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Abstract

We consider inference on a regression coefficient under a constraint on the magni-

tude of the control coefficients. We show that a class of estimators based on an auxiliary

regularized regression of the regressor of interest on control variables exactly solves a

tradeoff between worst-case bias and variance. We derive “bias-aware” confidence in-

tervals (CIs) based on these estimators, which take into account possible bias when

forming the critical value. We show that these estimators and CIs are near-optimal

in finite samples for mean squared error and CI length. Our finite-sample results are

based on an idealized setting with normal regression errors with known homoskedastic

variance, and we provide conditions for asymptotic validity with unknown and possibly

heteroskedastic error distribution. Focusing on the case where the constraint on the

magnitude of control coefficients is based on an `p norm (p ≥ 1), we derive rates of con-

vergence for optimal estimators and CIs under high-dimensional asymptotics that allow

the number of regressors to increase more quickly than the number of observations.
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1 Introduction

We are interested in estimation and inference on a scalar coefficient β in a linear regression

model

Yi = wiβ + z′iγ + ε, i = 1, . . . , n, (1)

where the k-vector of controls may be large. In such settings, the classic ordinary least

squares (OLS) estimator exhibits variance that is too large to yield informative results, and

it is not even defined when k > n. To ameliorate this, the regularized regression literature

has considered modifying the OLS objective function to penalize large values of γ, thereby

lowering variance at the cost of increased bias.

The most popular of these approaches is to use the lasso (Tibshirani, 1996) or other

variants of `1 penalization (e.g. Candès and Tao, 2007; Belloni et al., 2011). There is a

large literature (see, e.g. Bühlmann and van de Geer, 2011, for a review) showing favorable

mean squared error (MSE) properties of these estimates under the assumption of sparsity

on γ. For inference, several papers have proposed CIs based on “double lasso” estimators

(see, among others, Belloni et al., 2014; Javanmard and Montanari, 2014; van de Geer et al.,

2014; Zhang and Zhang, 2014), with asymptotic justification relying on rate conditions for

the sparsity of γ. However, in many applications in economics, the sparsity assumption may

not be compelling. Furthermore, it is unclear what sparsity bound this approach implicitly

imposes in a given finite sample.

In this paper, we take a different approach. Our approach is based on imposing an a

priori bound on the magnitude of the control coefficients, formalized using a penalty function

Pen(·): we assume Pen(γ) ≤ C. In our leading specifications, we take the penalty to be an

`p norm, but our framework can incorporate any restrictions on γ that place it in a convex

symmetric set.1 For example, if z′iγ is a basis approximation to some smooth function, we

can define Pen(γ) to incorporate bounds on the derivatives of this function. The regularity

parameter C plays a role analogous to sparsity bound.

In this setting, we obtain sharp finite-sample results deriving near-optimal estimators

and CIs under the idealized assumption that the regression errors εi are Gaussian with

a known homoskedastic variance. We also study the optimal rates of convergence under

high-dimensional asymptotics when k � n. Finally, we discuss the use of heteroskedasticity-

robust variance estimators to form feasible versions of our CIs, and give conditions for their

asymptotic validity.

Our main finite-sample result shows that the class of estimators that exactly resolves the

1While we rule out sparsity constraints (which are non-convex), our results have implications for this case
as well. See Section 5 for a discussion and comparison.
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trade-off between worst-case bias and variance can be obtained by (1) regressing wi on zi

using Pen(·) as the penalty function with weight λ and then (2) using the residuals from this

regression as the instrument in the regression of Yi on wi. CIs based on these estimators can

be constructed by using a critical value that incorporates the worst-case bias of the estimator,

which we show can be obtained automatically as a byproduct of the regularized regression

in step (1). These CIs are “bias-aware” as they account for the potential finite-sample bias

of the estimator, and they are consequently valid in finite samples in the idealized Gaussian

setting. We show how to choose the tuning parameter λ to optimize the MSE of the resulting

estimator, or the length of the resulting CI.

We also consider the behavior of the bias-aware CI under high dimensional asymptotics

where k � n, and (wi, z
′
i)
′ are independent over i with eigenvalues of the variance matrix

bounded away from zero and infinity. We derive the rate at which the optimal CI shrinks

in the case where Pen(γ) is an `p norm. We show that, in the case where k � n and C

does not shrink with n, the optimal CI shrinks more slowly than n−1/2, so that the bias term

asymptotically dominates. Furthermore, we show that, in the `1 case, this rate cannot be

improved even if one imposes the same `1 bound in the regression of wi on zi, as well as a

certain degree of sparsity in both of these regressions.

As a key input for our approach, we require the researcher to explicitly specify the

regularity parameter C bounding the magnitude of Pen(γ). Our efficiency bounds show that

it is impossible to automate the choice of C when forming CIs. We therefore recommend

varying C as a form of sensitivity analysis and reporting a “breakdown” value given by the

largest value of C such that a given finding, such as rejecting a particular null hypothesis,

holds. We discuss how the choice of C can be guided by relating it to regression R2, and we

present a lower CI for C that can be used as a specification check to ensure that the chosen

value is not too low. As we discuss further in Section 5.2, CIs that do not choose regularity

constants (such as C or, for sparsity-based approaches, the sparsity bound) explicitly involve

implicit choices of these parameters. Our finite-sample approach has the advantage of making

such choices explicit. This ensures that our coverage guarantees and efficiency bounds are

not merely based on “asymptotic promises” about tuning parameters that may be hard to

evaluate in a particular sample.

Our results relate to several strands of literature. Our procedures and efficiency bounds

apply the general theory for linear functionals in convex Gaussian models developed in

Ibragimov and Khas’minskii (1985), Donoho (1994), Low (1995) and Armstrong and Kolesár

(2018). In particular, the optimal estimators are linear in outcomes, and the CIs are “bias-

aware” fixed-length confidence interval (FLCI) centered at such estimators. Our results add

to a growing recent literature applying this approach to various settings, including Armstrong
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and Kolesár (2020a,b), Kolesár and Rothe (2018), Imbens and Wager (2019), Rambachan

and Roth (2019), Noack and Rothe (2020), and Kwon and Kwon (2020). Muralidharan et al.

(2020) apply the approach in the present paper to experiments with factorial designs and

bounds on interaction effects.

The class of estimators we derive and, in particular, the idea of incorporating a regression

of wi on zi to estimate β, is related to various estimators proposed for this problem, going

back at least to the work of Robinson (1988) on the partly linear model. Our results provide

a novel finite-sample justification for this idea, as well as an exact result giving the optimal

form of this regression and the optimal estimator that incorporates it. Our results allow for a

general form of Pen(·), which reduce to existing estimators in a few special cases: our results

can in such cases be used to derive novel bias-aware CIs to accompany these estimators.

The results of Li (1982) imply that the optimal estimator uses ridge regression when the

penalty corresponds to an `2 norm. Li and Müller (2020) consider the weighted `2 norm

Pen(γ) = (
∑n

i=1(z′iγ)2)
1/2

. They take a somewhat different approach, which leverages the

particular invariance properties of this penalty function. Heckman (1988) derives optimal

linear estimators in the partly linear model, where the penalty function bounds the first or

second derivative of a univariate nonparametric regression function.

The problem of estimation and CI construction for β is distinct from the problem of

estimation of the regression function itself or the entire parameter vector, using global loss.

For the latter problem, see Zhang (2013) for the case where p ≤ 1 (which overlaps with the

class of bounds on γ that we consider when p = 1) and Shao and Deng (2012) for p = 2.

These papers also differ from the present paper in focusing on asymptotic results.

The rest of this paper is organized as follows. Section 2 presents finite-sample results in

the idealized model with Gaussian errors. Section 3 discusses implementation in the more

realistic setting with unknown error distribution. Section 4 presents asymptotic character-

izations of the efficiency bounds in the high dimensional setting under bounds on an `p

norm. Section 5 compares our approach to CIs designed for sparsity constraints. Proofs and

auxiliary results are in appendices.

2 Finite-sample results

This section sets up an idealized version of our model with Gaussian homoskedastic errors.

We then show how to construct estimators and CIs in this model that are near-optimal in

finite samples.
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2.1 Setup

We write the model in eq. (1) in vector form as

Y = wβ + Zγ + ε, (2)

where w = (w1, . . . , wn)′ ∈ Rn is the variable of interest with coefficient β ∈ R and Z =

(z′1, . . . , z
′
n)′ ∈ Rn×k is a matrix of control variables. The design matrix X = (w,Z) is treated

as fixed. To obtain finite-sample results, we further assume that the errors are normal and

homoskedastic,

ε ∼ N (0, σ2In), (3)

with σ2 known. We discuss implementation with possibly heteroskedastic and non-Gaussian

errors in Section 3. To make inference on β informative in settings where k is large relative

to n (including the case where k > n), the researcher needs to make a priori restrictions on

the control coefficients γ. We assume that these restrictions can be formalized by restricting

the parameter space for (β, γ′)′ to be R× Γ where, for some linear subspace G of Rk,

Γ = Γ(C) = {γ ∈ G : Pen(γ) ≤ C}, where Pen(·) is a seminorm on G. (4)

The requirement that Pen(·) be a seminorm means that it satisfies the triangle inequality

(Pen(γ + γ̃) ≤ Pen(γ) + Pen(γ̃)), and homogeneity (Pen(cγ) = |c|Pen(γ) for any scalar c),

but, unlike a norm, it is not necessarily positive definite (Pen(γ) = 0 does not imply γ = 0).

This allows us to cover settings where only a subset of the control coefficients is restricted.

To illustrate our methods, we focus on the case where Pen(·) corresponds to a weighted `p

norm. To this end, partition the controls into a set of k1 ≥ 0 unrestricted baseline controls

and a set of k2 = k−k1 additional controls, Z = (Z1, Z2). Partition γ = (γ′1, γ
′
2)′ accordingly.

Let HA denote the projection matrix onto the column space of a matrix A.

Example 2.1 (`2 penalty). We specify the penalty as

Pen(γ) = ‖Mγ‖2 =
√
γ′M ′Mγ, (5)

where the k2×k matrix M incorporates scaling the variables and picking out which variables

are to be constrained. If M = (0, Ik2), then Pen(γ) = ‖γ2‖2, with γ1 unconstrained. Setting

M = (0, (Z ′2(I −HZ1)Z2/n)1/2) corresponds to the specification considered in Li and Müller

(2020), which restricts the average of the squared mean effects z′2iγ2 on Yi, after controlling

for the baseline controls Z1.
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Example 2.2 (`1 penalty). We replace the norm in eq. (5) with an `1 norm. For simplicity,

we focus on the unweighted case, setting M = (0, Ik2). This leads to Pen(γ) = ‖γ2‖1 =∑k
j=k1+1|γj|.

In addition to the choice of the penalty, the specification of Γ also requires the researcher

to choose the regularity parameter C; here we take it as given, and defer a discussion of this

choice to Section 3.

While we have formulated the parameter space Γ in terms of a seminorm, this formulation

is not restrictive in the sense that essentially any convex set Γ that is symmetric (γ ∈ Γ

implies −γ ∈ Γ) can be defined in this way (see Yosida, 1995, Proposition 5, p. 26). While

we rule out non-convex constraints on Γ, such as sparsity, our results nonetheless have

implications for such settings, as we discuss in Section 5.

