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Abstract

Multiple testing adjustments, such as the Benjamini and Hochberg (1995) step-

up procedure for controlling the false discovery rate (FDR), are typically applied to

families of tests that control significance level in the classical sense: for each individual

test, the probability of false rejection is no greater than the nominal level. In this

paper, we consider tests that satisfy only a weaker notion of significance level control,

in which the probability of false rejection need only be controlled on average over the

hypotheses. We find that the Benjamini and Hochberg (1995) step-up procedure still

controls FDR in the asymptotic regime with many weakly dependent p-values, and

that certain adjustments for dependent p-values such as the Benjamini and Yekutieli

(2001) procedure continue to yield FDR control in finite samples. Our results open the

door to FDR controlling procedures in nonparametric and high dimensional settings

where weakening the notion of inference allows for large power improvements.

1 Introduction

Consider testing m hypotheses H1, . . . , Hm. Let H0 ⊆ {1, . . . ,m} denote the set of true

null hypotheses. Given p-values p1, . . . , pm for each of the hypotheses, we wish to form a

multiple testing procedure which decides on a subset of hypotheses to reject. A common

starting point for multiple testing procedures proposed in the literature is to assume that
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the p-values are formed from tests that control significance level in the classical sense, which

implies

for all i ∈ H0, P (pi ≤ t) ≤ t. (1)

One then adjusts the critical value so that some notion of multiple testing error, such as the

false discovery rate (FDR), is controlled (see formal definitions below).

In this paper, we explore the possibility of forming FDR controlling multiple testing

procedures from tests that satisfy a weaker average significance level control criterion. Such

tests can be formed from confidence intervals (CIs) that weaken the classical definition of a CI

by requiring coverage only on average over the reported CIs. Such CIs have been developed

in a number of settings (Wahba, 1983; Nychka, 1988; Wasserman, 2007, Chapter 5.8; Cai

et al., 2014; Armstrong et al., 2020), and are particularly appealing in high dimensional or

nonparametric settings involving regularized estimation, where impossibility results (Low,

1997) severely restrict the scope for constructing classical tests and CIs. We ask: can such

CIs still be used as an input to multiple testing procedures proposed in the literature, despite

only satisfying a weaker notion of coverage?

We focus on multiple testing procedures designed to control the false discovery rate

(FDR) of Benjamini and Hochberg (1995). We find that average significance level control is

indeed sufficient to use a CI as an input to certain multiple testing procedures that guarantee

FDR control. In particular, average significance level control is sufficient to guarantee FDR

control of the Benjamini and Hochberg (1995) procedure in the asymptotic regime of weakly

dependent p-values and many hypotheses (m → ∞) and of the Benjamini and Yekutieli

(2001) procedure with fixed m and arbitrary dependence among p-values. On the other hand,

in contrast to the classical setting, we show by example that the Benjamini and Hochberg

(1995) procedure does not in general have FDR control with fixed m and independent p-

values, and that approaches that estimate the proportion of null hypotheses, such as the

procedure of Storey (2002), can fail to control FDR even as m→∞.

Much of the literature on FDR controlling multiple testing procedures takes a family of

p-values satisfying the classical significance level control condition (1) as a starting point. An

important exception is the literature on knockoff based FDR controlling procedures (Barber

and Candès, 2015), which instead rely on the construction of auxiliary random variables,

called knockoffs. Constructing knockoffs typically requires modeling assumptions such as

the “model-X” framework, in which the joint distribution of regression covariates is known

or estimated with sufficient accuracy (Candès et al., 2018), or restricting the procedure to
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low dimensional settings. We view our results as complementary to this literature: our

results allow for FDR controlling procedures based on average coverage intervals, which are

available in nonparametric and high dimensional settings where the model-X framework is

difficult to apply. Our results also complement the recent literature on covariate assisted

FDR controlling procedures (see, among others, Lei and Fithian, 2018; Li and Barber, 2019;

Ignatiadis and Huber, 2021): whereas this literature seeks to improve power using covariates

Xi or other information associated with the p-value pi, our results allow for more powerful

FDR controlling procedures by directly basing such procedures on tests that achieve greater

power than conventional tests by weakening the notion of significance level control.

The rest of this paper is organized as follows. Section 2 introduces the setup and provides

an overview of results. Section 3 presents finite sample results. Section 4 presents results

that are asymptotic in the number m of hypotheses being tested.

