1
σ̃(·),n(2n−p/(2p+1)b̃n) where

b̃n is a deterministic sequence with b̃n → b̃∞. Let biasn and ṽn denote the corresponding

worst-case bias and variance formulas. Let L̂∗ denote the estimator L̂δ∗n,σ̃(·) where σ̃∗(·) =

σ̂+1(x > 0) + σ̂−1(x < 0) satisfies Assumption H.3 with the same value of σ̃+(0) and σ̃−(0)

and δ∗n = ω−1
σ̃(·),n(2n−p/(2p+1)b̃∗n) where b̃∗n

p→
F ,Qn

b̃∞. Let bias
∗
n and ṽ∗n denote the corresponding

worst-case bias and variance formulas. Then

np/(2p+1)
(
L̂− L̂∗

)
p→

F ,Qn
0, np/(2p+1)

(
biasn − bias

∗
n

)
p→

F ,Qn
0,

ṽn
ṽ∗n

p→
F ,Qn

1.

Proof. We have

L̂ =
1

nhn

n∑
i=1

wn(xi/hn)yi =
1

nhn

n∑
i=1

wn(xi/hn)f(xi) +
1

nhn

n∑
i=1

wn(xi/hn)ui

where wn(u) =
k+
σ̃(·)(u;b̃+,n,d̃+,n)

1
nhn

∑n
j=1 k

+
σ̃(·)(xj/hn;b̃+,n,d̃+,n)

for u > 0 and similarly with k+
σ̃(·) replaced by k−σ̃(·)

for u < 0 (here, d̃+,n, d̃−,n, b̃+,n and b̃−,n are the coefficients in the solution to the inverse

modulus problem defined above). Similarly, L̂∗ takes the same form with wn replaced by

w∗n(u) =
k+
σ̃∗(·)(u;b̃∗n,d̃

∗
n)

1
nhn

∑n
j=1 k

+
σ̃∗(·)(xj/hn;b̃∗n,d̃

∗
n)

for u > 0 and similarly for u < 0 (with d̃∗+,n, d̃∗−,n, b̃∗+,n

and b̃∗−,n the coefficients in the solution to the corresponding inverse modulus problem). Let

w∞(u) =
k+
σ̃(·)(u;b̃∗n,d̃

∗
n)

pX,+(0)
∫
k+
σ̃(·)(u;b̃∞,d̃∞) du

Note that, by Lemma H.8, supu |wn(u) − w∞(u)| → 0 and
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supu |w∗n(u)− w∞(u)| p→
F ,Qn

0.

We have

L̂− L̂∗ =
1

nhn

n∑
i=1

[wn(xi/hn)− w∗n(xi/hn)]r(xi) +
1

nhn

n∑
i=1

[wn(xi/hn)− w∗n(xi/hn)]ui

where f(x) =
∑p−1

j=0 f
(j)
+ (0)xj1(x > 0)/j! +

∑p−1
j=0 f

(j)
− (0)xj1(x < 0)/j! + r(x) and we use the

fact that
∑n

i=1wn(xi/hn)xji =
∑n

i=1w
∗
n(xi/hn)xji for j = 0, . . . , p − 1. Let B be such that,

with probability approaching one, wn(x) = w∗n(x) = 0 for all x with |x| ≥ B. The first term

is bounded by

C

nhn

n∑
i=1

|wn(xi/hn)− w∗n(xi/hn)| · |xi|p ≤ sup
x
|wn(x)− w∗n(x)|Bhpn

C

nhn

n∑
i=1

1(|xi/hn| ≤ B).

It follows from Lemma H.8 that supx |wn(x)− w∗n(x)| p→
F ,Qn

0. Also, 1
nhn

∑n
i=11(|xi/hn| ≤

B) converges to a finite constant by Assumption H.1. Thus, the above display converges

uniformly in probability to zero when scaled by np/(2p+1) = h−pn .

For the last term in L̂− L̂∗, scaling by np/(2p+1) gives

1√
nhn

n∑
i=1

[wn(xi/hn)− w∞(xi/hn)]ui −
1√
nhn

n∑
i=1

[w∗n(xi/hn)− w∞(xi/hn)]ui.