Our goal is to construct estimators and CIs for β. To evaluate estimators β̂ of β, we con-

sider their worst-case performance over the parameter space R×Γ under the MSE criterion,

RMSE(β̂; Γ) = sup
β∈R,γ∈Γ

Eβ,γ[(β̂ − β)2],

where Eβ,γ denotes expectation under (β, γ′)′. To evaluate CIs, we first require that they

satisfy a coverage requirement. A 100 · (1 − α)% CI with half-length χ̂ = χ̂(Y,X) is an

interval {β̂ ± χ̂} that satisfies

inf
β∈R,γ∈Γ

Pβ,γ

(
β ∈ {β̂ ± χ̂}

)
≥ 1− α,

where Pβ,γ denotes probability under (β, γ′)′. To compare two CIs under a particular pa-

rameter vector (β, γ′)′, we prefer the one with shorter expected length Eβ,γ[2χ̂]. Note that

optimizing expected length will not necessarily lead to CIs centered at an estimator β̂ that

is optimal under the MSE criterion.

2.2 Linear estimators CIs

We start by considering estimators that are linear in the outcomes Y , β̂ = a′Y , and we show

how to construct CIs based on such estimators. The n-vector of weights a may depend on

the design matrix X or the known variance σ2. In Section 2.3 below, we show how to choose

the weights a optimally, and in Section 2.4 we show that when a is optimally chosen, the

resulting estimators and CIs are optimal among all procedures, not just linear ones.

Under a given parameter vector (β, γ′)′, the bias of β̂ = a′Y is given by a′(wβ +

Zγ) − β. As (β, γ′)′ ranges over the parameter space R × Γ, the bias ranges over the
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set [− biasΓ(β̂), biasΓ(β̂)], where

biasΓ(β̂) = sup
β∈R,γ∈Γ

a′(wβ + Zγ)− β (6)

denotes the worst-case bias. The variance of β̂ does not depend on (β, γ′)′, and is given by

var(β̂) = σ2a′a.

To form a CI centered at β̂, note that the t-statistic (β̂ − β)/ var(β̂)1/2 follows a N (b, 1)

distribution where |b| ≤ biasΓ(β̂)/ var(β̂)1/2. Thus, denoting the 1−α quantile of a |N (B, 1)|
distribution by cvα(B), a two-sided CI can be formed as2

β̂ ± χ, where χ = var(β̂)1/2 · cvα

(
biasΓ(β̂)/ var(β̂)1/2

)
. (7)

We refer to this as a fixed-length confidence interval (FLCI), following the terminology in

Donoho (1994), since its length 2χ is fixed: it depends only on the non-random design matrix

X, and known variance σ2, but not on Y or the parameter vector (β, γ′)′.

2.3 Optimal weights

Both the MSE R(β̂; Γ) = biasΓ(β̂)2 + var(β̂) and the CI half-length χ given in eq. (7) are

increasing in the variance of β̂ and in its worst-case bias biasΓ(β̂). Therefore, to find the

optimal weights, it suffices to minimize variance subject to a bound B on worst-case bias,

which we can write as

min
a∈R

a′a s.t. sup
β∈R,γ∈Γ

a′(wβ + Zγ)− β ≤ B. (8)

We can then vary the bound B to find the optimal tradeoff for the given criterion (MSE or

CI length). Since this optimization does not depend on the outcome data Y , optimizing the

weights in this way does not affect the coverage properties of the resulting CI.

Our main computational result shows that the optimization problem in eq. (8) can be

computed using regularized regression of w on Z. With slight abuse of terminology, we refer

to this regression as a propensity score regression (even though we do not require wi to be

binary). To state the result, let π∗λ denote the coefficient estimate on Z in a regularized

propensity score regression with penalty Pen(π),

min
π
‖w − Zπ‖2

2 s.t. Pen(π) ≤ tλ, (9)

2The critical value cv1−α(B) can be computed as the square root of the 1 − α quantile of a non-central
χ2 distribution with 1 degree of freedom and non-centrality parameter B2.
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where tλ is a bound on the penalty term. Here, λ indexes the weight placed on the constraint

in eq. (9). It can be the Lagrange multiplier in a Lagrangian formulation of (9), or we can

solve (9) directly and take tλ = λ.

Theorem 2.1. Let π∗λ be a solution to (9), and suppose that ‖w − Zπ∗λ‖2 > 0. Then

a∗λ =
w−Zπ∗λ

(w−Zπ∗λ)′w
solves (8) with the bound given by B = C

tλ
· (w−Zπ∗λ)′Zπ∗λ

(w−Zπ∗λ)′w
. Consequently, the

worst-case bias and variance of the estimator

β̂λ = a∗λ
′Y =

(w − Zπ∗λ)′Y
(w − Zπ∗λ)′w

(10)

are given by

biasΓ(β̂λ) = CBλ, Vλ =
σ2‖w − Zπ∗λ‖2

2

[(w − Zπ∗λ)′w]2
, where Bλ =

1

Pen(π∗λ)

(w − Zπ∗λ)′Zπ∗λ
(w − Zπ∗λ)′w

. (11)

The result follows by applying the general theory of Ibragimov and Khas’minskii (1985),

Donoho (1994), Low (1995), and Armstrong and Kolesár (2018) to our setting, which allows

us to rewrite (8) as a convex optimization problem. Solving this convex problem then yields

the result. Theorem 2.1 shows that the class of linear estimators that optimally trade off

bias and variance (i.e. they solve eq. (8) for some B) can be obtained by a simple two-step

procedure. In the first step, we estimate a penalized propensity score regression (9), indexed

by the penalty term λ, with the penalty given by the penalty Pen that determines Γ. In the

second step, we use the residuals w−Zπ∗λ from this regression as instruments in a regression

of Y on w. The penalties λ∗MSE and λ∗FLCI that yield linear estimators β̂λ∗MSE
and β̂λ∗FLCI

that

optimize the MSE criterion, and yield the shortest CI length (which for linear estimators is

fixed; see eq. (7)), correspond to the solutions to the univariate optimization problems

λ∗MSE = argmin
λ

Vλ + (CBλ)
2, λ∗FLCI = argmin

λ
cvα(CBλ/

√
Vλ)
√
Vλ, (12)

respectively, where Vλ and Bλ are given in (11).

As tλ → 0, then, provided that Pen(·) is a norm on Z2, β̂λ converges to the short regression

estimate β̂short =
w′(I−HZ1

)Y

w′(I−HZ1
)w

that only includes the unrestricted controls Z1. This estimator

minimizes variance among all linear estimators with finite worst-case bias. In the other

direction, as tλ →∞, β̂λ converges to the long regression estimate β̂long = w′(I−HZ)Y
w′(I−HZ)w

, provided

that w is not in the column space of Z (which ensures that the condition ‖w − Zπ∗λ‖2 > 0

in Theorem 2.1 holds for all λ). This estimator minimizes variance among all linear estimators

that are unbiased, so Theorem 2.1 reduces to the Gauss-Markov theorem in this case. In

other words, the short and long regressions are corner solutions of the bias-variance tradeoff,
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in which weight is entirely placed on variance, or on bias.

Example 2.1 (`2 penalty, continued). In this case, a convenient Lagrangian formulation

for (9) is

π∗λ = argmin
π
‖w − Zπ‖2

2 + λ‖Mπ‖2
2,

If Z ′Z + λM ′M is invertible3, taking first order conditions immediately leads to the closed

form solution

π∗λ = (Z ′Z + λM ′M)−1Z ′w

which is a (generalized) ridge regression estimator of the propensity score.4 Simple algebra

shows that

β̂λ =
(w − Zπ∗λ)′Y
(w − Zπ∗λ)′w

= e′1

X ′X + λ

0 0

0 M ′M

−1

X ′Y, (13)

where e1 = (1, 0, . . . , 0)′ is the first standard basis vector. Thus, the optimal estimate can

also be obtained from a generalized ridge regression of Y onto X. The optimality of ridge

regression in this setting was shown by Li (1982), and the above derivation gives this result

as a special case of Theorem 2.1. If M = (0, (Z ′2(I − HZ1)Z2/n)1/2), then the estimator

further simplifies to a weighted average of the short and long regression estimates,

β̂λ = ω(λ)β̂short + (1− ω(λ))β̂long,

with weights

ω(λ) =
λ/n

λ/n+ ς2
, ς2 =

w′(I −HZ)w

w′(I −HZ1)w
=

var(β̂short)

var(β̂long)
.

The weight on the short regression increases with λ (as the relative weight on variance in

the bias-variance tradeoff increases), and decreases with ς2.

Example 2.2 (`1 penalty, continued). In this case, the solution to (9) is given by a variant

of the lasso estimate (Tibshirani, 1996) that only penalizes γ2.

The resulting estimator β̂λ is related to estimators recently proposed for constructing

CIs using the lasso (see, among others, Zhang and Zhang, 2014; Javanmard and Montanari,

2014; van de Geer et al., 2014; Belloni et al., 2014). These papers propose estimators for β

that combine lasso estimates from the outcome regression of Y onto X with lasso estimates

3This holds so long as no element π 6= 0 satisfies Zπ = 0 and Mπ = 0 simultaneously. Intuitively, if Z
has rank less than k, then the data is not informative about certain directions π, and we require the matrix
M to place sufficient restrictions on π in these directions.

4The term “ridge regression” is sometimes reserved for the case where M ′M = Ik. Here, we use the term
to include generalizations such as this one.
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from the propensity score regression, which yields an estimate that is non-linear in Y . In

contrast, our estimator only uses lasso estimates for the propensity score regression, and is

linear in Y . We give a detailed comparison between our estimator and this “double lasso”

approach in Section 5.

Example 2.3 (Partly linear model). To flexibly control for a low-dimensional set of covari-

ates z̃i, one may specify a semiparametric model

yi = wiβ + h(z̃i) + εi, P̃en(h) ≤ C̃,

where the penalty P̃en(h) is a seminorm on functions h(·) that penalizes the “roughness”

of h, such as the Hölder or Sobolev seminorm of order q. Minimax linear estimation in

this model for particular choices of P̃en(h) has been considered in Heckman (1988). This

setting also falls directly into our setup by defining Z = In, γi = h(z̃i), and Pen(γ) =

minh : h(z̃i)=γi, i=1,...n P̃en(h) (assuming the minimum is taken). Theorem 2.1 then implies

that the optimal estimator takes the form

β̂λ =

∑n
i=1(wi − g∗λ(z̃i))Yi∑n
i=1(wi − g∗λ(z̃i))wi

,

where g∗λ(·) is analogous to the regularized regression estimate π∗λ in (9): it solves

min
g

n∑
i=1

(wi − g(z̃i))
2 s.t. P̃en(g) ≤ tλ.

When P̃en is the Sobolev seminorm, this yields a spline estimate g∗λ (see, for example Wahba,

1990). The partly linear model was treated in an influential paper by Robinson (1988), as

well as earlier papers cited therein. Interestingly, the estimator proposed by Robinson (1988)

takes a similar form to the estimator β̂λ, involving residuals from a nonparametric regression

of w on z̃i. While the analysis in Robinson (1988) is asymptotic, our results imply that a

version of this estimator has sharp finite-sample optimality properties.

2.4 Efficiency among non-linear procedures

So, far we have restricted attention to procedures that are linear in the outcomes Y . We

now show that the estimator β̂λ∗MSE
, and CIs based on the estimator β̂λ∗FLCI

are in fact highly

efficient among all procedures, not just linear ones. This is due to the fact that the parameter

space Γ is convex and symmetric, and follows from the general results in Donoho (1994),

Low (1995) and Armstrong and Kolesár (2018) for estimation of linear functionals in normal
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models with convex parameter spaces.

Corollary 2.1. Let λ∗MSE and λ∗FLCI be given in eq. (12), where the optimization is over all

λ with tλ > 0 such that ‖w − Zπ∗λ‖2 > 0. Let β̂λ, Bλ and Vλ be given in (11). Let β̃ and

β̃± χ̃ denote some other (possibly non-linear) estimator and some other (possibly non-linear,

variable-length) CI.