2 Setup and Overview of Results

To describe our results, let CI1(t), . . . , CIm(t) be CIs for parameters θ1, . . . , θm that satisfy

average coverage at level t in the sense that 1
m

∑m
i=1 P (θi /∈ CIi(t)) ≤ t. Let p1, . . . , pm be p-

values formed from testing hypotheses Hi : θi = θ0,i using these CIs: pi ≤ t iff. θ0,i /∈ CIi(t).
The set of true hypotheses is given by H0 = {i : θ0,i = θi}, so that 1

m

∑
i∈H0

P (θ0,i /∈
CIi(t)) = 1

m

∑
i∈H0

P (θi /∈ CIi(t)) ≤ 1
m

∑m
i=1 P (θi /∈ CIi(t)) ≤ t. The p-values will therefore

satisfy

1

m

∑
i∈H0

P (pi ≤ t) ≤ t. (2)

We will refer to a family of p-values and their associated tests as having average significance

level control (at level t) for the testing problem (P,H0) when condition (2) holds. Note that

the sum of false rejection probabilities in (2) is scaled by the total number of hypotheses m,

whereas the classical condition (1) would allow one to replace m with #H0. This is due to

the fact that average coverage of the CIs only guarantees error bounds on average over all

m CIs, and not over the subset for which some particular null hypothesis holds.

A multiple testing procedure is a function that maps the p-values p1, . . . , pm to a subset

R = R(p1, . . . , pm) ⊆ {1, . . . ,m} of rejected null hypotheses. The false discovery proportion
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(FDP) of a procedure R is:

FDP(R,H0) =
# (R∩H0)

#R∨ 1
(3)

where #A is the cardinality of A and a ∨ b denotes the maximum of a and b. The false

discovery rate (FDR) of this procedure is the expectation of the FDP:

FDR(R,H0, P ) = EP FDP(R,H0) = EP

[
# (R∩H0)

#R∨ 1

]
(4)

where EP denotes expectation under the distribution P of the p-values. We say that R
controls the false discovery rate at level q if FDR(R,H0, P ) ≤ q.

While some of our results are more general, our main focus is on the Benjamini and

Hochberg (1995, BH) step-up procedure, and generalizations such as those considered by

Benjamini and Yekutieli (2001), Storey (2002) and Blanchard and Roquain (2008). To

describe these procedures, let

Rfixed
t (p1, . . . , pn) = {i : pi ≤ t} . (5)

denote the fixed rejection region procedure with cutoff t. That is, we reject all hypotheses

with p-value less than t. Let

V (t) =
∑
i∈H0

I(pi ≤ t) = #
(
Rfixed
t ∩H0

)
, S(t) =

∑
i/∈H0

I(pi ≤ t) = #
(
Rfixed
t \H0

)
and R(t) = V (t) + S(t) = #Rfixed

t . (6)

The FDP of Rfixed
t is given by V (t)/[R(t)∨1]. The BH procedure can be motivated by noting

that, while V (t) cannot be observed, one can form a conservative estimate by replacing it

with m · t. This gives an estimate of the fixed rejection region FDR:

F̂DR(t) =
m · t

#Rfixed
t ∨ 1

=
m · t

R(t) ∨ 1
. (7)

The BH procedure at nominal FDR level q uses a cutoff t̂BH,q based on this estimate:

RBH,q(p1, . . . , pm) = {i : pi ≤ t̂BH,q} where t̂BH,q = max{t : F̂DR(t) ≤ q}. (8)

A more general class of step-up procedures can be formed by using an estimate of the form
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πmt for V (t) and modifying the denominator using a nondecreasing function β, called a

shape function:

Rπ,β(·),q(p1, . . . , pm) = {i : pi ≤ t̂π,β(·),q} where t̂π,β(·),q = max

{
t :

πmt

β(R(t))
≤ q

}
. (9)

Such procedures have been considered by, among others, Benjamini and Yekutieli (2001),

Storey (2002) and Blanchard and Roquain (2008).

When the p-values satisfy the classical significance level control condition (1), these pro-

cedures are known to have the following properties.

(i) The BH procedure controls FDR when p-values are independent (Benjamini and Hochberg,

1995).

(ii) The estimate F̂DR(t) is upwardly biased for the FDR of the fixed rejection region

procedure Rfixed
t when p-values are independent (Storey et al., 2004).

(iii) The procedure R1,β(·),q (with π = 1) controls FDR under arbitrary dependence for

the shape function β(k) = k (
∑m

i=1 i
−1)
−1

(Benjamini and Yekutieli, 2001) and, more

generally, when β(k) =
∫ k

0
xdν(x) for an arbitrary probability distribution ν on (0,∞)

(Blanchard and Roquain, 2008).

(iv) The BH procedure controls FDR asymptotically (as m→∞) when the p-values satisfy

a weak dependence condition (Storey et al., 2004; Genovese and Wasserman, 2004).