The first term has mean zero and variance 1
nh

∑n
i=1[wn(xi/hn) − w∞(xi/hn)]2σ2(xi) which

is bounded by {supu[wn(u)− w∞(u)]2}
[
sup|x|≤Bhn σ

2(x)
]

1
nh

∑n
i=11(|xi/hn| ≤ B) → 0. Let

cn,+ =
σ̂2
+

nhn

∑n
i=1 kσ̃∗(·)(xi/hn; b̃∗+,n, d̃

∗
+,n) and c∞,+ = σ̃2

+(0)pX,+(0)
∫
kσ̃∗(·)(u; b̃∞, d̃∞) so that

cn,+
p→

F ,Qn
c∞,+, and define cn,− and c∞,− analogously. With this notation, we have, for xi > 0,

w∗n(xi/hn) = c−1
n,+σ̂

2
+kσ̃∗(·)(xi/hn; b̃∗+,n, d̃

∗
+,n) = c−1

n,+h+(xi/hn; b̃∗+,n, d̃
∗
+,n)

and w∞(u) = c−1
∞,+h+(xi/hn; b̃+,∞, d̃+,∞) where

h+(u; b+, d+) =
(
b+ +

p−1∑
j=1

d+,ju
j − C|u|p

)
+
−
(
b+ +

p−1∑
j=1

d+,ju
j + C|u|p

)
−
.
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Thus,

1√
nh

n∑
i=1

[w∗n(xi/hn)− w∞(xi/hn)]1(xi > 0)ui

=
c−1
n,+√
nh

n∑
i=1

[h+(u; b̃+,n, d̃+,n)− h+(u; b̃+,∞, d̃+,∞)]1(xi > 0)ui

+
(c−1
n,+ − c−1

n,∞)
√
nh

n∑
i=1

h+(u; b̃+,∞, d̃+,∞)1(xi > 0)ui.

The last term converges to zero uniformly in probability by Slutsky’s Theorem. The first

term can be written as c−1
n,+ times the sum of

1√
nh

n∑
i=1

(b̃∗+,n +

p−1∑
j=1

d̃∗+,n,j

(
xi
hn

)j
− C

∣∣∣∣ xihn
∣∣∣∣p
)

+

−

(
b̃+,∞ +

p−1∑
j=1

d̃+,∞,j

(
xi
hn

)j
− C

∣∣∣∣ xihn
∣∣∣∣p
)

+

ui
and a corresponding term with (·)+ replaced by (·)−, which can be dealt with using similar

arguments. Letting A(b+, d+) = {u : b+ +
∑p−1

j=1 d+,ju
j − C|u|p ≥ 0}, the above display is

equal to

1√
nh

n∑
i=1

(
b̃∗+,n − b̃+,∞ +

p−1∑
j=1

(d̃∗+,n,j − d̃+,∞,j)

(
xi
hn

)j)
1(xi/hn ∈ A(b̃+,∞, d̃+,∞))ui

+
1√
nh

n∑
i=1

(
b̃∗+,n +

p−1∑
j=1

d∗+,n,j

(
xi
hn

)j
− C

∣∣∣∣ xihn
∣∣∣∣p
)

·
[
1(xi/hn ∈ A(b̃∗+,n, d̃

∗
+,n))− 1(xi/hn ∈ A(b̃+,∞, d̃+,∞))

]
ui.

The first term converges to zero uniformly in probability by Slutsky’s Theorem. The second

term can be written as a sum of terms of the form

1√
nhn

n∑
i=1

(xi/hn)j
[
1(xi/hn ∈ A(b̃∗+,n, d̃

∗
+,n))− 1(xi/hn ∈ A(b̃+,∞, d̃+,∞))

]
ui

times sequences that converge uniformly in probability to finite constants. To show that this
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converges in probability to zero uniformly over F ,Qn, note that, letting u∗1, . . . , u
∗
k be the

positive zeros of the polynomial b̃+,∞ +
∑p−1

j=1 d̃+,j,∞u
j + Cup, the following statement will

hold with probability approaching one uniformly over F ,Qn for any η > 0: for all u with