(i) For any λ, supβ∈R,γ∈Γ varβ,γ(β̃) ≤ Vλ implies biasΓ(β̃) ≥ CBλ, and biasΓ(β̃) ≤ CBλ

implies supβ∈R,γ∈Γ varβ,γ(β̃) ≥ Vλ.

(ii) The worst-case MSE improvement of β̃ over β̂λ∗MSE
is bounded by

RMSE(β̃)

RMSE(β̂λ∗MSE
)
≥ κ∗MSE(X, σ,Γ) ≥ 0.8,

where κ∗MSE(X, σ,Γ) is given in Appendix A.2.

(iii) The improvement of the expected length of the CI β̃ ± χ̃ over the optimal linear FLCI

β̂λ∗FLCI
± cvα(CBλ∗FLCI

/V
1/2
λ∗FLCI

)V
1/2
λ∗FLCI

at γ = 0 and any β is bounded by

Eβ,0[χ̃]

cvα(CBλ∗FLCI
/V

1/2
λ∗FLCI

)V
1/2
λ∗FLCI

≥ κ∗FLCI(X, σ,Γ),

where κ∗FLCI(X, σ,Γ) is given in Appendix A.2 and is at least 0.717 when α = 0.05.

By construction, the estimator β̂λ minimizes variance among all linear estimators with a

bound CBλ on the bias (or equivalently, it minimizes bias among all linear estimators with a

bound Vλ on the variance). Corollary 2.1(i) shows that this optimality property is retained if

we enlarge the class of estimators to all estimators, including non-linear ones. As a result, the

minimax linear estimator β̂λ∗MSE
(i.e. the estimator attaining the lowest worst-case MSE in

the class of linear estimators) continues to perform well among all estimators, including non-

linear ones: by Corollary 2.1(ii), its worst-case MSE efficiency is at least 80%. The exact

efficiency bound κ∗MSE(X, σ,Γ) depends on the design matrix, noise level, and particular

choice of the parameter space, and can be computed explicitly in particular applications.

We have found that typically the efficiency is considerably higher.

Finally, Corollary 2.1(iii) shows that it is not possible to substantively improve upon the

FLCI based on β̂λ∗FLCI
in terms of expected length when γ = 0, even if we consider variable

length CIs that “direct power” at γ = 0 (potentially at the expense of longer expected

length when γ 6= 0). The construction of the FLCI may appear conservative: its length

depends on the worst-case bias over the parameter space for (β, γ′)′, which, as the proof of
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Theorem 2.1 shows, attains at γ = Ct−1
λ∗FLCI

π∗λ∗FLCI
, with Pen(γ) = C. Therefore, one may

be concerned that when the magnitude of γ is much smaller than C, the FLCI is too long.

Corollary 2.1(iii) shows that this is not the case, and the efficiency of the FLCI is at least

71.7% relative to variable-length CIs that optimize their expected length when γ = 0. The

exact efficiency bound κ∗MSE(X, σ,Γ) can be computed explicitly in particular applications,

and we have found that it is typically considerably higher than 71.7%.

A consequence of Corollary 2.1(iii) is that it is impossible to form a CI that is adaptive

with respect to the regularity parameter C that bounds Pen(γ). In the present setting, an

adaptive CI would have length that automatically reflects the true regularity Pen(γ) while

maintaining coverage under a conservative a priori bound on Pen(γ). However, according to

Corollary 2.1(iii), any CI must have expected width that reflects the conservative a priori

bound C rather than the true regularity Pen(γ), even when Pen(γ) is much smaller than the

conservative a priori bound C. In particular, it is impossible to automate the choice of the

regularity parameter C when forming a CI. We therefore recommend varying C as a form

of sensitivity analysis, or using auxiliary information to choose C; see Remark 3.3.

3 Implementation with non-Gaussian and heteroske-

dastic errors

We now discuss practical implementation issues, allowing ε to be non-Gaussian and het-

eroskedastic. As a baseline, we propose the following implementation:

Algorithm 3.1 (Baseline implementation).

Input Data (Y,X), penalty Pen(·), regularity parameter C, and initial estimates of residuals

ε̂init,1, . . . , ε̂init,n.

Output Estimator and CI for β.

1. Compute an initial variance estimator, σ̂2 = 1
n

∑n
i=1 ε̂

2
init,i, assuming homoskedasticity.

2. Compute the solution path {π∗λ}λ>0 for the regularized propensity score regression in

eq. (9), indexed by the penalty weight λ. For each λ, compute β̂λ as in eq. (10), and

Bλ, and Vλ as in eq. (11), with σ̂2 in place of σ2 in the formula for Vλ.

3. Compute λ∗MSE and λ∗FLCI as in eq. (12), and compute the robust variance estimate

V̂λ,rob =
∑n

i=1 a
∗
λ,i

2ε̂2
init,i, where a∗λ =

w−Zπ∗λ
(w−Zπ∗λ)′w

.

Return the estimator β̂λ∗MSE
and the CI β̂λ∗FLCI

± cvα

(
CBλ∗FLCI

/V̂
1/2
λ∗FLCI,rob

)
· V̂ 1/2

λ∗FLCI,rob.
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Let us now discuss the implementation choices and the optimality and validity properties

of the procedure in a series of remarks.

Remark 3.1 (Validity). As the initial residual estimates ε̂init,i, we can take residuals from

a regularized outcome regression of Y on X. We give conditions for asymptotic validity

of the resulting CIs in Appendix B.2. The key requirement is that the maximal Lindeberg

weight Lind(a∗λ) = max1≤i≤n a
∗
λ,i

2/
∑n

j=1 a
∗
λ,j

2 associated with the estimator β̂λ shrink quickly

enough relative to error in the estimator used to form the residuals. Ensuring that Lind(a∗λ)

is small prevents the estimator from putting too much weight on a particular observation,

so that the Lindeberg condition for the central limit theorem holds.

Whether these conditions hold for the optimal estimator will in general depend on the

form of Pen(γ) and on the magnitude of C relative to n. To ensure that Lind(a∗λ) is small

enough in a particular sample for a normal approximation to work well, one may impose a

bound on this term by only minimizing eq. (12) over λ such that Lind(a∗λ) is small enough

when computing λ∗FLCI. This is similar to proposals by Noack and Rothe (2020), and Javan-

mard and Montanari (2014) in other settings. See Appendix B.2 for further discussion.

Remark 3.2 (Efficiency). The weights a∗λ∗FLCI
and a∗λ∗MSE

are not optimal under heteroskedas-

ticity. One could in principle generalize the feasible generalized least squares (FGLS) ap-

proach used for unconstrained estimation by deriving optimal weights under the assumption

ε ∼ N (0,Σ) (which simply follows the above analysis after pre-multiplying by Σ−1/2), and

derive conditions under which the estimator and CI that plug in an estimate of Σ are optimal

asymptotically when the assumption of known variance and Gaussian errors is dropped. We

instead generalize the common approach of reporting OLS with Eicker-Huber-White (EHW)

standard errors in the unconstrained setting. The optimal weights a∗λ are computed under

the assumption of homoskedasticity, but we use a robust standard error to compute the CI

to ensure its validity when this assumption is violated.

Remark 3.3 (Choice of C). By Corollary 2.1(iii), one cannot use a data-driven rule to

automate the choice of C when forming a CI. We therefore recommend varying C as a form

of sensitivity analysis, and reporting a “breakdown value” C∗ as the largest value of C such

that some empirical finding holds.

In settings where the plausible values of γ cannot be assessed using prior knowledge, one

can relate the magnitude of Pen(γ) to other quantities. One possibility is to run a regularized

outcome regression of Y on X, with the constraint Pen(γ) ≤ C and report R2(C) = 1 −∑n
i=1 ε̂

2
i,C∑n

i=1(Yi−Ȳ )2
as a function of C, where {ε̂i,C} are the residuals from this regression, and Y =

1
n

∑n
i=1 Yi. The quantity R2(0) corresponds to the R2 in the regression with only the baseline

controls Z1 included. One can then examine how R2(C) varies with C to relate bounds on
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Pen(γ) to R2. This mirrors the common practice in empirical applications in economics of

examining how the magnitude of regression estimates and R2 change when regressors are

added (see Oster, 2019, for further discussion and references). We note, however, that due to

the impossibility result described above, additional assumptions would be needed to formally

justify choosing C based on such a procedure.

Finally, one can form a lower CI [Ĉ,∞) for C to assess the plausibility of a given bound

on Pen(γ). We present such a CI in Appendix B.3 for the case where Pen(γ) imposes an `p

constraint. Such CIs can be useful as a specification check to ensure that the chosen value

of the regularity parameter C is not too small.

Remark 3.4 (Computational issues). Step 2 involves computing the solution path of a

regularized regression estimator. Efficient algorithms exist for computing these paths under

`1 penalties and its variants (Efron et al., 2004; Rosset and Zhu, 2007). Under `2 penalty, the

regularized regression has a closed form, so that our algorithm can again be implemented in a

computationally efficient manner. For other types of penalties, the convexity of optimization

problem in eq. (9) can be exploited to yield efficient implementation. We also note that since

the solution path π∗λ does not depend on C, it only needs to be computed once, even when

multiple choice of C are considered in a sensitivity analysis.

4 Rates of convergence

We now consider the asymptotic behavior of CIs and efficiency bounds as n→∞. For ease

of notation, we assume all coefficients are constrained, and focus on the case Pen(γ) = ‖γ‖p
for some p ≥ 1, and the case Pen(γ) = ‖Zγ/

√
n‖2 (see Example 2.1). We allow for sequences

C = Cn for the bound on Pen(γ), which may go to 0 or ∞ with the sample size, as well as

high dimensional asymptotics where k = kn � n. We consider a standard “high dimensional”

setting, placing conditions on the design matrix X that hold with high probability when

wi, zi are drawn i.i.d. over i, with the eigenvalues of var((wi, z
′
i)
′) bounded away from zero

and infinity.

Let q ∈ [0,∞] denote the Hölder conjugate of p, satisfying 1/p + 1/q = 1. We will show

that when Pen(γ) = ‖γ‖p, the optimal linear FLCI shrinks at the rate

n−1/2 + Crq(k, n) where rq(k, n) =

k1/q/
√
n if q <∞,

√
log k/

√
n if q =∞.

. (14)

Furthermore, for p = 1 and p = 2, we will show that no other CI can shrink at a faster rate.

For p = 1, we will in fact prove a stronger result showing that imposing sparsity bounds on

14



the outcome and propensity score regressions, in addition to the bound on Pen(γ), does not

help achieve a faster rate, unless one assumes sparsity of order greater than Cn
√
n/ log(k)

(termed the “ultra sparse” case in Cai and Guo (2017)). For the case Pen(γ) = ‖Zγ/
√
n‖2,

we will show that the optimal rate is given by n−1/2 + C when k > n.

In the case where C = Cn does not decrease to zero with n, these rates require p < 2

(so that q > 2) for consistent estimation when k/n → ∞. In the case where p = 1, we can

then allow k to grow exponentially with n, whereas the cases 1 < p < 2 allows for k/n→∞
with k growing at a polynomial rate in n that depends on p. Since taking Cn → 0 rules out

even a single coefficient being bounded away from zero, this suggests taking p < 2 in “high

dimensional” settings, with p = 1 offering the best rate conditions. It also follows from these

rate results that if Cn = C does not decrease to zero with n, the bias term can dominate

asymptotically, making it necessary to explicitly account for bias in CI construction even in

large samples.