(v) The procedure Rπ̂,β(·),q, where π̂ =
∑m

i=1 I(pi > λ) is an estimate of #H0/m, controls

FDR (a) under fixed m with independent p values (Storey et al., 2004) and (b) asymp-

totically as m → ∞ when the p-values satisfy a weak dependence condition (Storey

et al., 2004; Genovese and Wasserman, 2004).

Our results can be summarized as showing that, when the p-values only satisfy the weaker

average significance level control condition (2), properties (ii), (iii) and (iv) continue to hold,

but that properties (i) and (v)(a) and (v)(b) in general do not. Section 3.1 shows property

(iii) and provides a counterexample to property (i). Section 3.2 shows property (ii). Section

4 shows property (iv).
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3 Finite Sample Results

This section considers finite sample control of FDR for step-up procedures (Section 3.1) and

point estimation of FDR of the fixed rejection region procedure Rfixed
t (Section 3.2).

3.1 FDR Control

Our results on FDR control for step-up procedures follows a corollary of a more general result

that uses an invariance assumption on an oracle version of a multiple testing procedure. The

basic idea is that, if the p-values satisfy the average significance level control condition (2),

then one can form another multiple testing problem in which the classical condition (1) holds

by randomly permuting the p-values of the true null hypotheses and multiplying them by

m/#H0. One can then apply results from the literature to this new setting.

To state our result, we explicitly introduce notation R(p1, . . . , pm;H0) for oracle proce-

dures that depend on the set of true null hypotheses H0 (typically through the cardinality

#H0 of this set). We use a permutation invariance condition

i ∈ R(p1, . . . , pm) iff. σ(i) ∈ R(pσ(1), . . . , pσ(m)) (10)

for any permutation σ of the indices 1, . . . ,m of the tests. This includes the class of step-up

procedures (9), so long as π is either a fixed number or a permutation invariant function of

the p-values.

Theorem 3.1. Let R be a multiple testing procedure that satisfies the permutation invariance

condition (10), and suppose that the oracle procedure R̃(p1, . . . , pm;H0) = R(p1(m0/m), . . . , pm(m0/m))

(where m0 = #H0) controls FDR at level q for any (P,H0) satisfying the classical signifi-

cance level control condition (1). Then R controls FDR at level q for any (P,H0) such that

the average significance level control condition (2) holds.

Proof. Given (P,H0) such that (2) holds and p1, . . . , pn drawn from P , define p̃i as follows.

Let σ be a permutation of H0, taken at random from the set of all permutations of H0 with

equal probability, independently of p1, . . . , pm. Extend σ to a permutation on {1, . . . ,m} by

taking σ(i) = i for i /∈ H0. Let p̃i = (m/m0)pσ(i), where m0 = #H0. Then, for i ∈ H0,

P (p̃i ≤ α) =
∑
j∈H0

P (σ(i) = j)P (pj(m/m0) ≤ α|σ(i) = j) =
1

m0

∑
j∈H0

P (pj(m/m0) ≤ α)
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where we use independence of σ and pj and the fact that P (σ(i) = j) = 1/m0. Since

p1, . . . , pm satisfy (2) under (P,H0), this is bounded by (m/m0) ·αm0/m = α. Thus, letting

P̃ denote the distribution of p̃1, . . . , p̃n under P , (P̃ ,H0) satisfies the classical significance

level control condition (1). It follows by the assumptions of the theorem that the oracle

procedure R̃(p̃1, . . . , p̃m;H0) = R(p̃1(m0/m), . . . , p̃m(m0/m)) = R(pσ(1), . . . , pσ(m)) controls

FDR at level q under H0 when p1, . . . , pm are drawn according to P . But by permutation in-

variance of R and the fact that σ maps H0 to itself, we have #
(
R(pσ(1), . . . , pσ(m)) ∩H0

)
=

# (R(p1, . . . , pm) ∩H0). Also, #R(pσ(1), . . . , pσ(m)) = #R(p1, . . . , pm) by permutation in-

variance. Thus, the FDR of R(pm, . . . , pm) is the same as the FDR of R(pσ(1), . . . , pσ(m)),

and is therefore bounded by q.

This immediately gives the following corollary.

Corollary 3.1. Let β be a shape function such that the oracle step-up procedure (9) with

π = m0/m where m0 = #H0 controls FDR at level q for any (P,H0) that satisfy the classical

significance level control condition (1). Then the conservative step-up procedure (9) with

π = 1 and shape function β controls FDR at level q for any (P,H0) that satisfy the average

significance level control condition (2).

