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Abstract

We construct robust empirical Bayes confidence intervals (EBCIs) in a normal

means problem. The intervals are centered at the usual linear empirical Bayes estima-

tor, but use a critical value accounting for shrinkage. Parametric EBCIs that assume a

normal distribution for the means (Morris, 1983b) may substantially undercover when

this assumption is violated. In contrast, our EBCIs control coverage regardless of the

means distribution, while remaining close in length to the parametric EBCIs when the

means are indeed Gaussian. If the means are treated as fixed, our EBCIs have an

average coverage guarantee: the coverage probability is at least 1−α on average across

the n EBCIs for each of the means. Our empirical application considers the effects of

U.S. neighborhoods on intergenerational mobility.
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1 Introduction

Empirical researchers in economics are often interested in estimating effects for many indi-

viduals or units, such as estimating teacher quality for teachers in a given geographic area.

In such problems, it is common to shrink unbiased but noisy preliminary estimates of these

effects toward baseline values, say the average effect for teachers with the same experience.

In addition to estimating teacher quality (Kane and Staiger, 2008; Jacob and Lefgren, 2008;

Chetty et al., 2014), shrinkage techniques are used in a wide range of applications including

estimating school quality (Angrist et al., 2017), hospital quality (Hull, 2020), the effects of

neighborhoods on intergenerational mobility (Chetty and Hendren, 2018), and patient risk

scores across regional health care markets (Finkelstein et al., 2017).

The shrinkage estimators used in these applications can be motivated by an empirical

Bayes (EB) approach. One imposes a working assumption that the individual effects are

drawn from a normal distribution (or, more generally, a known family of distributions). The

mean squared error (MSE) optimal point estimator then has the form of a Bayesian posterior

mean, treating this distribution as a prior distribution. Rather than specifying the unknown

parameters in the prior distribution ex ante, the EB estimator replaces them with consistent

estimates, just as in random effects models. This approach is attractive because one does not

need to assume that the effects are in fact normally distributed, or even take a “Bayesian” or

“random effects” view: the EB estimators have lower MSE (averaged across units) than the

unshrunk unbiased estimators, even when the individual effects are treated as nonrandom

(James and Stein, 1961).

In spite of the popularity of EB methods, it is currently not known how to provide uncer-

tainty assessments to accompany the point estimates without imposing strong parametric

assumptions on the effect distribution. Indeed, Hansen (2016, p. 116) describes inference in

shrinkage settings as an open problem in econometrics. The natural EB version of a confi-

dence interval (CI) takes the form of a Bayesian credible interval, again using the postulated

effect distribution as a prior (Morris, 1983b). If the distribution is correctly specified, this

parametric empirical Bayes confidence interval (EBCI) will cover 95%, say, of the true effect

parameters, under repeated sampling of the observed data and of the effect parameters. We

refer to this notion of coverage as “EB coverage”, following the terminology in Morris (1983b).

Unfortunately, we show that, in the context of a normal means model, the parametric EBCI

with nominal level 95% can have actual EB coverage as low as 74% for certain non-normal

effect distributions. The potential undercoverage is increasing in the degree of shrinkage,

and we derive a simple “rule of thumb” for gauging the potential coverage distortion.

To allow easy uncertainty assessment in EB applications that is reliable irrespective
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of the degree of shrinkage, we construct novel robust EBCIs that take a simple form and

control EB coverage regardless of the true effect distribution. Our baseline model is an

(approximate) normal means problem Yi ∼ N(θi, σ
2
i ), i = 1, . . . , n. In applications, Yi

represents a preliminary estimate of the effect θi for unit i. Like the parametric EBCI that

assumes a normal distribution for θi, the robust EBCI we propose is centered at the normality-

based EB point estimate θ̂i that shrinks Yi toward some baseline value, but it uses a larger

critical value to account for bias due to shrinkage.1 EB coverage is controlled in the class of

all distributions for θi that satisfy certain moment bounds, which we estimate consistently

from the data (similarly to the parametric EBCI, which uses the second moment). We show

that the baseline implementation of our robust EBCI is “adaptive”: its length is close to that

of the parametric EBCI when the θi’s are in fact normally distributed. Thus, little efficiency

is lost from using the robust EBCI in place of the non-robust parametric one.2

In addition to controlling EB coverage, the robust EBCIs with level 1 − α have a fre-

quentist average coverage property: If the means θ1, . . . , θn are treated as fixed, the coverage

probability, averaged across the n parameters θi, is at least 1 − α. In fact, under mild con-

ditions, at least a fraction 1 − α of the n EBCIs will contain their respective parameters

(with high probability as n→∞). This weakening of the usual requirement of coverage for

each parameter θi allows our robust EBCI to be shorter than the usual CI centered at the

unshrunk estimate Yi, and often substantially so.3 Intuitively, the average coverage criterion

only requires us to guard against the average coverage distortion induced by the biases of the

individual shrinkage estimators θ̂i, and the data is quite informative about whether most of

these biases are large, even though individual biases are difficult to estimate. To complement

the frequentist properties, our EBCIs can be viewed as Bayesian credible sets that are robust

to the prior on θi, in terms of ex ante coverage.

The average coverage criterion has the same motivation as the usual frequentist justifi-

cation of the EB point estimator : the EB point estimator achieves lower MSE on average

across units at the expense of potentially worse performance for some individual units (see,

for example, Efron, 2010, Ch. 1.3). Thus, researchers who use EB estimators instead of

the unshrunk Yi’s prioritize favorable group performance over protecting individual perfor-

1 Our methods are implemented in the Stata package ebreg, R package ebci, and Matlab package
ebci matlab, which are available at SSC, CRAN, and GitHub, respectively.

2 If the θi’s are not normally distributed, our robust EBCIs are valid but may leave room for greater
efficiency improvement, as we discuss in Section 5.3.

3Relaxing the usual notion of coverage in some way is necessary to obtain intervals that reflect the
efficiency improvement of the empirical Bayes approach. In particular, the results in Pratt (1961) imply that
for CIs with coverage 95%, one cannot achieve expected length improvements greater than 15% relative to
the usual unshrunk CIs, even if one happens to optimize length for the true parameter vector (θ1, . . . , θn).
See, for example, Corollary 3.3 in Armstrong and Kolesár (2018) and the discussion following it.
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mance. Our average coverage intervals make an analogous tradeoff: they guarantee coverage

and achieve short length on average across units at the expense of giving up on a coverage

guarantee for every individual unit. We examine this tradeoff in more detail in Section 5.

We caution, however, that the average coverage criterion is typically inappropriate in ap-

plications where shrinkage point estimation is unattractive. This includes settings where one

is interested in the magnitude or the identity of the largest θi, or the true effect for the largest

observed Yi (as in, for example, Hung and Fithian, 2019, or Andrews et al., 2021).4 It also

includes settings where a particular effect, say θ1, is of primary interest, or, more generally,

settings where the effects are not exchangeable, and their ordering is relevant (Greenshtein

and Ritov, 2019). Our methods are also not applicable if one is interested in functionals

of the random effects distribution (as in Bonhomme and Weidner, 2021, or Ignatiadis and

Wager, 2021), rather than in the effects themselves. Finally, the justification for our methods

is asymptotic in the number of parameters n. In our Monte Carlo simulations, we find that

our EBCIs have close to nominal coverage over a range of data generating processes (DGPs)

once n is greater than 100.

We illustrate our results by computing EBCIs for the causal effects of growing up in dif-

ferent U.S. neighborhoods (specifically commuting zones) on intergenerational mobility. We

follow Chetty and Hendren (2018), who apply EB shrinkage to initial fixed effects estimates.

Depending on the specification, we find that the robust EBCIs are on average 12–25% as

long as the unshrunk CIs.

Our underlying ideas extend to other linear and non-linear shrinkage settings with pos-

sibly non-Gaussian data. For example, our techniques allow for the construction of robust

EBCIs that contain (nonlinear) soft thresholding estimators, as well as average coverage

confidence bands for nonparametric regression functions.

The average coverage criterion was originally introduced in the literature on nonparamet-

ric regression (Wahba, 1983; Nychka, 1988; Wasserman, 2006, Ch. 5.8). Cai et al. (2014)

construct adaptive average coverage confidence bands. These procedures are challenging to

implement in our EB setting, and lack a clear finite-sample justification, unlike our procedure.

Liu et al. (2019) construct forecast intervals in a dynamic panel data model that guarantee

average coverage in a Bayesian sense (for a fixed prior). We discuss alternative approaches

to inference in EB settings in Section 5.

The rest of this paper is organized as follows. Section 2 illustrates our methods in the

context of a simple homoskedastic Gaussian model. Section 3 presents our recommended

4As we show in Section 6.2, our methods do extend to settings where we keep a subset of units i that
exceed a given cutoff. However, we do not allow this cutoff to diverge with the sample size, such as when
one focuses on the unit i with the single largest observed Yi.
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baseline procedure and discusses practical implementation issues. Section 4 presents our

main results on the coverage and efficiency of the robust EBCI, and on the coverage dis-

tortions of the parametric EBCI; we also verify the finite-sample coverage accuracy of the

robust EBCI through extensive simulations. Section 5 compares our EBCI with other infer-

ence approaches. Section 6 discusses extensions of the basic framework. Section 7 contains

an empirical application to inference on neighborhood effects. Appendices A to C give details

on finite-sample corrections, computational details, and formal asymptotic coverage results.

The Online Supplement contains proofs as well as further technical results. Applied readers

are encouraged to focus on Sections 2, 3 and 7.

2 Simple example

This section illustrates the construction of the robust EBCIs that we propose in a simplified

setting with no covariates and with known, homoskedastic errors. Section 3 relaxes these

restrictions, and discusses other empirically relevant extensions of the basic framework, as

well as implementation issues.

We observe n estimates Yi of elements of the parameter vector θ = (θ1, . . . , θn)′. Each

estimate is normally distributed with common, known variance σ2,

Yi | θ ∼ N(θi, σ
2), i = 1, . . . , n. (1)

In many applications, the Yi’s arise as preliminary least squares estimates of the parameters

θi. For instance, they may correspond to fixed effect estimates of teacher or school value

added, neighborhood effects, or firm and worker effects. In such cases, Yi will only be

approximately normal in large samples by the central limit theorem (CLT); we take this

explicitly into account in the theory in Appendix C.

A popular approach to estimation that substantially improves upon the raw estimator

θ̂i = Yi under the compound MSE
∑n

i=1E[(θ̂i − θi)
2] is based on empirical Bayes (EB)

shrinkage. In particular, suppose that the θi’s are themselves normally distributed,

θi ∼ N(0, µ2). (2)

Our discussion below applies if Eq. (2) is viewed as a subjective Bayesian prior distribution

for a single parameter θi, but for concreteness we will think of Eq. (2) as a “random effects”

sampling distribution for the n mean parameters θ1, . . . , θn. Under Eq. (2), it is optimal

to estimate θi using the posterior mean θ̂i = wEBYi, where wEB = 1 − σ2/(σ2 + µ2). To

avoid having to specify the variance µ2, the EB approach treats it as an unknown parameter,
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and replaces the marginal precision of Yi, 1/(σ2 + µ2), with a method of moments estimate

n/
∑n

i=1 Y
2
i , or the degrees-of-freedom adjusted estimate (n− 2)/

∑n
i=1 Y

2
i . The latter leads

to the classic estimator of James and Stein (1961), ŵEB = 1− σ2(n− 2)/
∑n

i=1 Y
2
i .

One can also use Eq. (2) to construct CIs for the θi’s. In particular, since the marginal

distribution of wEBYi − θi is normal with mean zero and variance (1− wEB)2µ2 + w2
EBσ

2 =

wEBσ
2, this leads to the 1− α CI

wEBYi ± z1−α/2w1/2
EBσ, (3)

where zα is the α quantile of the standard normal distribution. Since the form of the interval

is motivated by the parametric assumption (2), we refer to it as a parametric EBCI. With µ2

unknown, one can replace wEB by ŵEB.5 This is asymptotically equivalent to (3) as n→∞.

The coverage of the parametric EBCI in (3) is 1− α under repeated sampling of (Yi, θi)

according to Eqs. (1) and (2). To distinguish this notion of coverage from the case with fixed

θ, we refer to coverage under repeated sampling of (Yi, θi) as “empirical Bayes coverage”.

This follows the definition of an empirical Bayes confidence interval (EBCI) in Morris (1983b,

Eq. 3.6) and Carlin and Louis (2000, Ch. 3.5). Unfortunately, this coverage property relies

heavily on the parametric assumption (2). We show in Section 4.3 that the actual EB

coverage of the nominal 1 − α parametric EBCI can be as low as 1 − 1/max{z1−α/2, 1} for

certain non-normal distributions of θi with variance µ2; for 95% EBCIs, this evaluates to 74%.

This contrasts with existing results on estimation: although the EB estimator is motivated

by the parametric assumption (2), it performs well even if this assumption is dropped, with

low MSE even if we treat θ as fixed.

This paper constructs an EBCI with a similar robustness property: the interval will be

close in length to the parametric EBCI when Eq. (2) holds, but its EB coverage is at least 1−α
without any parametric assumptions on the distribution of θi. To describe the construction,

suppose that all that is known is that θi is sampled from a distribution with second moment

given by µ2 (in practice, we can replace µ2 by the consistent estimate n−1
∑n

i=1 Y
2
i − σ2).