4.1 Upper bounds

To state the result, given η > 0, let En(η) denote the set of design matrices X for which

there exists δ ∈ Rk such that

1

n
‖w − Zδ‖2

2 ≤
1

η
,

1

n
w′(w − Zδ) ≥ η,

1

n
‖Z ′(w − Zδ)‖q ≤

rq(k, n)

η
.

Let R∗FLCI(X,C) = 2 cvα(CBλ∗FLCI
/V

1/2
λ∗FLCI

) · V 1/2
λ∗FLCI

denote the length of the optimal linear

FLCI.

Theorem 4.1. (i) Suppose Pen(γ) = ‖γ‖p. There exists a finite constant Kη depending

only on η such that R∗FLCI(X,C) ≤ Kηn
−1/2(1 + Ck1/q) for p > 1, and R∗FLCI(X,C) ≤

Kηn
−1/2(1 + C

√
log k) for p = 1 for any X ∈ En(η). (ii) Suppose Pen(γ) = ‖Zγ/

√
n‖2.

There exists a finite constant Kη depending only on η such that R∗FLCI(X,C) ≤ Kη(n
−1/2 +C)

for any X such that η ≤ w′w/n.

The second part of the theorem follows since the short regression without any controls

achieves a bias that is of the order C. The first part shows that the upper bounds on the

rate of convergence match those in eq. (14) if the high-level condition X ∈ En(η) holds. The

next lemma shows that this high-level condition holds with high probability when wi, Zi are

drawn i.i.d. from a distribution satisfying mild conditions on moments and covariances.

Lemma 4.1. Suppose wi, zi are drawn i.i.d. over i, and let δ = argminbE[(wi − z′ib)2] so

that z′iδ is the population best linear predictor error of wi. Suppose that the linear prediction
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error E[(wi−z′iδ)2] is bounded away from zero as k →∞, E[w2
i ] <∞, and that supj E[|(wi−

z′iδ)zij|max{2,q}] < ∞ when p > 1, and, for some c > 0, P (|(wi − z′iδ)zij| ≥ t) ≤ 2 exp(−ct2)

for all j when p = 1. Then, for any η̃ > 0, there exists η such that X ∈ En(η) with probability

at least 1− η̃ for large enough n.

4.2 Lower bounds

We now show that the rates in eq. (14) are sharp when p = 2, or p = 1.

4.2.1 p = 2

As with the upper bound in Section 4.1, we derive a bound that holds when the design

matrix X is in some set, and then show that this set has high probability when wi, zi are

drawn i.i.d. from a sequence of distributions satisfying certain conditions. We focus on the

case k ≥ n. Let Ẽn(η) denote the set of design matrices X such that

η ≤ 1

n
w′w ≤ η−1, min eig(ZZ ′/k) ≥ η,

where eig(A) denotes the set of eigenvalues of a square matrix A.

Theorem 4.2. Let β̂ ± χ̂ be a CI with coverage at least 1 − α under Pen(γ) ≤ C. (i) If

Pen(γ) = ‖γ‖2, there exists a constant cη > 0 depending only on η such that the expected

length under β = 0, γ = 0 satisfies E0,0[χ̂] ≥ cηn
−1/2(1 + Ck1/2) for any X ∈ Ẽn(η). (ii)

If Pen(γ) = ‖Zγ/
√
n‖2, there exists a constant cη > 0 depending only on η such that the

expected length under β = 0, γ = 0 satisfies E0,0[χ̂] ≥ cηn
−1/2(1 + C) for any X ∈ Ẽn(η).

If zi is i.i.d. over i, then EZZ ′/k is equal to the n × n identity matrix times the scalar
1
k

∑k
j=1E[z2

ij]. Thus, the condition on the minimum eigenvalue of ZZ ′/k will hold under

concentration conditions on the matrix Z ′Z so long as the second moments of the covariates

are bounded from below. Here, we state a result for a special case where the zij’s are i.i.d.

normal, which is immediate from Donoho (2006, Lemma 3.4).

Lemma 4.2. Suppose that wi are i.i.d. over i and that zij are i.i.d. normal over i and j.

Then, for any η̃ > 0, there exists η > 0 such that X ∈ Ẽn(η) with probability at least 1 − η̃
once n and k/n are large enough.

4.2.2 p = 1

We now consider the case where p = 1, as in Example 2.2. Rather than imposing condi-

tions on X in a fixed design setting that hold with high probability (as in Section 4.1 and

16



Section 4.2.1), we directly consider a random design setting, and we do not condition on X

when requiring coverage of CIs. This allows us to strengthen the conclusion of our theorem

by showing that the rate in Theorem 4.1 is sharp even if one imposes a linear model for wi

given zi along with sparsity and `1 bounds on the coefficients in this model.

We introduce some additional notation to cover the random design setting, which we use

only in this section. We consider a random design model

Y = wβ + Zγ + ε, ε | Z,w ∼ N (0, σ2In),

w = Zδ + v, v | Z ∼ N (0, σ2
vIn),

zij ∼ N (0, 1) i.i.d. over i, j.

We use Pϑ and Eϑ for probability and expectation when Y,X follow this model with parame-

ters ϑ = (β, γ′, δ′, σ2, σ2
v)
′. Let σ2

0 > 0 and σ2
v,0 > 0 be given and let Θ(C, s, η) denote the set

of parameters ϑ = (β, γ′, δ′, σ2, σ2
v) where |σ2−σ2

0| ≤ η, |σ2
v −σ2

v,0| ≤ η, ‖γ‖1 ≤ C, ‖δ‖1 ≤ C,

‖γ‖0 ≤ s and ‖δ‖0 ≤ s.

Theorem 4.3. Let β̂± χ̂ be a CI satisfying Pϑ(β ∈ {β̂± χ̂}) ≥ 1−α for all ϑ in Θ(Cn, Cn ·
K
√
n/ log k, ηn) where α < 1/2. Suppose k → ∞, Cn

√
log k/n → 0 and Cn ≤

√
k/n · k−η̃

for some η̃ > 0. Then, there exists c such that, if K is large enough and ηn → 0 slowly

enough, the expected length of this CI under the parameter vector ϑ∗ given by β = 0, γ = 0,

δ = 0, σ2 = σ2
0, σ2

v = σ2
v,0 satisfies Eϑ∗ [χ̂] ≥ c · n−1/2(1 + Cn

√
log k) once n is large enough.

Theorem 4.3 follows from similar arguments to Cai and Guo (2017) and Javanmard and

Montanari (2018), who provide similar bounds for the case where only a sparsity bound

is imposed. According to Theorem 4.3, imposing sparsity does not allow one to improve

upon the CIs that uses only the `1 bound ‖γ‖1 ≤ Cn (thereby attaining the rate in Theo-

rem 4.1), unless one imposes sparsity of order greater than Cn
√
n/ log k. We provide further

comparison with CIs that impose sparsity in the next section.

5 Comparison with sparsity constraints

Several authors have considered CIs for β using “double lasso” estimators (see, among others,

Belloni et al., 2014; Javanmard and Montanari, 2014; van de Geer et al., 2014; Zhang and

Zhang, 2014). These CIs are valid under the parameter space

Γ̃(s) = {γ : ‖γ‖0 ≤ s}, (15)
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where ‖γ‖0 = #{j : γj 6= 0} is the `0 “norm,” which indexes the sparsity of γ, and with s

increasing slowly enough relative to n and k. Since ‖γ‖0 is not a true norm or seminorm

(it is non-convex), this falls outside our setting. Here, we discuss some connections with

the optimal estimators we derive under `1 constraints with these double lasso estimators

(Section 5.1), and we provide a discussion comparing our approach to CIs based on these

estimators (Section 5.2).

5.1 Connection between double lasso and optimal estimator under

`1 constraints

In the case where Pen(γ) = ‖γ‖1 (example 2.2), the solution π∗λ to (9) is the lasso estimate

in the propensity score regression of w on Z, and our estimator (10) uses residuals from this

lasso regression. This is related to recently proposed “double lasso” estimators used to form

CIs for β under sparsity constraints on γ (see, among others, Belloni et al., 2014; Javanmard

and Montanari, 2014; van de Geer et al., 2014; Zhang and Zhang, 2014). For concreteness,

we focus on the estimator in Zhang and Zhang (2014), which is given by

β̂ZZ = β̂lasso +
(w − Zπ∗λ)′(Y − wβ̂lasso − Zγ̂lasso)

(w − Zπ∗λ)w
,

where β̂lasso, γ̂lasso are the lasso estimates from regressing Y on X:

β̂lasso, γ̂lasso = argmin
β,γ

‖Y − wβ − Zγ‖2
2 + λ̃(|β|+ ‖γ‖1)

for some penalty parameter λ̃ > 0.

Remark 5.1. Note that β̂ZZ is non-linear in Y , due to non-linearity of the lasso estimates

β̂lasso, γ̂lasso, which is consistent with the goal of efficiency in the non-convex parameter space

(15). In contrast, Corollary 2.1 shows that under the convex parameter space Γ = {γ : ‖γ‖1 ≤
C}, the estimator β̂λ in (10) which only uses lasso in the propensity score regression of w

on Z, is already highly efficient among all estimators, so that there is no further role for

substantive efficiency gains from the lasso regression of Y on X, or from the use of other

non-linear estimators.

To further understand the connection between these estimators, we note that Zhang and

Zhang (2014) motivate their approach by bounds of the form

‖γ̂lasso − γ‖1 ≤ C̃ where C̃ = const. · s
√

log k/
√
n, (16)
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which hold with high probability with the constant depending on certain “compatibility

constants” that describe the regularity of the design matrix X (see Bühlmann and van

de Geer, 2011, Theorem 6.1, and references in the surrounding discussion). This suggests

correcting the initial estimate β̂lasso by estimating β̃ = β − β̂lasso in the regression

Ỹ = w(β − β̂lasso) + Z(γ − γ̂lasso) + ε = wβ̃ + Zγ̃ + ε,

where Ỹ = Y − β̂lasso − Zγ̂lasso. Heuristically, we can treat the bound (16) as a constraint

‖γ̃‖1 ≤ C̃ on the unknown parameter γ̃ = γ − γ̂lasso and search for an optimal estimator of

β̃ = (β−β̂lasso) under this constraint. Applying the optimal estimator derived in Theorem 2.1

then suggests estimating β − β̂lasso with
(w−Zπ∗λ)′Ỹ

(w−Zπ∗λ)w
. Adding this estimate to β̂lasso gives the

estimate β̂ZZ proposed by Zhang and Zhang (2014). Whereas Zhang and Zhang (2014)

motivate their approach as one possible way of correcting the initial estimate β̂lasso using the

bound (16), the above analysis shows that their correction is in fact identical to an approach

in which one optimizes this correction numerically.5

Using the bound (16) it follows that β̂ZZ − β = b̃ + a∗λ
′ε where a∗λ =

(w−Zπ∗λ)

(w−Zπ∗λ)′w
are the

optimal weights under the `1 constraint ‖γ̃‖1 ≤ C̃, given in Theorem 2.1. Furthermore,

|b̃| ≤ C̃Bλ, with Bλ given in Theorem 2.1 and C̃ given in (16), and the variance of the

random term a∗λ
′ε is given by Vλ in Theorem 2.1. Using arguments similar to those used to

prove Theorem 4.1, it follows that C̃Bλ/
√
Vλ is bounded by a constant times s(log k)/

√
n,

so that one can ignore bias in large samples as long as this term converges to zero. This

leads to the CI proposed by Zhang and Zhang (2014), which takes the form

{β̂ZZ ± z1−α/2V̂
1/2
λ }, (17)

where V̂λ is an estimate of the variance Vλ. We use the term “double lasso CI” to refer to

this CI, and to related CIs such as those proposed in Belloni et al. (2014); Javanmard and

Montanari (2014); van de Geer et al. (2014).