As a special case, applying Proposition 2.7 and Lemma 3.2(iii) in Blanchard and Roquain

(2008) gives the following.

Corollary 3.2. The class of dependence controlling step-up procedures of Blanchard and

Roquain (2008), given by (9) with π = 1 and β(r) =
∫ r

0
xdν(x) for some probability measure

ν, controls FDR at level q for any (P,H0) such that the average significance level control

condition (2) holds. In particular, the step-up procedure of Benjamini and Yekutieli (2001),

which is given by (9) with π = 1 and β(r) = r/ (
∑m

i=1 1/i), controls FDR at level q for any

(P,H0) such that the average significance level control condition (2) holds.

Key requirements here are that the original procedure (a) controls FDR under arbitrary

dependence and (b) can incorporate the m/m0 adjustment through an oracle result. In

particular, (b) rules out procedures of the form Rπ̂,β(·),q with π̂ an estimate of m0/m, as

in Storey (2002). Clearly, ruling out estimates of m0/m is necessary, since such estimates

attempt to use a bound m0 · t on V (t), whereas average coverage only gives a bound of m · t
on the expectation of V (t). The following counterexample shows that (a) is necessary in

general even if the original p-values are independent. In particular, the BH procedure need

not control FDR under the average significance level control condition (2) and independent

p-values.
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Suppose m ≥ 2 and q < 2/3. Let P (p1 ≤ t) = t · m for 0 ≤ t ≤ (3/2) · (q/m),

and let P (p2 ∈ [a, b]) = (b − a) · m for any (3/2) · (q/m) ≤ a ≤ b ≤ 2q/m. We can

then distribute the remaining probability mass of p1, p2 and p3, . . . , pm over the set 2q/m

so that the condition 1
m

∑m
i=1 P (pi ≤ α) = α holds. It follows that the average significance

level condition (2) holds, with H0 = {1, . . . ,m}. Now consider the FDR of the Benjamini-

Hochberg procedure, which rejects all hypotheses i such that pi ≤ qr̂/m where r̂ is the

number of rejected hypotheses. The FDR is equal to the probability of at least one rejection

in this case (since H0 = {1, . . . ,m}). Note that the event p1 ≤ q/m implies that hypothesis

1 is rejected, and this has probability q. But the event q/m < p1 ≤ (3/2) · (q/m) and

p2 ≤ 2q/m has probability (q/m) · (1/2) · (q/m) · (1/2), and it is disjoint with the event

p1 ≤ q/m. This gives a lower bound of q+ [(q/m) · (1/2)]2 > q for the FDR. Thus, the FDR

is not controlled at level q.

3.2 Estimation of FDR for Fixed Rejection Region

We now consider using the BH cutoff as an estimate of the FDR for a fixed rejection region

multiple testing procedure. Under independent p-values, it is known that F̂DR(t) is an up-

wardly biased estimate of FDR(Rfixed
t ) under the classical significance level control condition

(1) (Storey et al., 2004). We now show that this property continues to hold under the weaker

average significance level control condition (2). The result essentially follows from the same

arguments as in the case where the p-values satisfy the classical significance level control

condition.

Theorem 3.2. Suppose that (P,H0) satisfies the average significance level control condition

(2). Then EP F̂DR(t) ≥ FDR(Rfixed
t ,H0, P ).

Proof. For V (t) and S(t) defined in (6), we have

EP F̂DR(t)− FDR(Rfixed
t ,H0, P ) = EP

m · t− V (t)

[V (t) + S(t)] ∨ 1
≥ EP

m · t− V (t)

[m · t+ S(t)] ∨ 1

(the last step follows by noting that replacing V (t) with m · t in the denominator weakly

decreases the denominator when the numerator is negative and weakly increases the denom-

inator when the numerator is positive). The result then follows by noting that S(t) and

V (t) are independent by the independence assumption on p-values, and that EPV (t) ≤ m · t
by the assumption that the p-values satisfy the average significance level control condition

(2).