Conditional on θi, the estimator wEBYi has bias (wEB−1)θi and variance w2
EBσ

2, so that the

t-statistic (wEBYi − θi)/wEBσ is normally distributed with mean bi = (1− 1/wEB)θi/σ and

variance 1. Therefore, if we use a critical value χ, the non-coverage of the CI wEBYi±χwEBσ,

conditional on θi, will be given by the probability

r(bi, χ) = P (|Z − bi| ≥ χ | θi) = Φ(−χ− bi) + Φ(−χ+ bi), (4)

5Alternatively, to account for estimation error in ŵEB , Morris (1983b) suggests adjusting the variance
estimate ŵEBσ

2 to ŵEBσ
2 + 2Y 2

i (1− ŵEB)2/(n− 2). The adjustment does not matter asymptotically.
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where Z denotes a standard normal random variable, and Φ denotes its cdf. Thus, by iterated

expectations, under repeated sampling of θi, the non-coverage is bounded by

ρ(σ2/µ2, χ) = sup
F
EF [r(b, χ)] s.t. EF [b2] =

(1− 1/wEB)2

σ2
µ2 =

σ2

µ2

, (5)

where EF denotes expectation under b ∼ F . Although this is an infinite-dimensional op-

timization problem over the space of distributions, it turns out that it admits a simple

closed-form solution, which we give in Proposition B.1 in Appendix B. Moreover, because

the optimization is a linear program, it can be solved even in the more general settings of

applied relevance that we consider in Section 3.

Set χ = cvaα(σ2/µ2), where cvaα(t) = ρ−1(t, α), and the inverse is with respect to the

second argument. Then the resulting interval

wEBYi ± cvaα(σ2/µ2)wEBσ (6)

will maintain coverage 1 − α among all distributions of θi with E[θ2i ] = µ2 (recall that we

estimate µ2 consistently from the data). For this reason, we refer to it as a robust EBCI.

Figure 1 in Section 3.1 gives a plot of the critical values for α = 0.05. We show in Section 4.2

below that by also imposing a constraint on the fourth moment of θi, in addition to the

second moment constraint, one can construct a robust EBCI that “adapts” to the Gaussian

case in the sense that its length will be close to that of the parametric EBCI in Eq. (3) if

these moment constraints are compatible with a normal distribution.

Instead of considering EB coverage, one may alternatively wish to assess uncertainty

associated with the estimates θ̂i = wEBYi when θ is treated as fixed. In this case, the EBCI

in Eq. (6) has an average coverage guarantee that

1

n

n∑
i=1

P
(
θi ∈ [wEBYi ± cvaα(σ2/µ2)wEBσ]

∣∣ θ) ≥ 1− α, (7)

provided that the moment constraint can be interpreted as a constraint on the empirical

second moment on the θi’s, n
−1∑n

i=1 θ
2
i = µ2. In other words, if we condition on θ, then the

coverage is at least 1−α on average across the n EBCIs for θ1, . . . , θn. To see this, note that

the average non-coverage of the intervals is bounded by (5), except that the supremum is only

taken over possible empirical distributions for θ1, . . . , θn satisfying the moment constraint.

Since this supremum is necessarily smaller than ρ(σ2/µ2, χ), it follows that the average

coverage is at least 1− α. In fact, if the Yi’s exhibit limited dependence across i, a stronger

property holds: the probability that at least a fraction 1 − α of the n EBCIs contain their
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respective true parameters converges to 1 as n→∞, cf. Remark 4.1 below.

The usual CIs Yi ± z1−α/2σ also of course achieve average coverage 1 − α. The robust

EBCI in Eq. (6) will, however, be shorter, especially when µ2 is small relative to σ2—see

Figure 3 below. The reduction in length is achieved by weakening the requirement that

each CI covers its true parameter 1 − α percent of the time to the requirement that the

coverage probability equal 1 − α on average across the CIs. It may seem surprising that

we can construct a narrower CI by centering it at the shrinkage estimates wEBYi. The

intuition for this is that the shrinkage reduces the variability of the estimates, at the expense

of introducing bias in the estimates. The bias necessitates the use of a larger critical value

cvaα(σ2/µ2). Because under the average coverage criterion we only need to control the bias

on average across i, rather than for each individual θi, this increase in the critical value is

smaller than the reduction in the standard error.

3 Practical implementation

We now describe how to compute a robust EBCI that allows for heteroskedasticity, shrinks

towards more general regression estimates rather than towards zero, and exploits higher

moments of the bias to yield a narrower interval. In Section 3.1, we describe the empiri-

cal Bayes model that motivates our baseline approach. Section 3.2 describes the practical

implementation of our baseline approach.

3.1 Motivating model and robust EBCI

In applied settings, the unshrunk estimates Yi will typically have heteroskedastic variances.

Furthermore, rather than shrinking towards zero, it is common to shrink toward an estimate

of θi based on some covariates Xi, such as a regression estimate X ′i δ̂. We now describe how

to adapt the ideas in Section 2 to such settings.

Consider a generalization of the model in Eq. (1) that allows for heteroskedasticity and

covariates,

Yi | θi, Xi, σi ∼ N(θi, σ
2
i ), i = 1, . . . , n. (8)

The covariate vector Xi may contain just the intercept, and it may also contain (functions of)

σi. To construct an EB estimator of θi, consider the working assumption that the sampling

distribution of the θi’s is conditionally normal:

θi | Xi, σi ∼ N(µ1,i, µ2), where µ1,i = X ′iδ. (9)
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The hierarchical model (8)–(9) leads to the Bayes estimate θ̂i = µ1,i+wEB,i(Yi−µ1,i), where

wEB,i = µ2
µ2+σ2

i
. This estimate shrinks the unrestricted estimate Yi of θi toward µ1,i = X ′iδ.

In contrast to (8), the normality assumption (9) typically cannot be justified simply by

appealing to the CLT; the linearity of the conditional mean µ1,i = X ′iδ may also be suspect.

Our robust EBCI will therefore be constructed so that it achieves valid EB coverage even

if assumption (9) fails. To obtain a narrow robust EBCI, we augment the second moment

restriction used to compute the critical value in Eq. (5) with restrictions on higher moments

of the bias of θ̂i. In our baseline specification, we add a restriction on the fourth moment.

In particular, we replace assumption (9) with the much weaker requirement that the

conditional second moment and kurtosis of εi = θi −X ′iδ do not depend on (Xi, σi):

E[(θi −X ′iδ)2 | Xi, σi] = µ2, E[(θi −X ′iδ)4 | Xi, σi]/µ
2
2 = κ, (10)

where δ is defined as the probability limit of the regression estimate δ̂.6 We discuss this

requirement further in Remark 3.1 below, and we relax it in Remark 3.2 below.

We now apply analysis analogous to that in Section 2. Let us suppose for simplicity

that δ, µ2, κ, and σi are known; we relax this assumption in Section 3.2 below, and in the

theory in Section 4. Denote the conditional bias of θ̂i normalized by the standard error by

bi = (wEB,i−1)εi/(wEB,iσi) = −σiεi/µ2. Under repeated sampling of θi, the non-coverage of

the CI θ̂i ± χwEB,iσ, conditional on (Xi, σi), depends on the distribution of the normalized

bias bi, as in Section 2. Given the moments µ2 and κ, the maximal non-coverage is given by

ρ(m2,i, κ, χ) = sup
F
EF [r(b, χ)] s.t. EF [b2] = m2,i, EF [b4] = κm2

2,i, (11)

where b is distributed according to the distribution F . Here m2,i = E[b2i | Xi, σi] = σ2
i /µ2.

Observe that the kurtosis of bi matches that of εi. Appendix B shows that the infinite-

dimensional linear program (11) can be reduced to two nested univariate optimizations. We

also show that the least favorable distribution—the distribution F maximizing (11)—is a

discrete distribution with up to 4 support points (see Remark B.1).

Define the critical value cvaα(m2,i, κ) = ρ−1(m2,i, κ, α), where the inverse is in the last

argument. Figure 1 plots this function for α = 0.05 and selected values of κ. This leads to

the robust EBCI

θ̂i ± cvaα(m2,i, κ)wEB,iσi, (12)

which, by construction, has coverage at least 1 − α under repeated sampling of (Yi, θi),

6Our framework can be modified to let (Xi, σi) be fixed, in which case δ depends on n. See the discussion
following Theorem 4.1 below.

9



cva0.05(m2, 1)

cvaP,0.05(m2)
cva0.05(m2, 3)

cva0.05(m2,∞)

1.96

3

4

5

6

7

0 1 2 3 4

m2

C
ri

ti
ca

l
va

lu
e

Figure 1: Function cvaα(m2, κ) for α = 0.05 and selected values of κ. The function cvaα(m2),
defined in Section 2, that only imposes a constraint on the second moment, corresponds to
cvaα(m2,∞). The function cvaP,α(m2) = z1−α/2

√
1 +m2 corresponds to the critical value

under the assumption that θi is normally distributed.

conditional on (Xi, σi), so long as Eq. (10) holds; it is not required that (9) holds. Note that

both the critical value and the CI length are increasing in σi.

3.2 Baseline implementation

Our baseline implementation of the robust EBCI plugs in consistent estimates of the unknown

quantities in Eq. (12), based on the data {Yi, Xi, σ̂i}ni=1, where σ̂i is a consistent estimate of

σi (such as the standard error of the preliminary estimate Yi), and Xi is a vector of covariates

that are thought to help predict θi.

1. Regress Yi onXi to obtain the fitted valuesX ′i δ̂, with δ̂ = (
∑n

i=1 ωiXiX
′
i)
−1∑n

i=1 ωiXiYi

denoting the weighted least squares estimate with precision weights ωi. Two natural

choices are setting ωi = σ̂−2i , or setting ωi = 1/n for unweighted estimates; see Ap-

pendix A.2 for further discussion. Let µ̂2 = max
{∑n

i=1 ωi(ε̂
2
i−σ̂2

i )∑n
i=1 ωi

,
2
∑n

i=1 ω
2
i σ̂

4
i∑n

i=1 ωi·
∑n

i=1 ωiσ̂2
i

}
, and

κ̂ = max
{∑n

i=1 ωi(ε̂
4
i−6σ̂2

i ε̂
2
i+3σ̂4

i )

µ̂22
∑n

i=1 ωi
, 1 +

32
∑n

i=1 ω
2
i σ̂

8
i

µ̂22
∑n

i=1 ωi·
∑n

i=1 ωiσ̂4
i

}
, where ε̂i = Yi −X ′i δ̂.

2. Form the EB estimate

θ̂i = X ′i δ̂ + ŵEB,i(Yi −X ′i δ̂), where ŵEB,i =
µ̂2

µ̂2 + σ̂2
i

.

10



3. Compute the critical value cvaα(σ̂2
i /µ̂2, κ̂) defined below Eq. (11).

4. Report the robust EBCI

θ̂i ± cvaα(σ̂2
i /µ̂2, κ̂)ŵEB,iσ̂i. (13)

We provide fast and stable software packages that automate these steps (see footnote 1). We

now discuss the assumptions needed for validity of the robust EBCI.

Remark 3.1 (Conditional EB coverage and moment independence). A potential concern

about EB coverage in a heteroskedastic setting is that in order to reduce the length of the

CI on average, one could choose to overcover parameters θi with small σi and undercover

parameters θi with large σi. Our robust EBCI ensures that this does not happen by requiring

EB coverage to hold conditional on (Xi, σi). This also avoids analogous coverage concerns

as a result of the value of Xi.

The key to ensuring this property is assumption (10) that the conditional second moment

and kurtosis of εi = θi −X ′iδ do not depend on (Xi, σi). Conditional moment independence

assumptions of this form are common in the literature. For instance, it is imposed in the

analysis of neighborhood effects in Chetty and Hendren (2018) (their approach requires

independence of the second moment), which is the basis for our empirical application in

Section 7. Nonetheless, such conditions may be strong in some settings, as argued by Xie et al.

(2012) in the context of EB point estimation. In Remark 3.2 below, we drop condition (10)

entirely by replacing µ̂2 and κ̂ with nonparametric estimates of these conditional moments;

alternatively, one could relax it by using a flexible parametric specification.7

Remark 3.2 (Nonparametric moment estimates). As a robustness check to guard against

failure of the moment independence assumption (10), one may replace the critical value

in Eq. (13) with cvaα((1−1/ŵEB,i)
2µ̂2i/σ̂

2
i , κ̂i), where µ̂2i and κ̂i are consistent nonparametric

estimates of µ2i = E[(θi −X ′iδ)2 | Xi, σi] and κi = E[(θi −X ′iδ)4 | Xi, σi]/µ
2
2i. The resulting

CI will be asymptotically equivalent to the CI in the baseline implementation if Eq. (10)

holds, but it will achieve valid EB coverage even if this assumption fails. In our empirical

application, we use nearest-neighbor estimates, as described in Appendix A.1. As a simple

diagnostic to gauge how much the second moment of θi −X ′iδ varies with (Xi, σi), one can

report the R2 gain in predicting ε̂2i − σ̂2
i using µ̂2i rather than the baseline estimate µ̂2, as

we illustrate in our empirical application.