Remark 5.2. To avoid having to assume that s(log k)/
√
n → 0 one could, in principle,

5The estimator proposed by Javanmard and Montanari (2014) performs a numerical optimization of

this form, but with the constraint (16) replaced by a constraint on |β̂lasso − β| + ‖γ̂lasso − γ‖1. Thus,
Theorem 2.1 shows that a modification of the constraint used in Javanmard and Montanari (2014) yields
the same estimator as Zhang and Zhang (2014).
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extend our approach and the above analysis to form valid bias-aware CIs as6

{β̂ZZ ± [C̃Bλ + z1−α/2V̂
1/2
λ ]}

Unfortunately, finding a computable constant C̃ in (16) that is sharp enough to yield useful

bounds in practice appears to be difficult, although it is an interesting area for future research.

5.2 Comparison of our approach with CIs based on double lasso

estimators

When should one use a double lasso CI, and when should one use the approach in the

present paper? In principle, this depends on the a priori assumptions one is willing to make,

and whether they are best captured by a sparsity bound or a bound on convex penalty

function, such as the `1 or `2 norm. In many settings, it may be difficult to motivate the

assumption that a regression function has a sparse approximation, whereas upper bounds

on the magnitude of the coefficients may be more plausible.

A key advantage of the CIs and estimators we propose is that they have sharp finite-

sample optimality properties and coverage guarantees in the fixed design Gaussian model

with known error variance. While this is an idealized setting, the worst-case bias calcula-

tions do not depend on the error distribution, and remain the same under non-Gaussian,

heteroskedastic errors. Our approach directly accounts for the potential finite-sample bias

of the estimator, rather than relying on “asymptotic promises” about rates at which certain

constants involved in bias terms converge to zero.

A flip side of this approach is that our CIs require an explicit choice of the regularity

parameter C in order to form a “bias-aware” CI. In contrast, CIs based on double lasso

estimators do not require explicitly choosing the regularity (in this case, the sparsity s),

since they ignore bias. This is justified under asymptotics in which s increases more slowly

than
√
n/ log k, which lead to the bias of β̂ZZ decreasing more quickly than its standard

deviation. Thus, one can say that the CI in eq. (17) is “asymptotically valid” without

explicitly specifying the sparsity index s: one need only make an “asymptotic promise” that

s increases slowly enough. However, such asymptotic promises are difficult to evaluate in a

given finite-sample setting. Indeed, shown in, for example, Li and Müller (2020), the double

lasso CI leads to undercoverage in finite samples even in relatively sparse settings. To ensure

good finite-sample coverage of the CI in eq. (17), one needs to ensure that the actual finite-

6We use the slightly more conservative approach of adding and subtracting the bound C̃Bλ rather than

using the critical value cvα(C̃Bλ/V̂
1/2
λ ) as in eq. (7), since the “bias” term for β̂ZZ is correlated with ε

through the first step estimates β̂lasso, γ̂lasso.
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sample bias is negligible relative to the standard deviation of the estimator. Since any bias

bound will depend on the sparsity index s (as in the bound in eq. (16)), this gets us back to

having to specify s.

Thus, CIs that ignore bias such as conventional CIs based on double lasso estimators

do not avoid the problem of specifying s or C: they merely make such choices implicit in

asymptotic promises. These issues show up formally in the asymptotic analysis of such CIs.

In particular, double lasso CIs require the “ultra sparse” asymptotic regime s = o(
√
n/ log k),

and they undercover asymptotically in the “moderately sparse” regime where s increases

more slowly than n with s �
√
n/ log k. Indeed, Theorem 4.3 above, as well as the results

of Cai and Guo (2017) and Javanmard and Montanari (2018) show that it is impossible to

avoid explicitly specifying s if one allows for the moderately sparse regime. On the other

end of the spectrum, in the “low dimensional” regime where k � n, the double lasso CI is

asymptotically equivalent to the usual CI based on the long regression. Thus, the double

lasso CI cannot be used when the goal is to use a priori information on γ to improve upon

the CI based on the long regression (as in, for example, Muralidharan et al., 2020), even if

s is small enough that such improvements would be warranted with prior knowledge of s.

In contrast, our approach optimally incorporates the bound C regardless of the asymptotic

regime.
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Appendix A Proofs

This Appendix gives proofs for all results in the main text.

A.1 Proof of Theorem 2.1

To prove Theorem 2.1, we first explain how our results fall into the general setup used in

Donoho (1994), Low (1995) and Armstrong and Kolesár (2018). In the notation of Armstrong

and Kolesár (2018), (β, γ′)′ plays the role of the parameter f , the functional of interest is given

by L(β, γ′)′ = β and K(β, γ′)′ = wβ + Zγ. The parameter space R× Γ is centrosymmetric,

so that the modulus of continuity (eq. (25) in Armstrong and Kolesár, 2018) is given by

ω(δ) = sup
β,γ

2β s.t. ‖wβ + Zγ‖2 ≤ δ/2, Pen(γ) ≤ C.

Using the substitution π = −γ/β, we can write this as

ω(δ) = sup
β,π

2β s.t. β‖w − Zπ‖2 ≤ δ/2, β Pen(π) ≤ C. (18)

Let βmod
δ , γmod

δ and πmod
δ = −γmod

δ /βmod
δ denote a solution to this problem when it exists. In

the notation of Armstrong and Kolesár (2018), (βmod
δ , γmod

δ
′
)′ plays the role of g∗δ , and the

solution (f ∗δ , g
∗
δ ) satisfies f ∗δ = −g∗δ = −(βmod

δ , γmod
δ

′
)′ by centrosymmetry.

This optimization problem is clearly related to the problem in eq. (9): we want to make

‖w − Zπ‖2 and Pen(π) small so that large values of β satisfy the constraint in (18). The

following lemma formalizes the connection.

Lemma A.1. If there exists π ∈ G such that w = Zπ and Pen(π) = 0, then ω(δ) =∞ for all

δ ≥ 0. Otherwise, (i) for any δ > 0, the modulus problem (18) has a solution βmod
δ , πmod

δ with

βmod
δ > 0. For tλ = C/βmod

δ = 2C/ω(δ), this solution πmod
δ is also a solution to the penalized

regression (9) with optimized objective ‖w−Zπmod
δ ‖2 = δ/(2βmod

δ ) = δ/ω(δ) > 0; and (ii) for

any tλ > 0, the penalized regression problem (9) has a solution π∗λ. Setting β∗λ = C/tλ and

δλ = 2β∗λ‖w − Zπ∗λ‖2 = (2C/tλ)‖w − Zπ∗λ‖2, the pair β∗λ, π
∗
λ solves the modulus problem (18)

at δ = δλ, with optimized objective ω(δλ) = 2C/tλ, so long as ‖w − Zπ∗λ‖2 > 0.

Proof. If there exists π ∈ G such that w = Zπ and Pen(π) = 0, then the result is immediate.

Suppose there does not exist such a π.

First, we show that the problem (9) has a solution. Let G(0) denote the linear subspace

of vectors π ∈ G such that Zπ = 0 and Pen(π) = 0, and let G(1) be a subspace such that

G = G(0) ⊕ G(1), so that we can write π ∈ G uniquely as π = π(0) + π(1) where π(0) ∈
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G(0) and π(1) ∈ G(1). Note that Zπ = Zπ(1) and, applying the triangle inequality twice,

Pen(π(1)) = Pen(π(1)) − Pen(−π(0)) ≤ Pen(π) ≤ Pen(π(0)) + Pen(π(1)) = Pen(π(1)) so that

Pen(π) = Pen(π(1)). Thus, the problem (9) can be written in terms of π(1) ∈ G(1) only.

The level sets of this optimization problem are bounded and are closed by continuity of

the seminorm Pen(·) (Goldberg, 2017), and so it has a solution, which is also a solution

in the original problem. Similarly, to show that the problem (18) has a solution, note

that feasible values of β are bounded by a constant times the inverse of the minimum of

max{‖w − Zπ‖2,Pen(π)} over π, which is strictly positive by continuity of Pen(π) and the

fact that there does not exist π with max{‖w − Zπ‖2,Pen(π)} = 0. Thus, we can restrict

β, π̃(1) to a compact set without changing the optimization problem.

To show the first statement in the lemma, note that βmod
δ > 0, since it is feasible to set

π = 0 and β = δ/(2‖w‖2), and that ‖w−Zπmod
δ ‖2 > 0, since otherwise a strictly larger value

of β could be achieved by multiplying πmod
δ by 1−η for η > 0 small enough. Now, if the first

statement did not hold, there would exist a π̃ with Pen(π̃) ≤ C/βmod
δ such that ‖w−Zπ̃‖2 ≤

‖w − Zπmod
δ ‖2 − ν for small enough ν > 0. Then, letting π̃η = (1 − η)π̃, we would have

‖w−Zπ̃η‖2 ≤ ‖w−Zπ̃‖2 +η‖Zπ̃‖2 ≤ ‖w−Zπmod
δ ‖2−ν+η‖Zπ̃‖2 ≤ δ/(2βmod

δ )−ν+η‖Zπ̃‖2.

Thus, for small enough η, ‖w − Zπ̃η‖2 will be strictly less than δ/(2βmod
δ ) for small enough

η and Pen(π̃η) ≤ (1 − η)C/βmod
δ < C/βmod

δ . This is a contradiction, since it would allow a

strictly larger value of β by setting π = π̃η.

The second statement follows immediately, since any pair β̃, π̃ satisfying the constraints

in the modulus (18) for δ = δλ with β̃ > β∗λ would have to have ‖w − Zπ̃‖2 < ‖w − Zπ∗λ‖2

while maintaining the constraint Pen(π∗λ) ≤ tλ.

We now prove Theorem 2.1. The class of bias-variance optimizing estimators, L̂δ in

the notation of Armstrong and Kolesár (2018), is given by
(wβmod

δ +Zγmod
δ )′Y

(wβmod
δ +Zγmod

δ )′w
, where we use

eq. (26) in Armstrong and Kolesár (2018) to compute the form of this estimator under

centrosymmetry, and Lemma D.1 in Armstrong and Kolesár (2018) to calculate the derivative

ω′(δ), since the problem is translation invariant with ι given by the parameter β = 1, γ = 0.

Given λ with ‖w − Zπ∗λ‖2 > 0, it follows from Lemma A.1 that, for δλ given in the lemma,

this estimator L̂δλ is equal to β̂λ = a∗λ
′Y where a∗λ =

w−Zπ∗δ
(w−Zπ∗δ )′w

, as defined in Theorem 2.1.

The worst-case bias formula in Theorem 2.1 then follows from the fact that the maximum

bias is attained at γ = −γmod
δλ

= Ct−1
λ π∗λ by Lemma A.1 in Armstrong and Kolesár (2018)

(or Lemma 4 in Donoho, 1994).
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A.2 Proof of Corollary 2.1

Part (i) of Corollary 2.1 follows from Low (1995). In particular, consider the one-dimensional

submodel β ∈ [−C/tλ, C/tλ], γ = −π∗λβ. Let bλ = (w − Zπ∗λ)/‖w − Zπ∗λ‖2
2, and let B ∈

R(n−1)×n be an orthogonal matrix that’s orthogonal to bλ. Note that in this submodel,

B′Y = B′(w − Zπ∗λ)β + B′ε = B′ε, which does not depend on the unknown parameter β,

and is independent of b′λY . Therefore, b′λY ∼ N (β, ‖bλ‖2
2σ

2) is a sufficient statistic in this

submodel. By Theorem 1 in Low (1995), in this submodel, the estimator β̂λ = a∗λ
′Y = κb′λY ,

where κ = ‖w−Zπ∗λ‖2
2/(w−Zπ∗λ)′w minimizes supβ var(δ(Y )) among all estimators δ(Y ) with

supβ|Eβ[δ(Y )] − β| ≤ (1 − κ)C/tλ = CBλ, and, likewise, it minimizes supβ|Eβ[δ(Y )] − β|
among all estimators with supβ var(δ(Y )) ≤ κ2σ2‖bλ‖2

2 = Vλ. Since the worst-case bias

biasΓ(β̂λ) ≤ CBλ and variance (β̂λ) = Vλ are the same in the full model by Theorem 2.1, the

result follows.