8



4 Asymptotic Results

We now consider asymptotic FDR control, under a sequence P = P (m) of probability mea-

sures and H0 = H(m)
0 and m → ∞. We suppress the dependence on m whenever it doesn’t

cause confusion, but we note that the p-values form a triangular array, since the distribution

(and the set H0 of true null hypotheses) can change with m. Recall the definitions of V (t),

S(t) and R(t) in (6). If the average significance level control condition (2) holds, and the

p-values do not exhibit too much statistical dependence, we will have

1

m
V (t) ≤ t+ oP (1) for all t ∈ [0, 1]. (11)

For some results, we also assume a law of large numbers for the total rejections and rejected

true nulls:

1

m
V (t)

p→ G(t) ≤ t and
1

m
R(t)

p→ F (t) for all t ∈ [0, 1]. (12)

These assumptions are analogous to assumptions made for asymptotic FDR control under

classical significance level control in the literature (e.g. Storey et al., 2004, Eq. (7)-(9)). The

difference here is that the conditions are weaker, since the upper bound in (11) is given by

t rather than tπ0 where π0 is the limit of #H0/m. As one might expect, this will lead to

problems for “adaptive” procedures that attempt to estimate π0. However, as we now show,

it is not a problem for the Benjamini-Hochberg procedure, which uses the conservative upper

bound of 1. We first show conservative consistency of the BH cutoff (7) for the FDR (and

FDP) of the fixed rejection region procedure.

Theorem 4.1. Let F̂DR(t) be the BH estimate, given in (7), of the FDR of the fixed rejection

region procedure Rfixed
t given in (5) and suppose that (11) holds. Then, for any t such that

there exists η > 0 with 1
m

∑n
i=1 I(pi ≤ t) ≥ η + oP (1), we have

inf
t∈[t,1]

[
F̂DR(t)− FDP(Rfixed

t ,H0)
]
≥ oP (1).

If, in addition, (12) holds for continuous functions G and F , then, letting FDR∞(t) =
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G(t)/F (t), we have

sup
t∈[t,1]

∣∣∣FDP(Rfixed
t ,H0)− FDR∞(t)

∣∣∣ p→ 0, sup
t∈[t,1]

∣∣∣FDR(Rfixed
t ,H0, P )− FDR∞(t)

∣∣∣→ 0

and inf
t∈[t,1]

[
F̂DR(t)− FDR(Rfixed

t ,H0, P )
]
≥ oP (1).

Proof. We first note that (11) implies

inf
t∈[0,1]

[t− V (t)/m] ≥ oP (1) (13)

and that (12) implies

sup
t∈[0,1]

|V (t)/m−G(t)| p→ 0 and sup
t∈[0,1]

|R(t)/m− F (t)| p→ 0 (14)

(this follows by first replacing the set [0, 1] with {0, 1/K, . . . , (K − 1)/K, 1} and then taking

K → ∞, using uniform continuity of G(t) and F (t) on [0, 1] and the fact that F (t), G(t),

V (t)/m and R(t)/m are nondecreasing).

For any ε > 0, the event inft∈[t,1]

[
F̂DR(t)− FDP(Rfixed

t ,H0)
]
< −ε implies that there

exists t ∈ [t, 1] such that t − V (t)/m < −ε(R(t) ∨ 1)/m ≤ −ε(R(t) ∨ 1)/m. This implies

inft∈[t,1][t− V (t)/m] ≤ −ε · η/2 on the event R(t)/m = 1
m

∑m
i=1 I(pi ≤ t) ≥ η/2, which hold

with probability approaching one by assumption. The first statement now follows by noting

that the probability of this event converges to zero by (13).

The first part of the second statement follows immediately from (14), using uniform conti-

nuity of the function (a, b) 7→ a/b over b ∈ [F (t), 1] since F (t) ≥ η > 0. The remaining parts

of the second statement then follow immediatly from the dominated convergence theorem.

Next, we show asymptotic control of FDR for the BH procedure RBH,q defined in (8).

Theorem 4.2. Suppose Assumptions (11) and (12) hold for continuous functions G and F

and that there exists t∗ > 0 such that F (t∗) > 0 and G(t∗)/F (t∗) < q. Then

FDP(RBH,q,H0) ≤ q + oP (1) and FDR(RBH,q,H0, P ) ≤ q + o(1).
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Proof. We have

FDP(RBH,q,H0) =
V (t̂BH,q)/m

[R(t̂BH,q) ∨ 1]/m
≤ F̂DR(t̂BH,q) + I(t̂BH,q < t∗) + oP (1)

using the fact that supt∈[t∗,1]

[
V (t)/m

[R(t)∨1]/m
− F̂DR(t)

]
≤ oP (1) by Theorem 4.1. Since F̂DR(t̂BH,q) ≤

q by construction, it suffices to show P (t̂BH,q ≥ t∗)→ 1. But this follows since F̂DR(t∗) ≤ q

implies t̂BH,q ≥ t∗, and F̂DR(t∗)
p→ G(t∗)/F (t∗) < q by (12). This shows that FDP(RBH,q,H0) ≤

q + oP (1), from which it also follows that FDR(RBH,q,H0, P ) ≤ q + o(1) by dominated con-

vergence.
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