7Another way to drop condition (10) is to base shrinkage on the t-statistics Yi/σi, applying the baseline
implementation above with Yi/σ̂i in place of Yi and 1 in place of σ̂i. Then the homoskedastic analysis in
Section 2 applies, leading to valid EBCIs without any assumptions about independence of the moments. See
Remark 3.8 and Appendix D.1 in Armstrong et al. (2020) for further discussion.
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Remark 3.3 (Average coverage and non-independent sampling). We show in Section 4 that

the robust EBCI satisfies an average coverage criterion of the form (7) when the parameters

θ = (θ1, . . . , θn) are considered fixed, in addition to achieving valid EB coverage when the

θi’s are viewed as random draws from some underlying distribution. To guarantee average

coverage or EB coverage, we do not need to assume that the Yi’s and θi’s are drawn indepen-

dently across i. This is because the average coverage and EB coverage criteria only depend

on the marginal distribution of (Yi, θi), not the joint distribution. Indeed, in deriving the

infeasible CI in Eq. (12), we made no assumptions about the dependence structure of (Yi, θi)

across i. Consequently, to guarantee asymptotic coverage of the feasible interval in Eq. (13)

as n→∞, we only need to ensure that the estimates µ̂2, κ̂, δ̂, σ̂i are consistent for µ2, κ, δ, σi,

which is the case under many forms of weak dependence or clustering. Furthermore, our

baseline implementation above does not require the researcher to take an explicit stand on

the dependence of the data; for example, in the case of clustering, the researcher does not

need to take an explicit stand on how the clusters are defined.

Remark 3.4 (Estimating moments of the distribution of θi). The estimators µ̂2 and κ̂ in

step 1 of our baseline implementation above are based on the moment conditions E[(Yi −
X ′iδ)

2 − σ2
i | Xi, σi] = µ2 and E[(Yi −X ′iδ)4 + 3σ4

i − 6σ2
i (Yi −X ′iδ)2 | Xi, σi] = κµ2

2, replacing

population expectations by weighted sample averages. In addition, to avoid small-sample

coverage issues when µ2 and κ are near their theoretical lower bounds of 0 and 1, respectively,

these estimates incorporate truncation on µ̂2 and κ̂. These truncated estimates approximate

the Bayesian posterior means under a flat prior on µ2 and κ, as in Morris (1983a,b). Although

the resulting EBCIs do not directly account for estimation uncertainty in µ2 and κ, we verify

their small-sample coverage accuracy via extensive simulations in Section 4.4. Appendix A.1

discusses the choice of the moment estimates, as well as other ways of performing truncation.

Remark 3.5 (Using higher moments and other forms of shrinkage). In addition to using

the second and fourth moment of bias, one may augment (11) with restrictions on higher

moments of the bias in order to further tighten the critical value. In Section 4.2, we show that

using other moments in addition to the second and fourth moment does not substantially

decrease the critical value in the case where θi is normally distributed. Thus, the CI in our

baseline implementation is robust to failure of the normality assumption (9), while being

near-optimal when this assumption does hold. Section 4.2 also shows that further efficiency

gains are possible if one uses the linear estimator θ̃i = µ1,i +wi(Yi− µ1,i) with the shrinkage

coefficient wi chosen to optimize CI length, instead of using the MSE-optimal shrinkage

wEB,i. For efficiency under a non-normal distribution of θi, one needs to consider non-linear

shrinkage; we discuss this extension in Section 6.1.

12



4 Main results

This section provides formal statements of the coverage properties of the CIs presented in

Sections 2 and 3. Furthermore, we show that the CIs presented in Sections 2 and 3 are highly

efficient when the mean parameters are in fact normally distributed. Next, we calculate the

maximal coverage distortion of the parametric EBCI, and derive a rule of thumb for gauging

the potential coverage distortion. Finally, we present a comprehensive simulation study of

the finite-sample performance of the robust EBCI. Applied readers interested primarily in

implementation issues may skip ahead to the empirical application in Section 7.

4.1 Coverage under baseline implementation

In order to state the formal result, let us first carefully define the notions of coverage that

we consider. Consider intervals CI1, . . . , CIn for elements of the parameter vector θ =

(θ1, . . . , θn)′. The probability measure P denotes the joint distribution of θ and CI1, . . . , CIn.

Following Morris (1983b, Eq. 3.6) and Carlin and Louis (2000, Ch. 3.5), we say that the

interval CIi is an (asymptotic) 1− α empirical Bayes confidence interval (EBCI) if

lim inf
n→∞

P (θi ∈ CIi) ≥ 1− α. (14)

We say that the intervals CIi are (asymptotic) 1−α average coverage intervals (ACIs) under

the parameter sequence θ1, . . . , θn if

lim inf
n→∞

1

n

n∑
i=1

P (θi ∈ CIi | θ) ≥ 1− α. (15)

The average coverage property (15) is a property of the distribution of the data conditional

on θ and therefore does not require that we view the θi’s as random (as in a Bayesian

or “random effects” analysis). To maintain consistent notation, we nonetheless use the

conditional notation P (· | θ) when considering average coverage. See Appendix C for a

formulation with θ treated as nonrandom.

Observe that under the exchangeability condition that P (θi ∈ CIi) = P (θj ∈ CIj) for all

i, j, if the ACI property (15) holds almost surely, then the EBCI property (14) holds, since

then

P (θi ∈ CIi) =
1

n

n∑
j=1

P (θj ∈ CIj) ≥ 1− α + o(1) for all i.

We now provide coverage results for the baseline implementation described in Section 3.2.

To keep the statements in the main text as simple as possible, we (i) maintain the assump-
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tion that the unshrunk estimates Yi follow an exact normal distribution conditional on the

parameter θi, (ii) state the results only for the homoskedastic case where the variance σi

of the unshrunk estimate Yi does not vary across i, and (iii) consider only unconditional

coverage statements of the form (14) and (15). In Appendix C, we allow the estimates Yi

to be only approximately normally distributed and allow σi to vary, and we verify that our

assumptions hold in a linear fixed effects panel data model. We also formalize the statements

about conditional coverage made in Remark 3.1.

Theorem 4.1. Suppose Yi | θ ∼ N(θi, σ
2). Let µj,n = 1

n

∑n
i=1(θi − X ′iδ)

j and let κn =

µ4,n/µ
2
2,n. Suppose the sequence θ = θ1, . . . , θn and the conditional distribution P (· | θ)

satisfy the following conditions with probability one:

1. µ2,n → µ2 and µ4,n/µ
2
2,n → κ for some µ2 ∈ (0,∞) and κ ∈ (1,∞).

2. Conditional on θ, (δ̂, σ̂, µ̂2, κ̂) converges in probability to (δ, σ, µ2, κ).

Then the CIs in Eq. (13) with σ̂i = σ̂ satisfy the ACI property (15) with probability one.

Furthermore, if θ1, . . . , θn follow an exchangeable distribution and the estimators δ̂, σ̂, µ̂2

and κ̂ are exchangeable functions of the data (X ′1, Y1)
′, . . . , (X ′n, Yn)′, then these CIs satisfy

the EB coverage property (14).

Theorem 4.1 follows immediately from Theorem C.2 in Appendix C. In order to cover

both the EB coverage condition (14) and the average coverage condition (15), Theorem 4.1

considers a random sequence of parameters θ1, . . . , θn, and shows average coverage conditional

on these parameters. See Appendix C for a formulation with θ treated as nonrandom.

The condition on the moments µ2 and κ avoids degenerate cases such as when µ2 = 0,

in which case the EB point estimator θ̂i shrinks each preliminary estimate Yi all the way to

X ′i δ̂. Note also that the theorem does not require that δ̂ be the ordinary least squares (OLS)

estimate in a regression of Yi onto Xi, and that δ be the population analog; one can define δ

in other ways, the theorem only requires that δ̂ be a consistent estimate of it. The definition

of δ does, however, affect the plausibility of the moment independence assumption in Eq. (10)

needed for conditional coverage results stated in Appendix C.8

Remark 4.1. As shown in Appendix C, if CIs satisfy the average coverage condition (15)

given θ1, . . . , θn, they will typically also satisfy the stronger condition

1

n

n∑
i=1

I{θi ∈ CIi} ≥ 1− α + oP (·|θ)(1), (16)

8The specification of µ1i = X ′
iδ also affects the EBCI width through its effect on µ2 and κ.
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where oP (·|θ)(1) denotes a sequence that converges in probability to zero conditional on θ

(Eq. (16) implies Eq. (15) since the left-hand side is uniformly bounded). That is, at least

a fraction 1− α of the n CIs contain their respective true parameters, asymptotically. This

is analogous to the result that for estimation, the difference between the squared error
1
n

∑n
i=1(θ̂i − θi)2 and the MSE 1

n

∑n
i=1E[(θ̂i − θi)2 | θ] typically converges to zero.

4.2 Relative efficiency

The robust EBCI in Eq. (12), unlike the parametric EBCI θ̂i±z1−α/2σi
√
wEB,i, does not rely

on the normality assumption in Eq. (9) for its validity. We now show that this robustness

does not come at a high cost in terms of efficiency: if the normality assumption (9) in fact

holds, the efficiency loss is limited unless the signal-to-noise ratio µ2/σ
2
i is very small.

There are two reasons for the inefficiency of the robust EBCI. First, the robust EBCI

only makes use of the second and fourth moment of the conditional distribution of θi −X ′iδ,
rather than its full distribution. Second, if we only have knowledge of these two moments, it

is no longer optimal to center the EBCI at the estimator θ̂i: one may need to consider other,

perhaps non-linear, shrinkage estimators, as we do below in Section 6.1.

We decompose the sources of inefficiency by studying the relative length of the robust

EBCI relative to the EBCI that picks the amount of shrinkage optimally. For the lat-

ter, we maintain assumption (10), and consider a more general class of estimators θ̃(wi) =

µ1,i+wi(Yi−µ1,i). For tractability, we focus on fixed-length CIs based on linear shrinkage es-

timators, but allow the amount of shrinkage wi to be optimally determined. The normalized

bias of θ̃(wi) is given by bi = (1/wi − 1)εi/σi, which leads to the EBCI

µ1,i + wi(Yi − µ1,i)± cvaα((1− 1/wi)
2µ2/σ

2
i , κ)wiσi.

The half-length of this EBCI, cvaα((1− 1/wi)
2µ2/σ

2
i , κ)wiσi, can be numerically minimized

as a function of wi to find the EBCI length-optimal shrinkage. Denote the minimizer by

wopt(µ2/σ
2
i , κ, α). Like wEB,i, the optimal shrinkage depends on µ2 and σ2

i only through the

signal-to-noise ratio µ2/σ
2
i . Numerically evaluating the minimizer shows that wopt(·, κ, α) ≥

wEB,i for κ ≥ 3 and α ∈ {0.05, 0.1}. The resulting EBCI is optimal among all fixed-length

EBCIs centered at linear estimators under (10), and we call it the optimal robust EBCI.9

Figure 2 plots the ratio of lengths of the optimal robust EBCI and robust EBCI relative

to the parametric EBCI, for α = 0.05. The figure shows that to maintain efficiency relative

to the normal benchmark, it is important to impose the fourth moment constraint. If this

9Since the optimal robust EBCI is always shorter than the robust EBCI in Eq. (12), the former is

preferable on efficiency grounds. It may not contain the MSE-optimal point estimator θ̂i, however.
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Figure 2: Relative efficiency of robust EBCI (Rob) and optimal robust EBCI (Opt) relative to
the normal benchmark, for α = 0.05. The figure plots ratios of Rob length, 2 cvaα(σ2

i /µ2, κ) ·
σiµ2/(µ2 + σ2

i ), and Opt length, 2 cvaα((1−1/wopt(µ2/σ
2
i , κ, α))2µ2/σ

2
i , κ)·σiwopt(µ2/σ

2
i , κ, α),

relative to the parametric EBCI length 2z1−α/2
√
µ2/(µ2 + σ2

i )σi as a function of the shrinkage
factor wEB,i = µ2/(µ2 + σ2

i ), which maps the signal-to-noise ratio µ2/σ
2
i to the interval [0, 1].

constraint is imposed, the efficiency loss of the robust EBCI is modest unless the signal-to-

noise ratio is very small: if wEB,i ≥ 0.1 (which is equivalent to µ2/σ
2
i ≥ 1/9), the efficiency

loss is at most 11.4% for α = 0.05; up to half of the efficiency loss is due to not using the

optimal shrinkage. For α = 0.1 (not plotted), the results are very similar; in particular, if

wEB,i ≥ 0.1, the efficiency loss is at most 12.9%.

When the signal-to-noise ratio is very small, so that wEB,i < 0.1, the efficiency loss of

the robust EBCI is higher (up to 39% for α = 0.05 or 0.1). Using the optimal robust EBCI

ensures that the efficiency loss is below 20%, irrespective of the signal-to-noise ratio. On

the other hand, when the signal-to-noise ratio is small, any of these CIs will be significantly

tighter than the unshrunk CI Yi ± z1−α/2σi. To illustrate this point, Figure 3 plots the

efficiency of the robust EBCI that imposes the second moment constraint only, relative to

this unshrunk CI. It can be seen from the figure that shrinkage methods allow us to tighten

the CI by 44% or more when µ2/σ
2
i ≤ 0.1.