Part (ii) of Corollary 2.1 is immediate from Donoho (1994). In particular, it holds with

κ∗MSE(X, σ,Γ) =
supδ>0(ω(δ)/δ)2ρN(δ/2, σ)

supδ>0(ω(δ)/δ)2ρA(δ/2, σ)
≥ 0.8,

where ω(δ) is defined in eq. (18), and ρA and ρN are the minimax risk among affine estimators,

and among all estimators, respectively, in the bounded normal means problem Y ∼ N (θ, σ2),

|θ| ≤ τ , defined in Donoho (1994), and the last inequality follows from eq. (4) in Donoho

(1994).

Finally, Part (iii) of Corollary 2.1 follows from Corollary 3.3 in Armstrong and Kolesár

(2018), with

κ∗FLCI(X, σ,Γ) =
(1− α)E [ω(2(z1−α − Z)) | Z ≤ z1−α]

2 minδ cvα

(
ω(δ)

2ω′(δ)
− δ

2

)
ω′(δ)

,

where Z ∼ N (0, 1), ω(δ) is given in eq. (18), and by Lemma D.1 in Armstrong and Kolesár,

since the problem is translation invariant with ι given by the parameter β = 1, γ = 0,

ω′(δ) = δ/[w′(w − Zπmod
δ ) · ω(δ)]. The universal lower bound 0.717 when α = 0.05 follows

from Theorem 4.1 in Armstrong and Kolesár (2020b).

A.3 Proof of Theorem 4.1

To prove that the claimed upper bound holds forX ∈ En(η), we first note that, since the FLCI

based on β̂λ∗FLCI
is shorter than the FLCI based on any linear estimator a′Y , it suffices to show

that there exists a sequence of weight vectors a such that the worst-case bias and standard

deviation are bounded by constants times n−1/2(1+Ck1/q) when p > 1 or n−1/2(1+C
√

log k)

when p = 1. We consider the weights ãi = vi∑n
j=1 vjwj

, where vi = wi− z′iδ, with δ given in the
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definition of E(η). The variance of the estimator ã′Y is
∑n
i=1 v

2
i

(
∑n
i=1 viwi)

2 ≤ η−3/n. The worst-case

bias is

sup
γ : ‖γ‖p≤C

ã′Zγ = C‖Z ′ã‖q = n−1/2C
n−1/2‖Z ′(w − Zδ)‖q
n−1|w′(w − Zδ)|

≤ C
rq(k, n)

η2
,

where the first equality follows by Hölder’s inequality, and the last quality follows by def-

inition of En(η). This yields the convergence rate n−1/2 + Crq(k, n), as claimed. For

part (ii), by analogous reasoning, it suffices to consider the short regression estimator

β̂0 = w′Y/w′w. The variance of this estimator is σ2/w′w ≤ η−1σ2/n. The bias of the

estimator is w′Zγ/w′w. By the Cauchy-Schwarz inequality, this quantity is bounded in ab-

solute value by ‖w/w′w‖2‖Zγ‖2 = ‖Zγ/
√
n‖2/

√
w′w/n ≤ η−1/2C. This yields the desired

convergence rate.

A.4 Proof of Lemma 4.1

By the orthogonality condition for the best linear predictor, we have E[wivi] = E[v2
i ], where

vi = wi − z′iδ, which is bounded from below uniformly over k by assumption. Since E[wivi]

is bounded from above by Ew2
i < ∞, it follows from the law of large numbers for triangu-

lar arrays that 1
n

∑n
i=1 wivi ≥ η with probability approaching one once η is small enough.

Similarly, 1
n

∑n
i=1 v

2
i ≤ 1/η for large enough η by the law of large numbers for triangular

arrays.

For the last inequality in the definition of En(η), first consider the case p > 1 so that

q < ∞. We then have E‖ 1√
n

∑n
i=1 zivi‖qq = E

∑k
j=1|
∑n

i=1 vizij/
√
n|q ≤ k · K by von Bahr

(1965), where K is a constant that depends only on an upper bound for maxj E[|vizij|max{q,2}].

Applying Markov’s inequality gives the required bound. When p = 1, then q =∞ so that

P

∥∥∥∥∥ 1√
n

n∑
i=1

zivi

∥∥∥∥∥
q

≥ η−1
√

log k

 ≤ k∑
j=1

P

(∣∣∣∣∣ 1√
n

n∑
i=1

vizij

∣∣∣∣∣ > η−1
√

log k

)
,

which is bounded by 2k exp (−K · η−2 log k) = 2k1−Kη−2
for some constant K by Hoeffding’s

inequality for sub-Gaussian random variables (Vershynin, 2018, Theorem 2.6.3). This can

be made arbitrarily small uniformly in k by making η small, as required.

A.5 Proof of Theorem 4.2

By Corollary 2.1(iii), it suffices to show the bound for R∗FLCI(X,C). We first note that any

estimator a′Y that does not have infinite worst-case bias must satisfy a′w = 1, which implies

1 ≤ ‖a‖2 · ‖w‖2 by the Cauchy-Schwarz inequality, so that the variance σ2a′a is bounded by
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σ2/‖w‖2
2 ≤ σ2η−1/n. It therefore suffices to show that the worst-case bias is bounded by a

constant times C(k/n)1/2 (for (i)), or a constant times C (for (ii)).

For part (i), let γ̃ = −Cη
√
k/nZ ′(Z ′Z)−1w. Observe Pen(γ) = C(k/n)η

√
w′(Z ′Z)−1w ≤

Cη · (max eig (Z ′Z/k)−1)1/2
√
w′w/n ≤ C. Let β̃ = Cη

√
k/n. Then wβ̃ + Zγ̃ = 0. Thus,

β̃, γ̃ is observationally equivalent to the parameter vector β = 0, γ = 0, which implies that

the length of any CI must be at least Cη
√
k/n.

Part (ii), follows by an analogous argument, with γ̃ = −Z ′(ZZ ′)−1w · Cη1/2 and β̃ =

Cη1/2.

A.6 Proof of Theorem 4.3

Since the lower bound c·n−1/2 follows from standard efficiency bounds with finite dimensional

parameters (e.g. taking the submodel where δ = γ = 0), we show the lower bound Eϑ∗χ̂ ≥
Cn · c ·

√
log k/

√
n. To show this, we follow essentially the same arguments as Cai and Guo

(2017, Theorem 3) and Javanmard and Montanari (2018, Proposition 4.2), noting that the

required bounds on ‖δ‖ and ‖γ‖ hold for the distributions used in the lower bound. Under a

given parameter vector ϑ = (β, γ′, δ′, σ2, σ2
v), the data (Yi, wi, zi)

′ are i.i.d. normal with mean

zero and variance matrix

Σϑ =


σ2 + β2(σ2

v + ‖δ‖2
2) + 2βδ′γ + ‖γ‖2

2 β(σ2
v + ‖δ‖2

2) + γ′δ βδ′ + γ′

β(σ2
v + ‖δ‖2

2) + γ′δ σ2
v + ‖δ‖2

2 δ′

βδ + γ δ Ik

 .

Let fπ denote the distribution of the data {Yi, wi, zi}ni=1 when the parameters follow a prior

distribution π, and let χ2(fπ0 , fπ1) denote the chi-square distance between these distributions

for prior distributions π0 and π1. By Lemma 1 in Cai and Guo (2017), it suffices to find a

prior distribution π1 over the parameter space Θ(Cn, Cn ·K
√
n/ log k, ηn) such that π1 places

probability one on β = β1,n for some sequence with |β1,n| bounded from below by a constant

times Cn
√

log k/
√
n and such that χ2(fπ0 , fπ1)→ 0, where π0 is the distribution that places

probability one on ϑ∗ given in the statement of the theorem.

To this end, we first note that we can assume σ2
0 = σ2

v,0 = 1 without loss of generality,

since dividing Yi and wi by σ0 and σv,0 leads to the same model with parameters multiplied

by constants that depend only on σ0 and σv,0.

Let π1 be defined by a uniform prior for δ over the set with ‖δ‖0 = s and each element

δj ∈ {0, ν}, where s and ν will be determined below. We then set the remaining parameters

as deterministic functions of δ: β = −‖δ‖2
2/(1 − ‖δ‖2

2), γ = (1 − β)δ, σ2
v = 1 − ‖δ‖2

2 and

σ2 = (1− 2‖δ‖2
2)/(1− ‖δ‖2

2). We note that ‖δ‖2 is constant under this prior, so that β is a
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unit point mass as required. This leads to the variance matrix

Σϑ =


1 0 δ′

0 1 δ′

δ δ Ik


for ϑ in the support of π1, and Σϑ∗ = Ik+2 under the point mass π0. It now follows from

eqs. (118) and (119) in Javanmard and Montanari (2018) (which are applications of Lemmas

2 and 3 in Cai and Guo (2017)) that

χ2(fπ0 , fπ1) ≤ e
s2

k−s

(
1 +

s

k
(e4nν2 − 1)

)s
− 1.

We set ν = (
√
cν/2) ·

√
log k/

√
n for some cν > 0 so that e4nν2 = kcν . We then set s to

be the greatest integer less than Cn/ν = (2Cn/
√
cν) · (

√
n/
√

log k). The condition that

Cn ≤
√
k/n · k−η̃ for some η̃ > 0 then guarantees that s ≤ kψ for some ψ < 1/2, so that the

above display is bounded by

ek
2ψ−1(1−kψ−1)−1

(
1 +

1

s
k2ψ−1(kcν − 1)

)s
− 1.

This converges to zero as required if cν is chosen small enough so that 2ψ + cν < 1.

Finally, we note that, under π1, ‖δ‖2
2 = (1 + o(1))sν2 = (1 + o(1))Cnν = (1 + o(1)) ·

Cn(
√
cν/2) ·

√
log k/

√
n and |β| = ‖δ‖2

2(1 + o(1)) = (1 + o(1))Cn(
√
cν/2) ·

√
log k/

√
n. Thus,

we obtain a lower bound of Cn · c ·
√

log k/
√
n as required.

Appendix B Additional results

We present some additional results that are useful for practical implementation with unknown

error variance, and for assessing the plausibility of the assumption Pen(γ) ≤ C. Appendix B.1

considers the problem of estimating the regression function globally, and derives properties

of a regularized regression estimator in this problem. Appendix B.2 applies this estimator

as an initial estimator used to construct residuals for standard errors with unknown error

variance. Appendix B.3 presents a lower CI for C that can be used to assess the plausibility

of the assumption Pen(γ) ≤ C.

Throughout most of this section, we focus on the case where Pen(γ) = ‖γ2‖p, with

k2 →∞ and k1/n→ 0. We use the following notation. Let θ = (β, γ′)′, and letX = (X1, X2),

where X1 = (w,Z1), and X2 = Z2. We partition θ accordingly, with θ1 = (β, γ′1)′, and θ2 = γ2.
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Let HX1 = X1(X ′1X1)−1X ′1 and MX1 = I − HX1 denote projections onto the column space

of X1 and its orthogonal complement.