1(u ∈ A(b̃∗+,n, d̃
∗
+,n)) − 1(u ∈ A(b̃+,∞, d̃+,∞)) 6= 0, there exists ` such that |u − u∗` | ≤ η. It

follows that the above display is, with probability approaching one uniformly over F ,Qn,

bounded by a constant times the sum over j = 0, . . . , p and ` = 1, . . . , k of

max
−1≤t≤1

∣∣∣∣∣∣ 1√
nhn

∑
i : u`−η≤xi/hn≤u`+tη

(xi/hn)jui

∣∣∣∣∣∣ .
By Kolmogorov’s inequality (see pp. 62-63 in Durrett, 1996), the probability of this quantity

being greater than a given δ > 0 under a given f,Q is bounded by

1

δ2

1

nhn

∑
i : u`−η≤xi/hn≤u`+η

varQ
[
(xi/hn)jui

]
=

1

δ2

1

nhn

∑
i : u`−η≤xi/hn≤u`+η

(xi/hn)2jσ2(xi)

→
pX,+(0)σ2

+(0)

δ2

∫ u∗`+η

u∗`−η
u2j du,

which can be made arbitrarily small by making η small.

For the bias formulas, we have

∣∣∣biasn − bias
∗
n

∣∣∣ =
C

nhn

∣∣∣∣∣
n∑
i=1

|wn(xi/hn)xpi | −
n∑
i=1

|w∗n(xi/hn)xpi |

∣∣∣∣∣
≤ C

nhn

n∑
i=1

|wn(xi/hn)− w∗n(xi/hn)| · |xi|p.

This converges to zero when scaled by np/(2p+1) by arguments given above.

For the variance formulas, we have

|ṽn − ṽ∗n| =
1

(nhn)2

∣∣∣∣∣
n∑
i=1

wn(xi/hn)2σ̃2(xi)−
n∑
i=1

w∗n(xi/hn)2σ̃∗2(xi)

∣∣∣∣∣
≤ 1

(nhn)2

n∑
i=1

∣∣wn(xi/hn)2σ̃2(xi)− w∗n(xi/hn)2σ̃∗2(xi)
∣∣

≤ 1

nhn
max
|x|≤B

∣∣wn(x)2σ̃2(x)− w∗n(x)2σ̃∗2(x)
∣∣ · 1

nhn

n∑
i=1

1(|xi/hn| ≤ B)
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with probability approaching one where B is a bound on the support of wn(x) and w∗n(x)

that holds with probability approaching one. Since 1
nhn

∑n
i=11(|xi/hn| ≤ B) converges to

a constant by Assumption H.1 and ṽn = n−2p/(2p+1)v∞(1 + o(1)) = (nhn)−1v∞(1 + o(1)),

dividing the above display by ṽn gives an expression that is bounded by a constant times

max|x|≤Bhn |wn(x)2σ̃2(x)− w∗n(x)2σ̃∗2(x)|, which converges uniformly in probability to zero.

We are now ready to prove Theorem H.3. First, consider the case with σ̃(·) is deterministic

and Assumption H.4 holding. By Lemma H.7, δn → δ∞. By Lemma H.6, it then follows that,

under Assumption H.4, np/(2p+1)wn(δn)→ ω∞(δ∞) so that Lemma H.8 applies to show that

Assumption H.5 holds with k+(x) = k+
σ̃+(0)(x; b̃+,∞, d̃+,∞) and k−(x) = k−σ̃−(0)(x; b̃−,∞, d̃−,∞),

where (b̃+,∞, d̃+,∞, b̃−,∞, d̃−,∞) minimize G∞(b̃+,∞, d̃+,∞, b̃−,∞, d̃−,∞) subject to b̃+,∞+ b̃−,∞ =

ω∞(δ∞)/2. The coverage statements and convergence of np/(2p+1)χ̂ then follow from Theo-

rem H.1 and by calculating bias∞ and v∞ in terms of the limiting modulus.

We now prove the optimality statements (under which the assumption was made that,

for each n, there exists a Q ∈ Qn such that the errors are normally distributed). In this

case, for any η > 0, if a linear estimator L̃ and constant χ satisfy

inf
f∈F ,Q∈Qn

P
(
Lf ∈ {L̃± n−p/(2p+1)χ}

)
≥ 1− α− η,

we must have χ ≥ supδ>0
np/(2p+1)ωσ(·),n(δ)

δ
χA,α+η(δ/2) by the results of Donoho (1994) (using

the characterization of optimal half-length at the beginning of Supplemental Appendix G).