4.3 Undercoverage of parametric EBCI

The parametric EBCI θ̂i±z1−α/2w1/2
EB,iσi is an EB version of a Bayesian credible interval that

treats (9) as a prior. We now assess its potential undercoverage when Eq. (9) is violated.
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Figure 3: Efficiency of robust EBCI θ̂i ± cvaα(σ2
i /µ2, κ = ∞) · σµ2/(µ2 + σ2

i ) relative to
the unshrunk CI Yi ± z1−α/2σi. The figure plots the ratio of the length of the robust EBCI
relative to the unshrunk CI as a function of the shrinkage factor wEB,i = µ2/(µ2 + σ2

i ).

Given knowledge of only the second moment µ2 of εi = Yi−X ′iδ, the maximal undercov-

erage of this interval is given by

ρ(1/wEB,i − 1, z1−α/2/
√
wEB,i), (17)

since wEB,i = µ2/(µ2 + σ2
i ). Here ρ is the non-coverage function defined in Eq. (5). Figure 4

plots the maximal non-coverage probability as a function of wEB,i, for significance levels

α = 0.05 and α = 0.10. The figure suggests a simple “rule of thumb”: if wEB,i ≥ 0.3, the

maximal coverage distortion is less than 5 percentage points for these values of α.

The following lemma confirms that the maximal non-coverage is decreasing in wEB,i, as

suggested by the figure. It also gives an expression for the maximal non-coverage across all

values of wEB,i (which is achieved in the limit wEB,i → 0).

Lemma 4.1. The non-coverage probability (17) of the parametric EBCI is weakly decreasing

as a function of wEB,i, with the supremum given by 1/max{z21−α, 1}.

The maximal non-coverage probability 1/max{z21−α/2, 1} equals 0.260 for α = 0.05 and

0.370 for α = 0.10. For α > 2Φ(−1) ≈ 0.317, the maximal non-coverage probability is 1.

If we additionally impose knowledge of the kurtosis of εi, the maximal non-coverage of the

parametric EBCI can be similarly computed using Eq. (11), as illustrated in the application

in Section 7.

17



α = 0.05

α = 0.1

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 0.25 0.5 0.75 1

wEB,i = µ2/(µ2 + σ2
i )

M
ax

.
n
on

-c
ov

er
ag

e
p
ro

b
ab

il
it

y

Figure 4: Maximal non-coverage probability of parametric EBCI, α ∈ {0.05, 0.10}. The
vertical line marks the “rule of thumb” value wEB,i = 0.3, above which the maximal coverage
distortion is less than 5 percentage points for these two values of α.

4.4 Monte Carlo simulations

Here we show through simulations that the robust EBCI achieves accurate average coverage

in finite samples.

4.4.1 Design

The DGP is a simple linear fixed effects panel data model. We first draw θi, i = 1, . . . , n,

i.i.d. from a random effects distribution specified below. Then we simulate panel data from

the model

Wit = θi + Uit, i = 1, . . . , n, t = 1, . . . , T,

where the errors Uit are mean zero and i.i.d. across (i, t) and independent of the θi’s. The

unshrunk estimator of θi is the sample average of Wit for unit i, with standard error obtained

from the usual unbiased variance estimator:

Yi =
1

T

T∑
t=1

Wit, σ̂i =

√√√√ 1

T (T − 1)

T∑
t=1

(Wit − Yi)2.

We draw Uit from one of two distributions: (1) a normal distribution and (2) a (shifted)

chi-squared distribution with 3 degrees of freedom. In case (1), Yi is exactly normal con-
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ditional on θi, but σ̂2
i does not exactly equal var(Yi | θi) for finite T . In case (2), Yi is

non-normal and positively skewed (conditional on θi) for finite T .

We consider six random effects distributions for θi (see Supplemental Appendix E.1 for

detailed definitions): (i) normal (kurtosis κ = 3); (ii) scaled chi-squared with 1 degree

of freedom (κ = 15); (iii) two-point distribution (κ ≈ 8.11); (iv) three-point distribution

(κ = 2); (v) the least favorable distribution for the robust EBCI that exploits only second

moments (κ depends on µ2, see Appendix B); and (vi) the least favorable distribution for

the parametric EBCI.

Given T , we scale the θi distribution to match one of four signal-to-noise ratios µ2/ var(Yi |
θi) ∈ {0.1, 0.5, 1, 2}, for a total of 6 × 4 = 24 DGPs for each distribution of Uit. We shrink

towards the grand mean (Xi = 1 for all i). We construct the robust EBCIs following the

baseline implementation in Section 3.2 (with ωi = 1/n), as well as a version that does not

impose constraints on the kurtosis.

As T → ∞, we recover the idealized setting in Section 2, with (Yi − θi)/
√

var(Yi | θi)
converging in distribution to a standard normal (conditional on θi), and σ̂2

i / var(Yi | θi)
converging in probability to 1, for each i.

4.4.2 Results

Table 1 shows that the 95% robust EBCIs achieve good average coverage when the panel

errors Uit are normally distributed. This is true for all DGPs, panel dimensions n and

T , and whether we exploit one or both of the (estimated) moments µ2 and κ. When the

time dimension T equals 10, the maximal coverage distortion across all DGPs and all cross-

sectional dimensions n ∈ {100, 200, 500} is 3.2 percentage points. For T ≥ 20, the coverage

distortion of the robust EBCIs is always below 2.1 percentage points.

Table 2 shows that coverage distortions are somewhat larger when the panel errors Uit are

chi-squared distributed and T is small. The robust EBCIs undercover by up to 7.2 percentage

points when T = 10 due to the pronounced non-normality of Yi given θi. However, the

distortion is at most 4.3 percentage points when T = 20, and at most 2.4 percentage points

when T ≥ 50. The coverage distortion due to non-normality when T is small is similar to

the coverage distortion of the usual unshrunk CI (not reported).

Importantly, in all cases considered in Tables 1 and 2, the worst-case coverage distortion

of the parametric EBCI substantially exceeds that of the corresponding robust EBCIs, some-

times by more than 10 percentage points. Nevertheless, the cost of robustness in terms of

extra CI length is modest and consistent with the theoretical results in Section 4.2.

Both the estimation of the standard errors σi and the estimation of the moments µ2 and

κ contribute to the finite-sample coverage distortions. The “ora” columns in Table 1 exploit
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Table 1: Monte Carlo simulation results, panel data with normal errors.

Robust, µ2 only Robust, µ2 & κ Parametric

T 10 20 ∞ ora 10 20 ∞ ora 10 20 ∞ ora

Panel A: Average coverage (%), minimum across 24 DGPs

n = 100 92.1 93.7 94.0 95.0 91.8 93.2 93.2 94.6 79.2 79.7 79.3 86.9

n = 200 91.9 93.4 92.9 95.0 91.8 93.3 92.9 94.8 80.7 80.3 81.0 86.3

n = 500 91.9 93.6 94.8 95.0 91.9 93.5 94.3 94.9 84.2 85.1 85.1 85.6

Panel B: Relative average length, average across 24 DGPs

n = 100 1.09 1.10 1.11 1.16 1.03 1.02 1.02 1.00 0.81 0.82 0.83 0.86

n = 200 1.09 1.10 1.12 1.16 1.02 1.02 1.01 1.00 0.81 0.82 0.84 0.86

n = 500 1.10 1.11 1.13 1.16 1.04 1.03 1.01 1.00 0.82 0.83 0.84 0.86

Notes: Normally distributed errors. Nominal average confidence level 1 − α = 95%.
All EBCI procedures use baseline estimate of µ̂2 and (if applicable) κ̂, except columns
labeled “ora”, which use oracle values of µ2 and κ. Columns T = ∞ and “ora” use
oracle standard errors σi. For each DGP, “average coverage” and “average length” refer
to averages across units i = 1, . . . , n and across 2,000 Monte Carlo repetitions. Average
CI length is measured relative to the robust EBCI that exploits the oracle values of µ2,
κ, and σi (but not of the grand mean δ = E[θ]).

Table 2: Monte Carlo simulation results, panel data with chi-squared errors.

Robust, µ2 only Robust, µ2 & κ Parametric

T 10 20 50 ora 10 20 50 ora 10 20 50 ora

Panel A: Average coverage (%), minimum across 24 DGPs

n = 100 87.9 90.9 93.1 95.0 87.8 90.8 92.6 94.7 79.9 79.3 79.3 87.0

n = 200 87.9 90.8 93.0 94.9 87.8 90.8 92.8 94.8 77.8 79.8 80.3 86.2

n = 500 87.8 90.8 93.0 95.0 87.8 90.7 92.9 94.9 82.0 84.1 84.8 85.6

Panel B: Relative average length, average across 24 DGPs

n = 100 1.05 1.08 1.10 1.16 1.01 1.02 1.02 1.00 0.79 0.81 0.82 0.86

n = 200 1.04 1.08 1.10 1.16 0.99 1.00 1.00 1.00 0.78 0.81 0.82 0.86

n = 500 1.05 1.09 1.11 1.16 0.99 1.00 1.00 1.00 0.79 0.82 0.83 0.86

Notes: Chi-squared distributed errors. See caption for Table 1. Results for T =∞ are
by definition the same as in Table 1.
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the oracle (true) values of µ2, κ, and σi =
√

var(Yi | θi), while the T = ∞ columns use

oracle standard errors but not oracle moments. By comparing these columns, we see that

estimation of µ2 and κ is responsible for modest coverage distortions when n = 100 or 200.

However, estimation of the standard errors σi also contributes to the distortions, as can be

seen by comparing the T = 10 and T =∞ columns.

In Supplemental Appendix E.2 we show that the robust EBCI also has good coverage in

a heteroskedastic design calibrated to the empirical application in Section 7 below.

5 Comparison with other approaches

Here we compare our EBCI procedure with other approaches to confidence interval construc-

tion in the normal means model. We also discuss other related inference problems.

5.1 Average coverage vs. alternative coverage concepts

The average coverage requirement in Eq. (15) is less stringent than the usual (pointwise)

notion of frequentist coverage that P (θi ∈ CIi | θ) ≥ 1 − α for all i. An even stronger

coverage requirement is that of simultaneous coverage: P (∀i : θi ∈ CIi | θ) ≥ 1 − α. As

outlined in footnote 3, under the pointwise coverage criterion, one cannot achieve substantial

reductions in length relative to the unshrunk CI. Under the simultaneous coverage criterion,

it is likewise impossible to substantially improve upon the usual sup-t confidence band based

on the unshrunk estimates (Cai et al., 2014). Thus, undercoverage for some θi’s must be

tolerated if one wants to use shrinkage to improve CI length.

The fact that our EBCIs achieve improvements in average length at the expense of

undercovering for certain units i is analogous to well-known properties of EB point estimators.

We now show that the units i for which our EBCI undercovers are quantitatively similar to

the units for which the shrinkage estimator θ̂i has higher MSE than the unshrunk estimator

Yi. Let εi = θi−X ′iδ be the “shrinkage error” defined in Section 3.1. The pointwise coverage

of our EBCI is decreasing in the normalized shrinkage error |εi|/
√
µ2, for a fixed signal-to-

noise ratio µ2/σ
2
i .

10 Hence, the units i for which our EBCI undercovers are those whose

covariate-predicted value X ′iδ fails to approximate their true effect θi well. The MSE of

the shrinkage estimator (for an individual unit i), normalized by the MSE of the unshrunk

estimator, is similarly increasing in |εi|/
√
µ2.

11

10The pointwise coverage (conditional on Xi) equals 1− r(
√

1/wEB,i − 1 · |εi|/
√
µ2, cvaα(1/wEB,i− 1, κ)),

with r defined in Eq. (4) and wEB,i = µ2/(µ2 + σ2
i ).

11The ratio of MSEs equals E[(θ̂i − θi)2 | θi, Xi]/σ
2
i = w2

EB,i + (1− wEB,i)wEB,i · |εi|/
√
µ2.
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Figure 5: Value of |εi|/
√
µ2, as a function of wEB,i, such that the MSE of the shrinkage

point estimator equals that of the unshrunk estimator (MSE), and such that the coverage
of the robust EBCI with κ = ∞ equals the nominal average coverage 1 − α (coverage), for
α = 0.05.

Figure 5 shows that the knife-edge value of |εi|/
√
µ2 for which the pointwise coverage

of our EBCI equals 1 − α is quantitatively close to the value of |εi|/
√
µ2 for which the

MSE of the shrinkage estimator equals that of the unshrunk estimator. In other words, to

the extent that one worries about undercoverage for certain types of θi values, one should

simultaneously worry about the relative performance of the shrinkage point estimator for

those same values.

We stress that the pointwise coverage depends on the unobservable shrinkage error εi,

which cannot be gauged directly from the observables (Yi, Xi). If one wishes to avoid system-

atic differences in coverage across units i with different genders, say (i.e., one is worried that

εi correlates with gender) one can simply add gender to the set of covariates Xi: the baseline

procedure in Section 3.2 ensures control of average coverage conditional on the covariates Xi.

In Section 6.2, we show how to adapt our EBCIs to settings where one focuses the analysis

on a subset of units i based on the values of their unshrunk estimates Yi (e.g., keeping only

the estimates that exceed a given threshold).