For some results in this section, we allow for the possibility that the distribution of εi is

unknown and possibly non-Gaussian, which requires some additional notation. We consider

coverage over a class Qn of distributions for ε, and we use Pθ,Q and Eθ,Q to denote probability

and expectation when the data Y are drawn according to Q ∈ Qn and θ = (β, γ′)′ ∈ R× Γ,

and we use the notation PQ and EQ for expressions that depend on ε only and not on θ. We

assume throughout that εi is independent across i under each Q ∈ Qn.

B.1 Estimating the regression function globally

Consider the regularized regression estimate of θ, given by

θ̂ = argmin
ϑ
‖Y −Xϑ‖2

2/n+ λ‖ϑ2‖p. (19)

We first give an elementary property of θ̂, following standard arguments (see Bühlmann and

van de Geer (2011, Section 6.2) and van de Geer (2000, Chapter 10.1)), and we derive rates

of convergence for this estimator. In the remainder of the appendix, use the estimator to

construct feasible CIs with unknown error distribution, and to construct a lower CI for the

regularity parameter C.

Lemma B.1. If ‖2X ′2MX1ε‖q/n ≤ λ0, then ‖MX1X2(θ̂2 − θ2)‖2
2/n + (λ − λ0)‖θ̂2‖p ≤ (λ +

λ0)‖θ2‖p.

Proof. We can write the objective function as

‖HX1Y −X1ϑ1 −HX1X2ϑ2‖2
2/n+ ‖MX1Y −MX1X2ϑ2‖2

2/n+ λ‖ϑ2‖p.

The first part of the objective can be set to zero for any ϑ2 by taking ϑ1 = (X ′1X1)−1X ′1Y −
(X ′1X1)−1X ′1X2ϑ2. Therefore,

θ̂2 = argmin
ϑ
‖MX1Y −MX1X2ϑ2‖2

2/n+ λ‖ϑ2‖p,

with θ̂1 = (X ′1X1)−1X ′1Y + (X ′1X1)−1X ′1X2θ̂2. This implies HX1ε = HX1Y − HX1X
′θ =

HX1X
′(θ̂ − θ), so that

‖X(θ̂ − θ)‖2
2/n = ‖HX1ε‖2

2/n+ ‖MX1X2(θ̂2 − θ2)‖2
2/n, (20)

Using the fact that θ̂2 attains a lower value of the objective than the true parameter value

28



θ2, we obtain an `p version of what in the `1 case Bühlmann and van de Geer (2011, Lemma

6.1) term “the Basic Inequality,”

‖MX1X2(θ̂2 − θ2)‖2
2/n+ λ‖θ̂2‖p ≤ 2ε′MX1X2(θ̂2 − θ2)/n+ λ‖θ2‖p.

By Hölder’s inequality, we have 2ε′MX1X2(θ̂2− θ2) ≤ ‖2X ′2MX1ε‖q‖θ̂2− θ2‖p so that, on the

event ‖2X ′2MX1ε‖q/n ≤ λ0, we have

‖MX1X2(θ̂2 − θ2)‖2
2/n+ λ‖θ̂2‖p ≤ λ0‖θ̂2 − θ2‖p + λ‖θ2‖p ≤ λ0‖θ̂2‖p + (λ+ λ0)‖θ2‖p,

which implies the result.

We now use this result to derive rates of convergence for the regularized regression esti-

mator in eq. (19) for estimating the regression function in `2 loss. For simplicity, we use a

fixed sequence for the penalty parameter satisfying certain sufficient conditions. In practice,

data-driven methods such as cross-validation may be appealing. We discuss another possible

choice based on moderate deviations bounds in Remark B.1 in Appendix B.3 below. Our aim

here is to present simple sufficient conditions to allow this estimator to be used for auxiliary

purposes such as standard error construction, and we leave the analysis of such extensions

for future research.

Theorem B.1. Suppose that, for some η > 0, and for all n and all Q ∈ Qn, we have

EQ[|εi|max{2+η,q}] < 1/η when p > 1 and PQ(|εi| > t) ≤ 2 exp(−ηt) when p = 1. Suppose

the elements of MX1X2 are bounded by some constant KX uniformly over n. Let θ̂ be the

penalized regression estimator defined in eq. (19) with λ = Knrq(k2, n), where Kn →∞ and

rq(k, n) given in eq. (14). Then

sup
θ∈Rk+1

sup
Q∈Qn

Pθ,Q

(
‖X(θ̂ − θ)‖2

2/n > Kn(k1/n+ 2‖θ2‖prq(k2, n))
)
→ 0,

Proof. Lemma B.1 and Lemma B.2 below, we have ‖MX1X2(θ̂− θ)‖2
2/n ≤ 2Kn‖θ2‖prq(k2, n)

with probability approaching one uniformly over θ ∈ Rk+1 and Q ∈ Qn. In addition, since

HX1 is idempotent with rank (k1 + 1)/n and EQεε
′ is diagonal with elements bounded

uniformly over Q ∈ Qn, we have EQ‖HX1ε‖2
2/n ≤ K̃k1/n for some constant K̃. The result

follows by Markov’s inequality and eq. (20).

Lemma B.2. Under the conditions of Theorem B.1, for any sequence Kn → ∞, we have

infQ∈Qn PQ (‖2X ′2MX1ε‖q/n ≤ Knrq(k2, n))→ 1.
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Proof. Let x̃ij = (2MX1X2)ij. For q <∞, we have

EQ‖2X ′2MX1ε‖qq = EQ

k2∑
j=1

(
n∑
i=1

x̃ijεi

)q

≤ k2 ·K · nq/2

for some constant K that depends only on η, q and KX , by von Bahr (1965). The result

then follows by Markov’s inequality. For q =∞, we have

PQ

(
‖2X ′2MX1ε‖q/n > Kn

√
log k2/

√
n
)

= PQ

(
max
j

∣∣∣∣∣
n∑
i=1

x̃ijεi

∣∣∣∣∣ /n > Kn

√
log k2/

√
n

)
,

which, for some K̃ > 0, is bounded by 2k2 exp(−K̃ ·K2
n log k2) = 2k

1−K̃·K2
n

2 → 0 by Hoeffding’s

inequality for sub-Gaussian random variables (Vershynin, 2018, Thm. 2.6.3).

B.2 Standard errors

We consider standard errors for linear estimators of the form β̂ = a′Y considered in the main

text. We assume that the weights a are nonrandom: they can depend on X but not on Y .

Let θ̂ be an estimate of θ, and let ε̂ = Y − Xθ̂. Consider the estimator V̂ =
∑n

i=1 a
2
i ε̂

2
i of

VQ = varQ(a′Y ) =
∑n

i=1 EQε
2
i . The weights a are allowed to depend on n so that a1, . . . , an

is a triangular array rather than a sequence, but we leave this implicit in the notation. We

consider coverage of the feasible bias-aware CI

β̂ ± cvα(biasΓ(β̂)/
√
V̂ ) ·

√
V̂ ,

where biasΓ(β̂) is the worst-case bias, given in (6), for the parameter space Θ = R × Γ for

the parameter θ = (β, γ′)′. We first present a general result for an arbitrary parameter space

Θ. We then specialize to the case where Θ = R× Rk1 × {γ2 : ‖γ2‖ ≤ Cn} and the residuals

ε̂i are formed using the regularized regression from Appendix B.1.

Theorem B.2. Suppose that, for some η > 0, η ≤ EQε
2
i and EQ|εi|2+η ≤ 1/η for all i and

all Q ∈ Qn, and that
√
ncn max1≤i≤n a

2
i /
∑n

j=1 a
2
j → 0 and infθ∈Θ,Q∈Qn Pθ,Q(‖X(θ̂ − θ)‖2 ≤

cn)→ 1 for some sequence cn such that cn/
√
n is bounded from above. Then, for any δ > 0,

infθ∈Θ,Q∈Qn PQ

(
|(V̂ − VQ)/VQ| < δ

)
→ 1. Furthermore,

lim inf
n

inf
θ∈Θ,Q∈Qn

PQ

(
β ∈

{
β̂ ± cvα(biasΓ(β̂)/

√
V̂ ) ·

√
V̂
})
≥ 1− α. (21)
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Proof. We have

V̂ − VQ
VQ

=

∑n
i=1 a

2
i (ε̂

2
i − ε2

i )

VQ
+

∑n
i=1 a

2
i (ε

2
i − EQε2

i )

VQ
.

Let b̃i = a2
i /
∑n

j=1 a
2
i . The second term is bounded by |

∑n
i=1 b̃i(ε

2
i −EQε2

i )|/η. The absolute

1+η moment of this quantity is bounded by a constant times
∑n

i=1 b̃
1+η
i ·1/η1+η by von Bahr

and Esseen (1965). This is bounded by max1≤i≤n b̃
η
i ·
∑n

i=1 b̃i/η
1+η = max1≤i≤n b̃

η
i /η

1+η → 0.

The first term is bounded by max1≤i≤n b̃i/η times

n∑
i=1

|ε̂2
i − ε2

i | =
n∑
i=1

|ε̂i + εi| · |ε̂i − εi| ≤ ‖ε̂+ ε‖2‖ε̂− ε‖2 ≤ (‖ε̂− ε‖2 + 2‖ε‖2) ‖ε̂− ε‖2.

For some constant K that depends only on η, we have 2‖ε‖2 ≤ K
√
n with probability

approaching one uniformly over Q ∈ Qn. Since ‖ε̂− ε‖2 = ‖X(θ̂ − θ)‖2 ≤ cn it follows that

the above display is bounded by (K
√
n+ cn) · cn with probability approaching one uniformly

over θ ∈ Θ, Q ∈ Qn. Plugging in the conditions on cn, it follows that for any δ > 0,

infθ∈Θ,Q∈Qn PQ

(∣∣∣(V̂ − VQ)/VQ

∣∣∣ < δ
)
→ 1. Coverage of the CI then follows from Theorem

F.1 in Armstrong and Kolesár (2018), with the central limit theorem condition following by

using the weights and moment bounds to verify the Lindeberg condition (see Lemma F.1 in

Armstrong and Kolesár (2018)).

The condition on Lind(a) = max1≤i≤n a
2
i /
∑n

j=1 a
2
j can be checked on a case-by-case

basis, or it can be imposed directly by incorporating a bound on Lind(a) in the optimization

problem that defines the optimal weights. In the latter case, we note that, by the proof

of Theorem 4.1, the optimal rate under `p constraints can be achieved by a linear FLCI

with weights a proportional to wi − z′iδ, where
∑n

i=1(wi − z′iδ)2 is bounded from below by a

constant times n. If wi− z′iδ is bounded, we can thus obtain the optimal rate of convergence

if we impose the upper bound nLind(a) ≤ K̃ for some large constant K̃ (or, more generally,

we can allow the bound K̃ to increase with n under appropriate conditions on Cn and p).

The conditions of this theorem hold with high probability when the design matrix is drawn

such that wi − z′iδ is the population best linear predictor error for predicting wi with zi, so

this essentially requires tail conditions on this best linear predictor error.

For the setting in Theorem B.1, we can take cn =
√
Knn(k1/n+ Cnrq(k2, n)) for a slowly

increasing constant Kn, so long as
√
Kn(k1/n+ Cnrq(k2, n)) · nLind(a)→ 0. This gives the

following result.

Corollary B.1. Suppose that, for some η > 0, η ≤ EQε
2
i and EQε

2+η
i ≤ 1/η for all i

and Q ∈ Qn, and let ε̂ be the residuals from the regularized regression in (19), with λ
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given in Theorem B.1 for some Kn → ∞, and suppose the conditions from Theorem B.1

hold. Then, if
√
Kn(k1/n+ Cnrq(k2, n)) · nLind(a)→ 0, the coverage result (21) holds with

Θ = R× Rk1 × {γ2 : ‖γ2‖ ≤ Cn}.