This converges to supδ>0
ω∞(δ)
δ
χA,α+η(δ/2) by Lemma H.7. If lim infn inff∈F ,Q∈Qn P (Lf ∈

{L̃ ± n−p/(2p+1)χ}) ≥ 1 − α, then, for any η > 0, the above display must hold for large

enough n, so that χ ≥ limη↓0 supδ>0
ω∞(δ)
δ
χA,α+η(δ/2) = supδ>0

ω∞(δ)
δ
χA,α(δ/2) (the limit

with respect to η follows since there exist 0 < δ < δ <∞ such that the supremum over δ is

taken on [δ, δ] for η in a neighborhood of zero, and since χA,α(δ/2) is continuous with respect

to α uniformly over δ in compact sets).

For the asymptotic efficiency bound regarding expected length among all confidence

intervals, note that, for any η > 0, any CI satisfying the asymptotic coverage requirement

must be a 1−α− η CI for large enough n, which means that, since the CI is valid under the

Qn ∈ Qn where the errors are normal, the expected length of the CI at f = 0 and this Qn

scaled by np/(2p+1) is at least

(1− α− η)E
[
np/(2p+1)ωσ(·),n(2(z1−α−η − Z))|Z ≤ z1−α−η

]
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by Corollary 3.3. This converges to (1 − α − η)E [ω∞(2(z1−α−η − Z)) | Z ≤ z1−α−η] by

Lemma H.7. The result follows from taking η → 0 and using the dominated convergence the-

orem, and using the fact that ω∞(δ) = ω∞(1)δ2p/(2p+1). The asymptotic efficiency bounds for

the feasible one-sided CI follow from similar arguments, using Theorem 3.1 and Corollary 3.2

along with Theorem H.1 and Lemma G.3.

In the case where Assumption H.3 holds rather than Assumption H.4, it follows from

Lemma H.7 that δn
p→

F ,Qn
δ∞. Then, by Lemma H.9, the conditions in the last display of

Theorem H.1 hold with L̂δn,σ̃(·) playing the role of L̂∗ and L̂δn,σ(·) playing the role of L̂. The

results then follow from Theorem H.1 and the arguments above applied to the CIs based on

L̂δn,σ(·).
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σ2 = 0.1295 σ2 = 4 · 0.1295

CI method Cov. (%) Bias RL Cov. (%) Bias RL

Design 1, (b1, b2) = (0.45, 0.75)

Conventional, ĥIK 10.1 -0.098 0.54 81.7 -0.099 0.72

RBC, ĥIK , ρ = 1 64.4 -0.049 0.80 93.9 -0.050 1.06

Conventional, ĥCCT 91.2 -0.010 1.01 92.7 -0.010 1.26

RBC, ĥCCT 93.7 0.003 1.18 93.6 0.007 1.48

FLCI, C = 1 94.6 -0.024 1 94.9 -0.069 1

FLCI, C = 3 96.7 -0.009 1.25 96.5 -0.028 1.25

Design 2, (b1, b2) = (0.4, 0.9)

Conventional, ĥIK 54.2 -0.063 0.68 89.6 -0.085 0.77

RBC, ĥIK , ρ = 1 94.8 -0.006 1.00 95.9 -0.043 1.13

Conventional, ĥCCT 91.4 -0.009 1.02 92.7 -0.009 1.26

RBC, ĥCCT 93.6 0.003 1.19 93.6 0.007 1.49

FLCI, C = 1 94.5 -0.024 1 95.0 -0.065 1

FLCI, C = 3 96.8 -0.009 1.25 96.5 -0.028 1.25

Design 3, (b1, b2) = (0.25, 0.65)