From a Bayesian point of view, our robust EBCI can be viewed as an uncertainty interval

that is robust to the choice of prior distribution in the unconditional gamma-minimax sense:

the coverage probability of this CI is at least 1−α when averaged over the distribution of the

data and over the prior distribution for θi, for any prior distribution that satisfies the moment
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bounds. This follows directly from the derivations in Section 2, reinterpreting the random

effects distribution for θi as a prior distribution. In contrast, conditional gamma-minimax

credible intervals, discussed recently by Giacomini et al. (2019, p. 6), are too stringent in

our setting. This notion requires that the posterior credibility of the interval be at least

1 − α regardless of the choice of prior, in any data sample, which would require reporting

the entire parameter space (up to the moment bounds).

5.2 Finite-sample vs. asymptotic coverage

Our procedures are asymptotically valid as n→∞, as proved in Section 4.1. These asymp-

totics do not capture the impact of estimation error in the “hyper-parameters” σ̂i, δ̂, µ̂2,

and κ̂, or the impact of lack of exact normality of the Yi’s, on the finite-sample performance

of the EBCIs. As detailed in Section 3.2 and Appendix A, we do apply a finite-sample

adjustment to the moments µ̂2 and κ̂, which is motivated by the same heuristic arguments

that Morris (1983a,b) uses to motivate finite-sample adjustments to the parametric EBCI.12

The promising simulation results in Section 4.4 notwithstanding, these adjustments do not

ensure exact average coverage control in finite samples.13

Our results are thus analogous to standard results on coverage of Eicker-Huber-White

CIs in cross-sectional OLS: asymptotic validity follows by consistency of the OLS variance

estimate and asymptotic normality of the outcomes, while adjustments to account for finite-

sample issues (such as the HC2 or HC3 variance estimators studied in MacKinnon and White,

1985) are justified heuristically. Deriving EBCIs with finite-sample coverage guarantees is an

interesting problem that we leave for future research; the problem appears to be challenging

even in the context of constructing parametric EBCIs.

5.3 Local vs. global optimality

Our EBCIs are designed to provide uncertainty assessments to accompany linear shrinkage es-

timates that, as the Introduction argues, have been popular in applied work. Our procedure’s

global validity, as well as local near-optimality when the θi’s are normal (cf. Section 4.2),

is analogous to Eicker-Huber-White CIs for OLS estimators: these CIs are optimal under

normal homoskedastic regression errors, but remain valid when this assumption is dropped.

12An alternative approach would be to adapt the bootstrap adjustment proposed by Carlin and Louis
(2000, Ch. 3.5.3) in the context of parametric EBCI construction (see also Efron, 2019). As with the Morris
(1983a,b) adjustment, we are not aware of a formal result justifying it.

13One could account for hyperparameter uncertainty by computing the critical value
supσ̃i,µ̃2,κ̃∈Ĉi

cvaα(σ̃2
i /µ̃2, κ̃) over an initial confidence set Ĉi for the hyper-parameters, coupled with a

Bonferroni adjustment of the confidence level 1 − α. This approach appears to be highly conservative in
practice.
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Similar to the Eicker-Huber-White CIs, our EBCIs are not globally efficient: when the

θi’s are not Gaussian, it is generally inefficient to restrict attention to CIs that are centered

at a linear point estimator and have fixed width. While we expect our EBCIs to remain near-

efficient under mild departures from normality, substantial efficiency gains may be possible

if the effect size distribution is, for example, heavy-tailed or bimodal.14 Section 6.1 shows

how our method can be adapted to construct EBCIs that are locally near-optimal under

non-normal baseline priors using non-linear shrinkage, such as soft thresholding. Since the

distribution of θi is nonparametrically identified under the normal model (8), it is in princi-

ple possible to construct EBCIs that are globally efficient using nonparametric methods. In

the context of the homoskedastic model with no covariates in Eq. (1), various approaches to

nonparametric point estimation of the θi’s have been proposed, including kernels (Brown and

Greenshtein, 2009), splines (Efron, 2019), or nonparametric maximum likelihood (Kiefer and

Wolfowitz, 1956; Jiang and Zhang, 2009; Koenker and Mizera, 2014). An interesting problem

for future research is to adapt these methods to EBCI construction, while ensuring asymp-

totic validity, good finite-sample performance, and allowing for covariates, heteroskedasticity,

and possible dependence across i.

5.4 Other inference problems

A number of alternative inference procedures have been proposed in the context of the

normal means model. Efron (2015) develops a formula for the frequentist standard error of

EB estimators, but this cannot be used to construct CIs without a corresponding estimate

of the bias. There is a substantial literature on shrinkage confidence balls, i.e., confidence

sets of the form {θ :
∑n

i=1(θi− θ̂i)2 ≤ ĉ} (see Casella and Hwang, 2012, for a review). While

theoretically interesting, these sets can be difficult to visualize and report in practice.15

Finally, while we focus on CI length in our relative efficiency comparisons, our approach

can be fruitfully applied when the goal of CI construction is to discern non-null effects, rather

than to construct short CIs. In particular, suppose one forms a test of the null hypothesis

H0,i : θi = θ0 for some null value θ0 by rejecting when θ0 /∈ CIi, where CIi is our robust EBCI

given in (12). In Supplemental Appendix F, we show that the test based on our EBCI has

higher average power than the usual z-test based on the unshrunk estimate when X ′iδ (the

regression line towards which we shrink) is far enough from the null value θ0, and that these

power gains can be substantial. Furthermore, such tests can be combined with corrections

14Indeed, if the true effect distribution puts mass 1/2 on θi = K and θi = −K, then, as K gets large, our
EBCIs become arbitrarily conservative relative to an oracle that reports the highest posterior density set
under this prior.

15Confidence balls can be translated into average coverage intervals using Chebyshev’s inequality (see
Wasserman, 2006, Ch. 5.8). However, such intervals are very conservative compared to the ones we construct.
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from the multiple testing literature to form procedures that asymptotically control the false

discovery rate (FDR), a commonly used criterion for multiple testing.16

6 Extensions

We now discuss two extensions of our method: adapting our intervals to general, possibly non-

linear shrinkage, and constructing intervals that achieve coverage conditional on Yi falling

into a pre-specified interval.

6.1 General shrinkage

Our method can be generalized to cover general, possibly non-linear shrinkage based on

possibly non-Gaussian data. Let S(y;χ, X̃i) ⊆ R be a family of candidate confidence sets for

a parameter θi, which depends on the data Yi = y, a tuning parameter χ ∈ R to be selected

below, and covariates X̃i (that include any known nuisance parameters) that we treat as

fixed. We assume that S is increasing in χ, in the sense of set containment, and that the

non-coverage probability conditional on θ satisfies

P (θi 6∈ S(Yi;χ, X̃i) | θ, X̃(n)) = r̃(ai, χ), (18)

where ai is some function of θi, X̃
(n) = (X̃1, . . . , X̃n), and r̃ is a known function (perhaps

computed numerically or through simulation). Similarly to linear shrinkage in the normal

means model, Eq. (18) may only hold approximately if the set S depends on estimated

parameters (such as standard error estimates or tuning parameters), or if we use a large-

sample approximation to the distribution of Yi. We assume that ai satisfies the moment

constraints EF [g(ai) | X̃(n)] = m, where g is a p-vector of moment functions, and the

expectation is over the conditional distribution F of ai conditional on X̃(n).17 To guarantee

16In particular, Storey (2002) shows that the Benjamini and Hochberg (1995) procedure asymptotically
controls the FDR so long as the p-values do not exhibit too much statistical dependence and the proportion
of rejected null hypotheses does not converge too quickly to zero. While Storey (2002) assumes that the
uncorrected tests control size in the classical sense, the argument goes through essentially unchanged so long
as the tests invert CIs that satisfy (16), which holds so long as the CIs do not exhibit too much statistical
dependence, as discussed in Remark 4.1. We note, however, that this does not hold for modifications of the
Benjamini and Hochberg (1995) procedure that use initial estimates of the proportion of true null hypotheses.

17The moment functions g need not be simple moments, and could incorporate constraints used for selection
of hyper-parameters, such as constraints on the marginal data distribution or, if an unbiased risk criterion
is used, the constraint that the derivative of the risk equals zero at the selected prior hyper-parameters.
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EB coverage, we compute the maximal non-coverage

ρg(m,χ) = sup
F
EF [r̃(a, χ)], EF [g(a)] = m, (19)

analogously to Eq. (11). This is a linear program, which can be computed numerically to a

high degree of precision even with several constraints; see Appendix B for details. Given an

estimate m̂ of the moment vector m, we form a robust EBCI as

S(Yi; χ̂, X̃i), where χ̂ = inf{χ : ρg(m̂, χ) ≤ α}. (20)

Example 6.1 (Linear shrinkage in the normal model). The setting in Section 3.1 obtains

if we set X̃i = (Xi, σi) and S(y;χ, X̃i) = {(1 − wEB,i)X ′iδ + wEB,iYi ± χwEB,iσi}. Here ai

is given by the normalized bias bi = (1/wEB,i − 1)(θi −X ′iδ)/σi, and the function r̃ is given

by the function r(b, χ) defined in (4). Our baseline implementation uses constraints on the

second and fourth moments, g(ai) = (a2i , a
4
i ).

Example 6.2 (Nonlinear soft thresholding). Consider for simplicity the homoskedastic nor-

mal model Yi | θi ∼ N(θi, σ
2) without covariates. A popular alternative to linear estimators

is the soft thresholding estimator θ̂ST,i = sign(Yi) max{|Yi| −
√

2σ2/µ2, 0} (e.g. Abadie and

Kasy, 2019). It equals the posterior mode corresponding to a baseline Laplace prior with

second moment µ2, which has density π0(θ) = 1√
2µ2

exp(−|θ|
√

2/µ2) (Johnstone, 2019, Ex-

ample 2.5). To construct a robust EBCI that always contains the soft thresholding estimator,

we calibrate the corresponding highest posterior density set:

S(Yi;χ) =

{
t ∈ R : log

σ−1φ((Yi − t)/σ)π0(t)∫∞
−∞ σ

−1φ((Yi − θ̃)/σ)π0(θ̃) dθ̃
+ χ ≥ 0

}
, (21)

where φ is the standard normal density. This set is available in closed form and takes the

form of an interval (see Supplemental Appendix G.1). Here ai = θi, and the function r̃(a, χ)

in (18) can be computed via numerical integration.

In contrast to the EBCIs in Example 6.1 (which may be viewed as calibrating the highest

posterior density set under a normal prior), the Laplace prior π0 leads to nonlinear shrinkage

and an EBCI whose length depends on the data Yi. This reflects the suboptimality of linear

shrinkage and fixed-length intervals under the Laplace prior.

In Supplemental Appendix G.1, we show that the resulting robust EBCI that imposes

the constraint E[θ2i ] = µ2 not only has robust EB coverage (by definition), it also achieves

substantial expected length improvements when the θi’s are in fact Laplace distributed. For

α = 0.05 and µ2/σ
2 ≤ 0.2, the expected length under the Laplace distribution of the soft
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thresholding EBCI is at least 49% smaller than the length of the unshrunk CI. This exceeds

the length reduction achieved by the linear robust EBCI shown in Figure 3.

Example 6.3 (Poisson shrinkage). Supplemental Appendix G.2 constructs a robust EBCI

for the rate parameter θi in a Poisson model Yi | θi ∼ Poisson(θi). This example demonstrates

that our general approach does not require normality of the data.

Example 6.4 (Linear estimators in other settings). While our focus has been on EB shrink-

age, our approach applies to other settings in which an estimator θ̂i is approximately nor-

mally distributed with non-negligible bias. In particular, suppose (θ̂i− θi)/ sei is distributed

N(ai, 1), where sei is the standard deviation of the estimate θ̂i, which for simplicity we take

to be known. This holds whenever θ̂i is a linear function of jointly normal observations

W1, . . . ,WN , i.e., θ̂i =
∑N

j=1 kijWj for some deterministic weights kij. Examples include

series, kernel, or local polynomial estimators in a nonparametric regression with fixed covari-

ates and normal errors. We can construct a confidence interval for θi as θ̂i±χ · sei, in which

case Eq. (18) holds with r̃ = r given in Eq. (4). It follows from Theorem C.1 in Appendix C

that if the moment constraints m on the normalized bias in Eq. (19) are replaced by consis-

tent estimates, the resulting robust EBCI will satisfy the average coverage property (15) in

large samples. We leave a full treatment of these applications for future research.

6.2 Coverage after selection

In some applications, researchers may be primarily interested in parameters corresponding

to those units i whose initial estimates Yi fall in a given interval [ι1, ι2], where −∞ ≤ ι1 <

ι2 ≤ ∞. For example, in a teacher value added application, we may only be interested in

the ability θi of those teachers i whose fixed effect estimates Yi are positive, corresponding

to setting ι1 = 0 and ι2 = ∞. Because of the selection on outcomes, näıvely applying our

baseline EBCI procedure to the selected sample {i : Yi ∈ [ι1, ι2]} does not yield the desired

average coverage across the selected units i. We now show how to correct for the selection

bias in the simple homoskedastic model Yi | θi ∼ N(θi, σ
2) without covariates from Section 2

(reintroducing the extra model features in Section 3.1 only complicates notation).