To interpret the conditions on Lind(a), consider the case where k1 is fixed, k/n→∞ and

Cn is bounded away from zero. Then the condition on Lind(a) reduces to
√
Kn · Cnrq(k, n) ·

nLind(a) → 0. Note also that, in this case, Cnrq(k, n) is the optimal rate of convergence

for β̂ from Theorem 4.1. Thus, in this case, we require nLind(a) to increase more slowly

than the inverse of the square root of the optimal rate of convergence for β̂. In particular,

if nLind(a) is bounded as n → ∞, then we can always construct a feasible bias-aware CI

that is asymptotically valid. As described above, this bound can be imposed on the weights

without affecting the rate of convergence of the width of the CI.

B.3 Lower CIs for C

We present a lower CI for the regularity parameter C, which can be used to assess the

plausibility of the assumption Pen(γ2) ≤ C. Let θ̂2(λ) denote the regularized regression

estimator of γ2, given in (19), with penalty λ. Let λ∗α denote an upper bound for the 1− α
quantile of ‖2X ′2MX1ε‖q/n. Let

Ĉ = sup
λ>λ∗α

λ− λ∗α
λ+ λ∗α

‖θ̂2(λ)‖p. (22)

In the idealized finite sample setting with ε ∼ N (0, σ2In) with σ2 known, λ∗α can be computed

exactly, so that Ĉ is feasible.

Theorem B.3. Let Ĉ be given in (22) with λ∗α given by the 1−α quantile of ‖2X ′2MX1ε‖q/n.

Then, for any β, γ1, γ2 with ‖γ2‖p ≤ C, we have Pβ,γ1,γ2(C ∈ [Ĉ,∞)) ≥ 1− α.

Proof. It follows from Lemma B.1 that, on the event ‖2X ′2MX1ε‖q/n ≤ λ∗α (which holds with

probability at least 1−α by assumption), we have λ−λ∗α
λ+λ∗α
‖θ̂2(λ)‖p ≤ ‖γ2‖p ≤ C for all λ > λ∗α.

Thus, the supremum of this quantity over λ in this set is also no greater than C on this

event.

We now present a feasible version of this CI when the error distribution is unknown and

possibly heteroskedastic in the case where p = 1. Let x̃ij = (M ′
X1
X2)ij. Since q =∞ in this

case, we need to choose λ̂∗α such that

2‖X2M
′
X1
ε‖∞/n = max

1≤j≤k2

∣∣∣∣∣
n∑
i=1

2x̃ijεi/n

∣∣∣∣∣ ≤ λ̂∗α
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with probability at least 1 − α asymptotically. Let V̂j =
∑n

i=1(2x̃ij/n)2ε̂2
i , where ε̂i is the

residual from an initial regularized regression with λ chosen as in Theorem B.1 for some

slowly increasing Kn. This leads to the moderate deviations critical value λ̂∗α, which sets

α =

k2∑
j=1

2Φ(−λ̂∗α/V̂
1/2
j ). (23)

Remark B.1. The analysis in Theorem B.1 of the regularized regression estimator (19) relies

on choosing a penalty parameter that is greater than 2‖X2M
′
X1
ε‖∞/n with high probability,

which is precisely the goal of the critical value λ̂∗α given in (23). This suggests an iterative

procedure in which one uses λ̂∗α (perhaps with some sequence αn converging slowly to zero)

as a data-driven penalty parameter in the regression (19) after using some initial penalty

choice satisfying the conditions of Theorem B.1 to form the residuals used to compute λ̂∗α.

The penalty choice λ̂∗α is related to data-driven choices of the lasso penalty in the case

with unknown error distribution. Belloni et al. (2012) use similar ideas to choose the penalty

parameter in this setting under `0 constraints, although our implementation is somewhat dif-

ferent, since our parameter space constrains the penalty loadings we place on each parameter.

While λ̂∗α does not take into account correlations between the moments, one could take into

account these correlations using a bootstrap implementation, as suggested by Chernozhukov

et al. (2013).

Theorem B.4. Suppose that, for some η > 0, the conditions of Theorem B.1 hold with p = 1,

and that 1
n

∑n
i=1 x̃

2
ij ≥ η for j = 1, . . . , k for all n, where x̃ij = (MX1X2)ij. Let λ̂∗α be given

in (22) with V̂j formed using residuals ε̂ from the regularized regression (19) with penalty λ

chosen as in Theorem B.1 for some Kn →∞ with Kn(k1/n+(Cn+1)
√

log k2/
√
n)·(log k2)2 →

0. Then, lim supn supβ,γ : ‖γ2‖1≤Cn supQ∈Qn Pθ,Q

(
max1≤j≤k2|

∑n
i=1 2x̃ijεi/n| > λ̂∗α

)
≤ α. In

particular, letting Ĉ be given in (22) with λ∗α given by λ̂∗α, we have

lim inf
n

inf
β,γ : ‖γ2‖1≤Cn

inf
Q∈Qn

Pθ,Q

(
Cn ∈ [Ĉ,∞)

)
≥ 1− α.

Proof. Let Ṽj =
∑n

i=1(2x̃ij/n)2ε2
i and let VQ,j =

∑n
i=1(2x̃ij/n)2EQε

2
i . Note that

|V̂j − Ṽj| =

∣∣∣∣∣
n∑
i=1

(2x̃ij/n)2(ε̂2
i − ε2

i )

∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

(2x̃ij/n)2(ε̂i + εi)(ε̂i − εi)

∣∣∣∣∣
≤ (2KX/n)2‖ε̂+ ε‖2‖ε̂− ε‖2 ≤ (2KX/n)2(2‖ε‖2 + ‖ε̂− ε‖2)‖ε̂− ε‖2.
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On the event that 2‖ε‖2 ≤
√
nK̃ and

‖ε̂− ε‖2 = ‖X(θ̂ − θ)‖2 ≤
√
nKn · (k1/n+ 2Cn

√
log n/

√
n)1/2,

which holds with probability approaching one uniformly over Q ∈ Qn when K̃ is large enough,

this is bounded by (2KX/n)2(K̃
√
n +
√
nKn(k1/n + 2Cn

√
log k2/

√
n)1/2) ·

√
nKn(k1/n +

2Cn
√

log k2/
√
n)1/2. Since VQ,j ≥ η̃/n uniformly over j and over n for some η̃ > 0, this

implies that, on this event, max1≤j≤k2

∣∣∣V̂j − Ṽj∣∣∣ /VQ,j is bounded by

4η̃−1(K2
X/n)(K̃

√
n+
√
nKn(k1/n+2Cn

√
log k2/

√
n)1/2)·

√
nKn(k1/n+2Cn

√
log k2/

√
n)1/2,

which in turn is bounded by a constant times K
1/2
n (k1/n + 2Cn

√
log k2/

√
n)1/2 so long as

this quantity converges to zero.

In addition, note that (Ṽj−VQ,j)/VQ,j =
∑n

i=1 ãij(εi−EQεi)/n, where ãij = x̃2
ij/(nVj,Q) ≤

K2
X η̃
−1 and η̃ is a lower bound for nVQ,j. Using this bound on ãij and the tail bound on εi,

it follows from Bernstein’s inequality for sub-exponential random variables that, for δ < 1,

PQ(|Ṽj − VQ,j|/VQ,j ≥ δ) is bounded from above by 2 exp(−cnδ2) for some constant c that

depends only on KX , η̃ and η. Thus, for any sequence δn, we have PQ(max1≤j≤k2 |Ṽj −
VQ,j|/VQ,j ≥ δ) ≤ 2k2 exp(−cnδ2

n), which converges to zero so long as δn is bounded from

below by a large enough constant times
√

log k2/
√
n.

This gives the rate of convergence for V̂j/VQ,j to one which, by continuous differentiability

of t 7→
√
t at t = 1, gives the same rates for

√
V̂j/
√
VQ,j. In particular, letting cn be

given by a large enough constant times K
1/2
n (k1/n + (Cn + 1)

√
log k2/

√
n)1/2, the event

max1≤j≤k2

∣∣∣∣√V̂j/
√
VQ,j − 1

∣∣∣∣ ≤ cn holds with probability approaching one uniformly over

Q ∈ Qn and β, γ with ‖γ2‖ ≤ Cn. On this event, we have

α =

k2∑
j=1

2Φ(−λ̂∗α/
√
V̂j) ≥

k2∑
j=1

2Φ(−λ̂∗α/(
√
VQn,j(1− cn))).

Thus, letting λα,n solve α =
∑k2

j=1 2Φ(−λα,n/(
√
VQn,j)), we have λ̂∗α/(1− cn) = λα̃,n for some

α̃ ≤ α, so that λ̂∗α/(1 − cn) ≥ λα,n. It follows that the non-coverage probability under any

sequence of parameters with ‖γ2‖p ≤ Cn and any sequence Qn ∈ Qn is bounded by a term

that converges to zero plus

PQn

(
max

1≤j≤k2

∣∣∣∣∣
n∑
i=1

2x̃ijεi

∣∣∣∣∣ > (1− cn)λα,n

)
≤

k2∑
j=1

Fn,j(−(1− cn)λα,n/
√
VQn,j)

34



=

k2∑
j=1

2Φ(−λα,n/
√
VQn,j) · An,j ·Bn,j,

where Fn,j(t) = PQn
(∣∣∑n

i=1 2x̃ijεi/
√
VQn,j

∣∣ > t
)
, An,j =

Φ(−(1−cn)λα,n/
√
VQn,j)

Φ(−λα,n/
√
VQn,j)

and Bn,j =

Fn,j(−(1−cn)λα,n/
√
VQn,j)

2Φ(−(1−cn)λα,n/
√
VQn,j)

. Since
∑k2

j=1 2Φ(−λα,n/
√
VQn,j) = α by definition, it suffices to show

that lim supn→∞max1≤j≤k2 max{An,j, Bn,j} ≤ 1.

For An,j, we use the bound Φ(−s)/Φ(−t) ≤ [s−1/(t−1− t−3)] exp((t2−s2)/2) (this follows

from the bound (t−1−t−3) exp(−t2/2)/
√

2π ≤ Φ(−t) ≤ t−1 exp(−t2/2)/
√

2π given in Lemma

2, Section 7.1 in Feller (1968)), which gives

An,j ≤
(1− cn)−1

1− (λα,n/
√
VQn,j)

−2
exp

(
[1− (1− cn)2]λ2

α,n/(2VQn,j)
)
.

Using standard calculations and the fact that nVQn,j is uniformly bounded from above and

below, we have (log k2)/K ≤ λ2
α,n/VQn,j ≤ K log k2 for some constant K. Thus, the right-

hand side of the above display converges to 1 uniformly over n and 1 ≤ j ≤ k so long as

cn log k2 → 0, which is guaranteed by the assumptions of the theorem.

For Bn,j, we use a moderate deviations bound as in Feller (1971, Chapter 16.7). In

particular, the bound |Fn,j(t)/(2Φ(t)) − 1| ≤ K̃t3/
√
n holds for all 1 ≤ t < tn, where tn is

any sequence with tn/n
1/6 → 0, and K̃ depends only on tn and the moment conditions and

tail bounds on εi (Armstrong and Chan, 2016, Lemma B.5). Using the fact that λα,n/
√
VQn,j

is bounded by a constant times
√

log k2, it follows that lim supn→∞max1≤j≤k2 Bn,j ≤ 1 so

long as (log k2)3/2/
√
n→ 0, which is guaranteed by the conditions of the theorem.
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