Conventional, ĥIK 87.8 -0.030 0.74 91.4 -0.009 0.76

RBC, ĥIK , ρ = 1 94.8 -0.014 1.09 95.0 -0.044 1.12

Conventional, ĥCCT 90.9 -0.014 0.97 92.8 -0.013 1.25

RBC, ĥCCT 92.2 -0.009 1.14 93.5 -0.007 1.48

FLCI, C = 1 94.7 -0.022 1 96.7 -0.028 1

FLCI, C = 3 96.8 -0.009 1.25 96.6 -0.025 1.25

Design 4, f(x) = 0

Conventional, ĥIK 93.2 0.000 0.54 93.2 -0.001 0.72

RBC, ĥIK , ρ = 1 95.2 0.000 0.80 95.2 0.001 1.06

Conventional, ĥCCT 93.1 0.001 0.94 93.1 0.003 1.25

RBC, ĥCCT 93.5 0.001 1.12 93.5 0.004 1.48

FLCI, C = 1 96.8 0.001 1 96.9 0.000 1

FLCI, C = 3 96.8 0.001 1.25 96.8 0.002 1.25

Table S1: Monte Carlo simulation, C = 1. Coverage (“Cov”) and relative length relative
to optimal fixed-length CI for FRDH,2(1) (“RL”). “Bias” refers to bias of estimator around
which CI is centered. 11,000 simulation draws.
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σ2 = 0.1295 σ2 = 4 · 0.1295

CI method Cov. (%) Bias RL Cov. (%) Bias RL

Design 1, (b1, b2) = (0.45, 0.75)

Conventional, ĥIK 0.1 -0.292 0.44 22.4 -0.296 0.58

RBC, ĥIK , ρ = 1 27.1 -0.127 0.65 77.8 -0.149 0.85

Conventional, ĥCCT 89.3 -0.019 0.94 91.6 -0.031 1.05

RBC, ĥCCT 93.7 0.004 1.06 93.7 0.012 1.22

FLCI, C = 1 67.3 -8.078 0.80 73.1 -0.209 0.80

FLCI, C = 3 94.5 -0.032 1 94.6 -0.089 1

Design 2, (b1, b2) = (0.4, 0.9)

Conventional, ĥIK 60.0 -0.071 0.71 71.4 -0.193 0.72

RBC, ĥIK , ρ = 1 93.5 0.000 1.04 95.1 -0.020 1.05

Conventional, ĥCCT 89.7 -0.018 0.95 91.7 -0.029 1.05

RBC, ĥCCT 93.6 0.004 1.09 93.6 0.012 1.24

FLCI, C = 1 70.3 -0.073 0.80 76.3 -0.197 0.80

FLCI, C = 3 94.3 -0.030 1 94.6 -0.089 1

Design 3, (b1, b2) = (0.25, 0.65)

Conventional, ĥIK 79.9 -0.052 0.76 89.2 -0.085 0.73

RBC, ĥIK , ρ = 1 93.3 0.001 1.13 94.6 -0.072 1.07

Conventional, ĥCCT 80.7 -0.032 0.87 91.8 -0.042 1.01

RBC, ĥCCT 86.2 -0.017 1.00 92.7 -0.027 1.20

FLCI, C = 1 73.5 -0.069 0.8 93.8 -0.084 0.80

FLCI, C = 3 94.4 -0.030 1 95.1 -0.078 1

Design 5, f(x) = 0

Conventional, ĥIK 93.2 0.000 0.43 93.2 -0.001 0.57

RBC, ĥIK , ρ = 1 95.2 0.000 0.64 95.2 0.001 0.85

Conventional, ĥCCT 93.1 0.001 0.75 93.1 0.003 1.00

RBC, ĥCCT 93.5 0.001 0.89 93.5 0.004 1.18

FLCI, C = 1 96.8 0.001 0.80 96.9 0.000 0.80

FLCI, C = 3 96.8 0.001 1 96.7 0.002 1

Table S2: Monte Carlo simulation, C = 3. Coverage (“Cov”) and relative length relative
to optimal fixed-length CI for FRDH,2(1) (“RL”). “Bias” refers to bias of estimator around
which CI is centered. 11,000 simulation draws.
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Figure S1: Regression function for Monte Carlo simulation, Designs 1–3, and C = 1. Knots
b1 = 0.45, b2 = 0.75 correspond to Design 1, b1 = 0.4, b2 = 0.9 to Design 2, and b1 =
0.25, b2 = 0.65 to Design 3.
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