We seek a critical value χ such that the average coverage of the CI [θ̂i ± χwEBσ] is at

least 1− α conditional on the sample selection, i.e.,

P (θi ∈ θ̂i ± χwEBσ | Yi ∈ [ι1, ι2]) ≥ 1− α (22)

under repeated sampling of (Yi, θi), regardless of the distribution for θi (we maintain focus

on linear shrinkage for simplicity, but our approach extends to nonlinear shrinkage using the
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ideas in Section 6.1). Straightforward calculations show that the non-coverage, conditional

on θi and on selection, equals

r̃ι1,ι2(θi, χ) = P (θi /∈ θ̂i ± χwEBσ | Yi ∈ [ι1, ι2], θi)

= min

{
1− Φ(min{χ− bi, (ι2 − θi)/σ})− Φ(max{−χ− bi, (ι1 − θi)/σ})

Φ((ι2 − θi)/σ)− Φ((ι1 − θi)/σ)
, 1

}
,

where bi = (1 − 1/wEB)θi/σ as in Section 2. Among all distributions for θi consistent with

the conditional moment µ̃2,ι1,ι2 = E [θ2i | Yi ∈ [ι1, ι2]], the worst-case non-coverage probability,

conditional on selection, is given by

ρ̃ι1,ι2(µ̃2,ι1,ι2 , χ) ≡ sup
F
EF [r̃ι1,ι2(θi, χ)] s.t. EF [θ2i ] = µ̃2,ι1,ι2 ,

where EF denotes expectation under θi ∼ F . This is an infinite-dimensional linear program

that can be solved numerically to a high degree of accuracy, cf. Appendix B. To achieve

robust conditional coverage, we solve numerically for the χ such that ρ̃ι1,ι2(µ̃2,ι1,ι2 , χ) = α.

We can estimate the conditional second moment µ̃2,ι1,ι2 as follows. Denote the log

marginal density of Yi by `(y) ≡ log
∫
φ(y − θ) dΓ0(θ), where Γ0 is the true distribution

of θi. Tweedie’s formulas (e.g. Efron, 2019, Eq. (26)) imply

µ̃2,ι1,ι2 = E
[
θ2i | Yi ∈ [ι1, ι2]

]
= 1 + E

[
(Yi + `′(Yi))

2 + `′′(Yi)
∣∣ Yi ∈ [ι1, ι2]

]
. (23)

Let ˆ̀(y) be a kernel estimate of the log marginal density function of the data Y1, . . . , Yn.

Then the estimate

̂̃µ2,ι1,ι2 ≡ 1 +

∑
i : Yi∈[ι1,ι2]{(Yi + ˆ̀′(Yi))

2 + ˆ̀′′(Yi)}
#{i : Yi ∈ [ι1, ι2]}

will be consistent as n→∞ for µ̃2,ι1,ι2 in (23) under mild regularity conditions.

The criterion (22) can be viewed as the EB analogue of the criterion P (θi ∈ CIi |
Yi ∈ [ι1, ι2], θ) ≥ 1 − α, which requires frequentist coverage conditional on the event {Yi ∈
[ι1, ι2]}. The latter criterion has been considered in the recent “selective inference” literature

(Benjamini and Yekutieli, 2005; Lee et al., 2016; Hung and Fithian, 2019; Andrews et al.,

2021). In contrast to this literature, we cannot allow ι1 to be given by the maximum of

the initial estimates (as in Andrews et al., 2021), as we require ι1 and ι2 to converge in

probability to distinct nonrandom limits. On the other hand, weakening the notion of

frequentist coverage to EB (or average) coverage allows for improvements in the length of

the intervals, similar to the analysis in Section 4.2 in the absence of selection.
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7 Empirical application

We illustrate our methods using the data and model in Chetty and Hendren (2018), who are

interested in the effect of neighborhoods on intergenerational mobility.

7.1 Framework

We follow Chetty and Hendren (2018) in using two definitions of a “neighborhood effect”

θi. The first focuses on effects for children growing up in low-income families, and defines

θi as the effect of spending an additional year of childhood in commuting zone (CZ) i on

children’s rank in the income distribution at age 26, for children with parents at the 25th

percentile of the national income distribution. The second definition is analogous, except

it focuses on children growing up in high-income families, and consequently conditions on

children with parents at the 75th percentile. Chetty and Hendren (2018) argue that these

definitions approximately capture the mean rank effects for children in below-median and

above-median income families. Using de-identified tax returns for all children born between

1980 and 1986 who move across CZs exactly once as children, Chetty and Hendren (2018)

exploit variation in the age at which children move between CZs to obtain preliminary fixed

effect estimates Yi of θi.

Since these preliminary estimates are measured with noise, to predict θi, Chetty and

Hendren (2018) shrink Yi towards average outcomes of permanent residents of CZ i (chil-

dren with parents at the same percentile of the income distribution who spent all of their

childhood in the CZ). To give a sense of the accuracy of these forecasts, Chetty and Hendren

(2018) report estimates of their unconditional MSE (i.e., treating θi as random), under the

implicit assumption that the moment independence assumption in Eq. (10) holds. Here we

complement their analysis by constructing robust EBCIs associated with these forecasts.

Our sample consists of 595 U.S. CZs, with population over 25,000 in the 2000 census:

this is the sample for which Chetty and Hendren (2018) report baseline estimates Yi of the

effects θi. These baseline estimates are normalized so that their population-weighted mean is

zero. We may therefore interpret θi as the effect relative to an “average” CZ. We follow the

baseline implementation from Section 3.2 with standard errors σ̂i reported by Chetty and

Hendren (2018), and covariates Xi corresponding to a constant and the average outcomes for

permanent residents. In line with the original analysis, we use precision weights ωi = 1/σ̂2
i

when constructing the estimates δ̂, µ̂2 and κ̂.
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Table 3: Statistics for 90% EBCIs for neighborhood effects.

Baseline Nonparametric

(1) (2) (3) (4)

Percentile 25th 75th 25th 75th

Panel A: Summary statistics

E[
√
µ2,i] 0.079 0.044 0.076 0.042

E[κi] 778.5 5948.6 1624.9 43009.9

E[µ2i/σ
2
i ] 0.142 0.040 0.139 0.072

δ̂intercept −1.441 −2.162 −1.441 −2.162

δ̂perm. resident 0.032 0.038 0.032 0.038

E[wEB,i] 0.093 0.033 0.093 0.033

E[wopt,i] 0.191 0.100 0.191 0.100

E[non-cov of parametric EBCIi] 0.227 0.278 0.210 0.292

Panel B: E[half-lengthi]

Robust EBCI 0.195 0.122 0.186 0.116

Optimal robust EBCI 0.149 0.090 0.145 0.094

Parametric EBCI 0.123 0.070 0.123 0.070

Unshrunk CI 0.786 0.993 0.786 0.993

Panel C: Efficiency relative to robust EBCI

Optimal robust EBCI 1.312 1.352 1.289 1.238

Parametric EBCI 1.582 1.731 1.509 1.648

Unshrunk CI 0.248 0.123 0.237 0.117

Notes: Columns (1) and (2) correspond to shrinking Yi as in the baseline im-
plementation that imposes Eq. (10), so that µ2i = E[(θi − X ′iδ)

2 | Xi, σi] and
κi = E[(θi − X ′iδ)

4 | Xi, σi]/µ
2
2i do not vary with i. Columns (3) and (4)

use nonparametric estimates of µ2i and κi, using the nearest neighbor estima-
tor described in Appendix A.1. The number of nearest neighbors J = 422 (col-
umn (3)) and J = 525 (column (4)) is selected using cross-validation. For all
columns, δ̂ = (δ̂intercept, δ̂perm. resident) is computed by regressing Yi onto a con-
stant and outcomes for permanent residents. “Optimal Robust EBCI” refers to
a robust EBCI based on length-optimal shrinkage wopt,i, described in Section 4.2.
“E[non-cov of parametric EBCIi]”: average of maximal non-coverage probability of
parametric EBCI, given the estimated moments.
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7.2 Results

Columns (1) and (2) in Table 3 summarize the main estimation and efficiency results. The

shrinkage magnitude and relative efficiency results are similar for children with parents at

the 25th and 75th percentiles of the income distribution. In both columns, the estimate of

the kurtosis κ is large enough so that it does not affect the critical values or the form of the

optimal shrinkage: specifications that only impose constraints on the second moment yield

identical results.18 In line with this finding, a density plot of the t-statistics (reported as

Figure S2 in Armstrong et al. (2020)) exhibits a fat lower tail. As a robustness check, columns

(3) and (4) show that results based on nonparametric moment estimates (see Remark 3.2

and Appendix A.1) are very similar to our baseline specification. Indeed, the R2 gain in

predicting ε̂2i − σ̂2
i using µ̂2i is less than 0.001 in both specifications, indicating that there is

little evidence in the data against the moment independence assumption.

The baseline robust 90% EBCIs are 75.2–87.7% shorter than the usual unshrunk CIs

Yi ± z1−α/2σ̂i. To interpret these gains in dollar terms, for children with parents at the 25th

percentile of the income distribution, a percentile gain corresponds to an annual income gain

of $818 (Chetty and Hendren, 2018, p. 1183). Thus, the average half-length of the baseline

robust EBCIs in column (1) implies CIs of the form ±$160 on average, while the unshrunk

CIs are of the form ±$643 on average. These large gains are a consequence of a low signal-to-

noise ratio µ2/σ
2
i in this application. Because the shrinkage magnitude is so large on average,

the tail behavior of the bias matters, and since the kurtosis estimates suggests these tails are

fat, it is important to use the robust critical value: the parametric EBCI exhibits average

potential size distortions of 12.7–17.8 percentage points. Indeed, for over 90% of the CIs in

the specifications in columns (1) and (2), the shrinkage coefficient wEB,i falls below the “rule

of thumb” threshold of 0.3 derived in Section 4.3.

To visualize these results, Figure 6 plots the unshrunk 90% CIs based on the preliminary

estimates, as well as robust EBCIs based on EB estimates for cities in the state of New York

for children with parents at the 25th percentile. While the EBCIs for large CZs like New

York City or Buffalo are similar to the unshrunk CIs, they are much tighter for smaller CZs

like Plattsburgh or Watertown, with point estimates that shrink the preliminary estimates

Yi most of the way toward the regression line X ′i δ̂.

In summary, shrinkage allows us to considerably tighten the CIs based on preliminary

estimates. This is true even though the CIs effectively only use second moment constraints—

imposing kurtosis constraints does not affect the critical values in this application.

18The truncation in the κ̂ formula in our baseline algorithm in Section 3.2 binds in columns (1) and
(2), although the non-truncated estimates 345.3 and 5024.9 are similarly large; using these non-truncated
estimates yields identical results.
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Figure 6: Neighborhood effects for New York and 90% robust EBCIs for children with
parents at the p = 25 percentile of the national income distribution, plotted against mean
outcomes of permanent residents. Gray lines correspond to CIs based on unshrunk estimates
represented by circles, and black lines correspond to robust EBCIs based on EB estimates
represented by squares that shrink towards a dotted regression line based on permanent
residents’ outcomes. Baseline implementation as in Section 3.2.

Appendix A Moment estimates

The EBCI in our baseline implementation has valid EB coverage asymptotically as n→∞,

so long as the estimates µ̂2 and κ̂ are consistent. While the particular choice of the estimates

µ̂2 and κ̂ does not affect the CI asymptotically, finite sample considerations can be important

for small to moderate values of n. In particular, unrestricted moment-based estimates of µ2

and κ may fall below their theoretical lower bounds of 0 and 1, in which case it is not clear

how to define the EBCI.19 To address this issue, in analogy to finite-sample corrections to

parametric EBCIs proposed in Morris (1983a,b), Appendix A.1 derives two finite-sample

corrections to the unrestricted estimates that approximate a Bayesian estimate under a flat

hyperprior on (µ2, κ). We verify that these corrections give good coverage in an extensive

set of Monte Carlo designs in Section 4.4. We also discuss implementation of nonparametric

moment estimates. Appendix A.2 discusses the choice of weights ωi.

19Formally, our results are asymptotic and require µ2 > 0 and κ > 1, so that these issues do not occur
when n is large enough. We discuss the difficulty of providing finite-sample coverage guarantees in Section 5.

32



A.1 Finite n corrections and nonparametric moment estimates

To derive our estimates of µ2 and κ, we first consider unrestricted estimation under the

moment independence condition (10). For µ2, this condition implies the moment condition

E[(Yi −X ′iδ)2 − σ2
i | Xi, σi] = µ2. Replacing Yi −X ′iδ with the residual ε̂i = Yi −X ′i δ̂ yields

the estimate

µ̂2,UC =

∑n
i=1 ωiW2i∑n
i=1 ωi

, W2i = ε̂2i − σ̂2
i , (24)

for any weights ωi = ωi(Xi, σ̂i). Here, UC stands for “unconstrained,” since the estimate

µ̂2,UC can be negative. To incorporate the constraint µ2 > 0, we use an approximation

to a Bayesian approach with a flat prior on the set [0,∞). A full Bayesian approach to

estimating µ2 would place a hyperprior on possible joint distributions ofXi, σi, θi, which could

potentially lead to using complicated functions of the data to estimate µ2. For simplicity,

we compute the posterior mean given µ̂2,UC, and we use a normal approximation to the

likelihood. Since the posterior distribution only uses knowledge of µ̂2,UC, we refer to this as

a flat prior limited information Bayes (FPLIB) approach.

To derive this formula, first note that, if m̂ is an estimate of a parameter m with m̂ |
m ∼ N(m,V ), then under a flat prior for m on [0,∞), the posterior mean of m is given by

b(m̂, V ) = m̂+
√
V φ(m̂/

√
V )/Φ(m̂/

√
V ),

where φ and Φ are the standard normal pdf and cdf respectively. Furthermore, if m̂ =∑n
i=1 ωiZi/

∑n
i=1 ωi where the Zi’s are independent with mean m conditional on the weights

ω = (ω1, . . . , ωn)′, then an unbiased estimate of the variance of m̂ given ω is given by

V (Z, ω) =

∑n
i=1 ω

2
i (Z

2
i − m̂2)

(
∑n

i=1 ωi)
2 −

∑n
i=1 ω

2
i

.

Conditioning on the Xi’s and σi’s (and ignoring sampling variation in δ̂ and the σ̂i’s), we

can then apply this formula to µ̂2,UC, with Zi =W2i, where W2i is given in (24). This gives

the FPLIB estimate for µ2:

µ̂2,FPLIB = b(µ̂2,UC, V (W2, ω)).

To derive the FPLIB estimate for κ, we begin with an unconstrained estimate of µ4 =

E[(θi − X ′iδ)
4]. The moment independence condition (10) delivers the moment condition

µ4 = E[(Yi − X ′iδ)
4 + 3σ4

i − 6σ2
i (Yi − X ′iδ)

2 | Xi, σi], which leads to the unconstrained
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estimate

µ̂4,UC =

∑n
i=1 ωiW4i∑n
i=1 ωi

, W4i = ε̂4i − 6σ̂2
i ε̂

2
i + 3σ̂4

i .

To avoid issues with small values of estimates of µ2 in the denominator, we apply the FPLIB

approach to an estimate of µ4 − µ2
2, using a flat prior on the parameter space [0,∞). Using

the delta method leads to approximating the variance of µ̂4,UC − µ̂2
2,UC with the variance

of
∑n

i=1 ωi(W4i − 2µ2W2i)/
∑n

i=1 ωi, so that the FPLIB estimate of µ4 − µ2
2 is b(µ̂4,UC −

µ̂2
2,UC, V (W4 − 2µ̂2,FPLIBW2, ω)), and the FPLIB estimate of κ is

κ̂FPLIB = 1 +
b(µ̂4,UC − µ̂2

2,UC, V (W4 − 2µ̂2,FPLIBW2, ω))

µ̂2
2,FPLIB

.

As a further simplification, we derive approximations in which the posterior mean for-

mula b(m̂, V ) is replaced by a simple truncation formula. We refer to this approach as

posterior mean trimming (PMT). In particular, suppose we apply the formula b(m̂, V ) to

an estimator m̂ such that m̂ ≥ m0 and V ≥ V0 by construction, where m0 < 0. Then the

posterior mean satisfies b(m̂, V ) ≥ b(m0, V0) (Pinelis, 2002, Proposition 1.2). Thus, a simple

approximation to the FPLIB estimator is to truncate m̂ from below at b(m0, V0). To ob-

tain an even simpler formula, we use the approximation b(m0, V0) = −V0/m0 + O(V
3/2
0 )

(Pinelis, 2002, Proposition 1.3), which holds as V0 → 0 (or, equivalently, as n → ∞,

provided the estimator m̂ is consistent). The variance of µ̂2,UC conditional on (Xi, σi) is

bounded below by 2
∑n

i=1 ω
2
i σ

4
i / (
∑n

i=1 ωi)
2
, and µ̂2,UC ≥ −

∑n
i=1 ωiσ

2
i /
∑n

i=1 ωi, so we can

use V0/m0 = − 2
∑n

i=1 ω
2
i σ

4
i∑n

i=1 ωiσ2
i ·
∑n

i=1 ωi
, which gives the PMT estimator

µ̂2,PMT = max

{
µ̂2,UC,

2
∑n

i=1 ω
2
i σ

4
i∑n

i=1 ωiσ
2
i ·
∑n

i=1 ωi

}
.

For κ, we simplify our approach to deriving a trimming rule by treating µ2 as known, and

considering the variance of the infeasible estimate κ̂∗UC =
∑n

i=1 ωi(ε̂
4
i−6σ̂2

i µ2−3σ̂4
i )

µ22
∑n

i=1 ωi
. Using the

above truncation formula for κ̂∗UC − 1 along with the fact that κ̂∗UC ≥
∑n

i=1 ωi(−6σ̂2
i µ2−3σ̂4

i )

µ22
∑n

i=1 ωi

and the lower bound 8
∑

i ω
2
i (2µ

3
2σ

2
i + 21µ2

2σ
4
i + 48µ2σ

6
i + 12σ8

i )/µ
4
2(
∑

i ωi)
2 on the variance

yields V0/m0 = −8
∑

i ω
2
i (2µ

3
2σ

2
i +21µ22σ

4
i +48µ2σ6

i +12σ8
i )

µ22(
∑

i ωi)
∑n

i=1 ωi(µ22+6σ̂2
i µ2+3σ̂4

i )
. To simplify the trimming rule even further,

we only use the leading term of V0/m0 as µ2 → 0, V0/m0 = − 32
∑

i ω
2
i σ

8
i

µ22(
∑

i ωi)
∑n

i=1 ωiσ̂4
i

+ o(1/µ2
2).

Plugging in µ̂2,PMT in place of the unknown µ2 then gives the PMT estimator

κ̂PMT = max

{
µ̂4,UC

µ̂2
2,PMT

, 1 +
32
∑n

i=1 ω
2
i σ̂

8
i

µ̂2
2,PMT

∑n
i=1 ωi ·

∑n
i=1 ωiσ̂

4
i

}
.
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The estimators in step 1 of our baseline implementation in Section 3.2 correspond to µ̂2,PMT

and κ̂PMT, due to their slightly simpler form relative to the FPLIB estimators. In unreported

simulations based on the designs described in Section 4.4 and Supplemental Appendix E.2,

we find that EBCIs based on FPLIB lead to even smaller finite-sample coverage distortions

than those based on the baseline implementation that uses PMT, at the expense of slightly

longer average length.

To implement the nonparametric estimates κ̂i and µ̂2i in Remark 3.2, we use the nearest-

neighbor estimator that for each i computes the PMT estimates µ̂2,PMT and κ̂PMT described

above, using only the J observations closest to i, rather than the full sample of n observations.

We define distance as a Euclidean distance on (Xi, σi), after scaling elements of this vector

by their standard deviations. Under regularity conditions, the resulting estimates will be

consistent for µ2i and κi, so long as J → ∞ and J/n → 0. We select J using leave-one-out

cross-validation, using the squared prediction error in predicting W2i as the criterion. For

simplicity, we use the same J for estimating the kurtosis as that used for estimating the

second moment.

A.2 Choice of weighting

Under condition (10), the weights ωi used to estimate µ2 and κ can be any function of Xi, σi.

Furthermore, while δ̂ can be essentially arbitrary as long as it converges in probability to

some δ such that Eq. (10) holds, that equation will often be motivated by the assumption

that the conditional mean of θi is linear in Xi,

E[θi −X ′iδ | Xi, σi] = 0. (25)

Under this condition, the weights ωi used to estimate δ can also be any function of Xi, σi.

Thus, under conditions (10) and (25), the choice of weighting can be guided by efficiency

concerns. In general, the optimal weights are different for each of the three estimates of

δ, µ2, and κ, and implementing them requires first stage estimates of the variances of Yi,W2i

and W4i, conditional on (Xi, σi) (with W2i and W4i defined in Appendix A.1). To avoid

estimation of these variances, consider the limiting case where the signal-to-noise ratio goes

to 0, µ2/mini σ
2
i → 0. The resulting weights will be near-optimal under a low signal-to-noise

ratio, when precise estimation of these parameters is relatively more important for accurate

coverage (under a high signal-to-noise ratio, shrinkage is limited, and estimation error in

these parameters has little effect on coverage). Let us also ignore estimation error in δ for

simplicity, and suppose that the Yi’s are independent conditional on (θi, Xi, σi). Then, as

µ2/mini σ
2
i → 0, the weights σ̂−2i , σ̂−4i , and σ̂−8i , for estimating δ, µ2, and µ4, respectively,
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become optimal. For simplicity, the baseline implementation in Section 3.2 uses the same

weights ωi for each of the estimates; the choice ωi = σ̂−2i targets optimal estimation of δ.

However, one could relax this constraint, and use the weights σ̂−4i , and σ̂−8i for estimating µ2

and µ4 instead. The choice ωi = 1/n has the advantage of simplicity; one may also motivate

it by robustness concerns when Eq. (10) fails, though our preferred robustness check is to

use nonparametric moment estimates, as outlined in Remark 3.2.

Appendix B Computational details

To simplify the statement of the results below, let r0(b, χ) = r(
√
b, χ), and put m2 = σ2/µ2.

The next proposition shows that, if only a second moment constraint is imposed, the maximal

non-coverage probability ρ(m2, χ), defined in Eq. (5), has a simple solution:

Proposition B.1. Consider the problem in Eq. (5). The solution is given by

ρ(m2, χ) =

r0(0, χ) + m2

t0
(r0(t0, χ)− r0(0, χ)) if m2 < t0,

r0(m2, χ) otherwise.

Here t0 = 0 if χ <
√

3, otherwise t0 is the unique solution to r0(t, χ)+u ∂
∂u
r0(u, χ) = r0(u, χ).

The proof of Proposition B.1 shows that ρ(m2, χ) corresponds to the least concave ma-

jorant of the function r0.

The next result shows that, if in addition to a second moment constraint, we impose

a constraint on the kurtosis, the maximal non-coverage probability can be computed as a

solution to two nested univariate optimizations:

Proposition B.2. Suppose κ > 1 and m2 > 0. Then the solution to the problem

ρ(m2, κ, χ) = sup
F
EF [r(b, χ)] s.t. EF [b2] = m2, EF [b4] = κm2

2,

is given by ρ(m2, κ, χ) = r0(m2, χ) if m2 ≥ t0, with t0 defined in Proposition B.1. If m2 < t0,

then the solution is given by

inf
0<x0≤t0

{
r0(x0, χ) + (m2 − x0)r′0(x0, χ) + ((x0 −m2)

2 + (κ− 1)m2
2) sup

0≤x≤t0
δ(x;x0)

}
, (26)

where r′0(x0, χ) = ∂r0(x0, χ)/∂x0, δ(x;x0) =
r0(x,χ)−r0(x0,χ)−(x−x0)r′0(x0,χ)

(x−x0)2 if x 6= x0, and

δ(x0;x0) = limx→x0 δ(x;x0) = 1
2
∂2

∂x20
r0(x0, χ).
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If m2 ≥ t0, then imposing a constraint on the kurtosis does not help to reduce the

maximal non-coverage probability, and ρ(m2, κ, χ) = ρ(m2, χ).

Remark B.1 (Least favorable distributions). It follows from the proof of these propositions

that distributions maximizing Eq. (5)—the least favorable distributions for the normalized

bias b—have two support points if m2 ≥ t0, namely −√m2 and
√
m2 (since the rejection

probability r(b, χ) depends on b only through its absolute value, any distribution with these

two support points maximizes Eq. (5)). If m2 < t0, there are three support points, b = 0,

with probability 1−m2/t0 and b = ±
√
t0 with total probability m2/t0 (again, only the sum

of the probabilities is uniquely determined). If the kurtosis constraint is also imposed, then

there are four support points, ±√x0 and ±
√
x, where x and x0 optimize Eq. (26).

Finally, the characterization of the solution to the general program in Eq. (19) depends

on the form of the constraint function g. To solve the program numerically, discretize the

support of F to turn the problem into a finite-dimensional linear program, which can be

solved using a standard linear solver. In particular, we solve the problem

ρg(m,χ) = sup
p1,...,pK

K∑
k=1

pkr(xk, χ) s.t.
K∑
k=1

pkg(xk) = m,
K∑
k=1

pk = 1, pk ≥ 0.

Here x1, . . . , xK denote the support points of b, with pk denoting the associated probabilities.

Appendix C Coverage results

This Appendix provides coverage results that generalize Theorem 4.1. Appendix C.1 intro-

duces the general setup. Appendix C.2 provides results for general shrinkage estimators that

satisfy an approximate normality assumption. Appendix C.3 considers a generalization of

our baseline specification in the EB setting, and states a generalization of Theorem 4.1.

C.1 General setup and notation

Let θ̂1, . . . , θ̂n be estimates of θ1, . . . , θn, with standard errors se1, . . . , sen. The standard

errors may be random variables that depend on the data. We are interested in coverage

properties of the intervals CIi = {θ̂i ± sei · χi} for some χ1, . . . , χn, which may be chosen

based on the data. In some cases, we will condition on some variable X̃i when defining EB

coverage or average coverage. Let X̃(n) = (X̃1, . . . , X̃n)′ and let χ(n) = (χ1, . . . , χn)′.

As discussed in Section 4.1, the average coverage criterion does not require thinking of

θ as random. To save on notation, we will state most of our average coverage results and
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conditions in terms of a general sequence of probability measures P̃ = P̃ (n) and triangular

arrays θ and X̃(n). We will use EP̃ to denote expectation under P̃ . We can then obtain

EB coverage statements by considering a distribution P for the data and θ, X̃(n) and an

additional variable ν such that these conditions hold for the measure P̃ (·) = P (· | θ, ν, X̃(n))

for θ, ν, X̃(n) in a probability one set. The variable ν is allowed to depend on n, and can

include nuisance parameters as well as additional variables.

It will be useful to formulate a conditional version of the average coverage criterion (15),

to complement the conditional version of EB coverage discussed in the main text. Due to

discreteness of the empirical measure of the X̃i’s, we consider coverage conditional on each

set in some family A of sets. To formalize this, let IX ,n = {i ∈ {1, . . . , n} : X̃i ∈ X}, and let

NX ,n = #IX ,n. The sample average non-coverage on the set X is then given by

ANCn(χ(n);X ) =
1

NX ,n

∑
i∈IX ,n

I{θi /∈ {θ̂ ± sei · χi}} =
1

NX ,n

∑
i∈IX ,n

I{|Zi| > χi},

where Zi = (θ̂i − θi)/sei. We consider two notions of average coverage control, conditional

on the set X ∈ A:

ANCn(χ;X ) ≤ α + oP̃ (1), (27)

and

lim sup
n

EP̃ [ANCn(χ;X )] = lim sup
n

1

NX ,n

∑
i∈IX ,n

P̃ (|Zi| > χi) ≤ α. (28)

Since ANCn(χ;X ) is uniformly bounded, (27) implies (28). Furthermore, if we integrate

with respect to some distribution on ν, X̃(n) such that (28) holds with P̃ (·) = P (· | θ, ν, X̃(n))

almost surely, we get (again by uniform boundedness) lim supnE [ANCn(χ;X ) | θ] ≤ α,

which, if X contains all X̃i’s with probability one, is condition (15) from the main text.

Now consider EB coverage, as defined in Eq. (14) in the main text, but conditioning on

X̃i. We consider EB coverage under a distribution P for the data, X̃(n), θ and ν, where

ν includes additional nuisance parameters and covariates, and where the average coverage

condition (28) holds with P (· | θ, ν, X̃(n)) playing the role of P̃ with probability one. Suppose

X̃i is discretely distributed under P , and that the exchangeability condition

P (θi ∈ CIi | I{x̃},n) = P (θj ∈ CIj | I{x̃},n) for all i, j ∈ I{x̃},n (29)

holds with probability one. Then, for each j,

P (θj ∈ CIj | X̃j = x̃) = P (θj ∈ CIj | j ∈ I{x̃},n) = E
[
P (θj ∈ CIj | I{x̃},n) | j ∈ I{x̃},n

]
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= E
[

1
N{x̃},n

∑
i∈I{x̃} P (θi ∈ CIi | I{x̃})

∣∣∣ j ∈ I{x̃},n] .
Plugging in P (· | θ, ν, X̃(n)) for P̃ in the coverage condition (28), taking the expectation

conditional on I{x̃},n and using uniform boundedness, it follows that the lim inf of the term

in the conditional expectation is no less than 1− α. Then, by uniform boundedness of this

term,

lim inf
n→∞

P (θj ∈ CIj | X̃j = x̃) ≥ 1− α. (30)

This is a conditional version of the EB coverage condition (14) from the main text.

C.2 Results for general shrinkage estimators

We assume that Zi = (θ̂i − θi)/sei is approximately normal with variance one and mean

bi under the sequence of probability measures P̃ = P̃ (n). To formalize this, we consider a

triangular array of distributions satisfying the following conditions.

Assumption C.1. For some random variables b̃i and constants bi,n, Zi − b̃i satisfies

lim
n→∞

max
1≤i≤n

∣∣∣P̃ (Zi − b̃i ≤ t)− Φ(t)
∣∣∣ = 0

for all t ∈ R and, for all X ∈ A and any ε > 0, 1
NX ,n

∑
i∈IX ,n

P̃ (|b̃i − bi,n| ≥ ε)→ 0.

Note that, when applying the results with P̃ (·) given by the sequence of measures P (· |
θ, ν, X̃(n)), the constants bi,n will be allowed to depend on θ, ν, X̃(n).

Let g : R → Rp be a vector of moment functions. We consider critical values χ̂(n) =

(χ̂1, . . . , χ̂n) based on an estimate of the conditional expectation of g(bi,n) given X̃i, where

the expectation is taken with respect to the empirical distribution of X̃i, bi,n. Due to the

discreteness of this measure, we consider the behavior of this estimate on average over sets

X ∈ A. We assume that there exists a function m : X → Rp that plays the role of the

conditional expectation of g(bi,n) given X̃i, along with estimates m̂i of m(X̃i), which satisfy

the following assumptions.

Assumption C.2. For all X ∈ A, NX ,n →∞, 1
NX ,n

∑
i∈IX ,n

(g(bn,i)−m(X̃i))→ 0, and, for

all ε > 0, 1
NX ,n

∑
i∈IX ,n

P̃ (‖m̂i −m(X̃i)‖ ≥ ε)→ 0.

Assumption C.3. For every X ∈ A and every ε > 0, there is a partition X1, . . . ,XJ ∈ A
of X and m1, . . . ,mJ such that, for each j and all x ∈ Xj, m(x) ∈ Bε(mj), where Bε(m) =

{m̃ : ‖m̃−m‖ ≤ ε}.

Assumption C.4. For some compact set M in the interior of the set of values of
∫
g(b)dF (b)

where F ranges over all probability measures on R, we have m(x) ∈M for all x.
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Let ρg(m,χ) and cvaα,g(m) be defined as in Section 6,

cvaα,g(m) = inf{χ : ρg(m,χ) ≤ α} where ρg(m,χ) = sup
F
EF [r(b, χ)] s.t. EF [g(b)] = m.

Let χ̂i = cvaα,g(m̂i). We will consider the average non-coverage ANCn(χ̂(n);X ) of the

collection of intervals {θ̂i ± sei · χ̂i}.

Theorem C.1. Suppose that Assumptions C.1, C.2, C.3 and C.4 hold, and that, for some

j, limb→∞ gj(b) = limb→−∞ gj(b) =∞ and infb gj(b) ≥ 0. Then, for all X ∈ A,

EP̃ANCn(χ̂(n);X ) ≤ α + o(1).

If, in addition, Zi − b̃i is independent over i under P̃ , then ANCn(χ̂(n);X ) ≤ α + oP̃ (1).

C.3 Empirical Bayes shrinkage toward regression estimate

We now apply the general results in Appendix C.2 to the EB setting. As in Section 3, we

consider unshrunk estimates Y1, . . . , Yn of parameters θ = (θ1, . . . , θn)′, along with regressors

X(n) = (X1, . . . , Xn) and variables X̃(n) = (X̃1, . . . , X̃n)′, which include σi, and which play

the role of the conditioning variables (the setting in Section 3 obtains as a special case

with X̃i = (Xi, σi)). The initial estimate Yi has standard deviation σi, and we observe

an estimate σ̂i. We obtain average coverage results by considering a triangular array of

probability distributions P̃ = P̃ (n), in which the Xi’s, σi’s and θi’s are fixed. EB coverage

can then be obtained for a distribution P of the data, θ and some nuisance parameter ν̃ such

that these conditions hold almost surely with P (· | θ, ν̃, X̃(n), X(n)) playing the role of P̃ .

We generalize the baseline specification in the main text, and consider

θ̂i = X̂ ′i δ̂ + w(γ̂, σ̂i)(Yi − X̂ ′i δ̂)

where X̂i is an estimate of Xi (this allows some elements of Xi to be estimated rather than

observed directly, such as when σi is included in Xi), δ̂ is any random vector that depends on

the data (such as the OLS estimator in a regression of Yi on Xi), and γ̂ is a tuning parameter

that determines shrinkage and may depend on the data. This leads to the standard error

sei = w(γ̂, σ̂i)σ̂i so that the t-statistic is

Zi =
θ̂i − θi

sei
=
X̂ ′i δ̂ + w(γ̂, σ̂i)(Yi − X̂ ′i δ̂)− θi

w(γ̂, σ̂i)σ̂i
=
Yi − θi
σ̂i

+
[w(γ̂, σ̂i)− 1](θi − X̂ ′i δ̂)

w(γ̂, σ̂i)σ̂i
.

We use estimates of moments of the bias of positive integer order `1 < · · · < `p. Let µ̂` be
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an estimate of the `th moment of θi−X ′iδ, and suppose that this moment is independent of

σi in a sense formalized below. Then an estimate of the `jth moment of the bias is m̂i,j =
[w(γ̂,σ̂i)−1]`j µ̂`j
w(γ̂,σ̂i)

`j σ̂
`j
i

. Let m̂i = (m̂1, . . . , m̂p)
′. The EBCI is then given by θ̂i±w(γ̂, σ̂i)σ̂i · cvaα,g(m̂i)

where gj(b) = b`j . We obtain the baseline specification in Section 3.2 when p = 2, `1 = 2,

`2 = 4, γ̂ = µ̂2 and w(µ̂2, σ̂i) = µ̂2/(µ̂2 + σ̂2
i ).

We make the following assumptions.

Assumption C.5. limn→∞max1≤i≤n|P̃ ((Yi − θi)/σ̂i ≤ t)− Φ(t)| = 0.

Supplemental Appendix D.1 gives primitive conditions for Assumption C.5, and verifies

them in a linear fixed effects panel data model. These conditions involve considering a

triangular array of parameter values such that sampling error and empirical moments of the

parameter value sequence are of the same order of magnitude, and defining θi to be a scaled

version of the corresponding parameter.

Assumption C.6. The standard deviations σi are bounded away from zero. In addition, for

some δ and γ, δ̂ and γ̂ converge to δ and γ under P̃ , and, for any ε > 0,

lim
n→∞

max
1≤i≤n

P̃ (|σ̂i − σi| ≥ ε) = 0 and lim
n→∞

max
1≤i≤n

P̃ (|X̂i −Xi| ≥ ε) = 0.

Assumption C.7. The variable X̃i takes values in S1 × · · · × Ss where, for each k, either

Sk = [xk, xk] (with −∞ < xk < xk < ∞) or Sk is a finitely discrete set with minimum

element xk and maximum element xk. In addition, X̃i1 = σi (the first element of X̃i is given

by σi). Furthermore, for some µ0 such that (µ0,`1 , . . . , µ0,`p) is in the interior of the set of

values of
∫
g(b) dF (b) where F ranges over probability measures on R where gj(b) = b`j and

some constant K, the following holds. Let A denote the collection of sets S̃1×· · ·× S̃s where

S̃k is a positive Lebesgue measure interval contained in [xk, xk] in the case where Sk = [xk, xk],

and S̃k is a nonempty subset of Sk in the case where Sk is finitely discrete. For any X ∈ A,

NX ,n →∞ and

1

NX ,n

∑
i∈IX ,n

(θi −X ′iδ)`j → µ0,`j ,
1

NX ,n

∑
i∈IX ,n

|θi|`j ≤ K, and
1

NX ,n

∑
i∈IX ,n

‖Xi‖`j ≤ K.

In addition, the estimate µ̂`j converges in probability to µ0,`j under P̃ for each j.

Theorem C.2. Let θ̂i and sei be given above and let χ̂i = cvaα,g(m̂i) where m̂i is given

above and g(b) = (b`1 , . . . , b`p) for some positive integers `1, . . . , `p, at least one of which is

even. Suppose that Assumptions C.5, C.6 and C.7 hold, and that w() is continuous in an

open set containing {γ} × S1 and is bounded away from zero on this set. Let A be as given
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in Assumption C.7. Then, for all X ∈ A, EP̃ANCn(χ̂(n);X ) ≤ α + o(1). If, in addition,

(Yi, σ̂i) is independent over i under P̃ , then ANCn(χ̂(n);X ) ≤ α + oP̃ (1).

As a consequence of Theorem C.2, we obtain, under the exchangeability condition (29),

conditional EB coverage, as defined in Eq. (30), for any distribution P of the data and

θ, ν̃ such that the conditions of Theorem C.2 hold with probability one with the sequence

of probability measures P (· | θ, ν̃, X(n), X̃(n)) playing the role of P̃ . This follows from the

arguments in Appendix C.1.

Corollary C.1. Let θ, ν,X(n), X̃(n), Yi follow a sequence of distributions P such that the con-

ditions of Theorem C.2 hold with X̃i taking on finitely many values, and P (· | θ, ν,X(n), X̃(n))

playing the role of P̃ with probability one, and such that the exchangeability condition (29)

holds. Then the intervals CIi = {θ̂i ± w(γ̂, σ̂i)σ̂i · cvaα,g(m̂i)} satisfy the conditional EB

coverage condition (30).

The first part of Theorem 4.1 (average coverage) follows by applying Theorem C.2 with

the conditional distribution P (· | θ) playing the role of P̃ . The second part (EB coverage)

follows immediately from Corollary C.1.
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