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Appendix B Group decision making interpretation

This appendix develops a simple model of group decision making inspired by Savage (1954)’s

arguments regarding the ability of minimax decisions to foster consensus among individuals

with heterogeneous beliefs. Extending these arguments, we illustrate how adaptive decisions

can serve to foster consensus across groups of individuals with di↵erent sets of beliefs.

B.1 Consensus in a single committee

Suppose there is a committee comprised of members with heterogeneous beliefs that include

all priors supported on the set CB. The committee chair, who we will call the B-chair, o↵ers

a take it or leave it proposal that her committee follow a decision rule � in exchange for the

provision of a public good providing payo↵ G to each member of the committee. This public

good might consist of a persuasive speech, a reduction in committee work, or an o↵er to end

the meeting early.

If the committee agrees to the proposal, the B-chair earns a payo↵ K � C(G), where

K is the value of consensus and C(·) is an increasing cost function. If some member of

the committee does not agree to the proposal, the chair and all committee members receive

payo↵ zero. The B-chair therefore seeks a rule � allowing payment of the smallest G that

ensures consensus.

A committee member who is certain of the parameters (✓, b) will accept the chair’s o↵er if

and only if R (✓, b, �)  G. However, the committee member with the most pessimistic beliefs

regarding these parameters will require a public goods provision level of at least Rmax (B, �)

to agree to the o↵er. To achieve consensus at minimal cost, the B-chair can propose the

B-minimax decision, which requires public goods provision level R⇤ (B) to achieve consensus.
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The B-chair will be willing to provide this level of public goods if and only if K �
C(R⇤ (B)), in which case consensus ensues. If this condition does not hold, the chair deems

the B-minimax decision too costly to implement and consensus is not achieved. Hence, when

no individual holds beliefs that are too extreme, the minimax decision fosters consensus.

B.2 Consensus among committees

Now suppose there is a collection B of committees that is led by a chair of chairs (CoC)

who would like for the B-chairs to agree on a common decision making rule �. Suppose also

that K > supB2B C(R⇤ (B)), so that each B-chair would privately prefer to implement the

B-minimax decision. The CoC has a fixed budget that can be used to persuade the chairs

to instead coordinate on a common rule �.

By the arguments above, each B-chair must pay a cost C(Rmax (B, �)) to secure consensus

regarding the CoC’s proposed plan �, leaving her with payo↵ K �C(Rmax (B, �)). However,

each chair can also defy the CoC and propose the B-minimax decision to her committee,

yielding payo↵ K�C(R⇤ (B)). Hence, to compel a B-chair to propose a decision �, the CoC

must o↵er a transfer of at least �B = C(Rmax (B, �))�C(R⇤ (B)). To economize on transfer

costs, the CoC searches for a � that minimizes the maximal required payment supB2B �B

across all committees.

Di↵erent functional forms for the cost function C yield di↵erent notions of adaptation.

To motivate the formulation in (1), we assume C(G) = lnG, which suggests chairs produce

the public good according to an increasing returns to scale technology that is exponential

in e↵ort costs. With this choice of C(·), the CoC’s problem is to find a � that minimizes

supB2B ln (Rmax (B, �) /R⇤ (B)) = supB2B lnA(B, �). The CoC will therefore propose the

optimally adaptive decision �adapt, which yields supB2B �B = lnA⇤(B). When A
⇤(B) is too

large, the CoC balks at the cost and consensus fails.

B.3 Discussion

Taking the committees to represent di↵erent camps of researchers, our stylized model sug-

gests adaptive estimation can help to forge consensus between researchers with varying beliefs

about the suitability of di↵erent econometric models. The prospects for achieving consensus

are governed by the loss of e�ciency under adaptation. When A
⇤(B) is small, consensus

2



is likely, as the adaptive decision will yield maximal risk similar to each camp’s perceived

B-minimax risk. When A
⇤(B) is large, however, consensus is unlikely to emerge, as the

optimally adaptive estimator will be perceived as excessively risky by camps with extreme

beliefs.

Appendix C Additional details

C.1 Numerical results on estimators as a function of ⇢2

Section 4.4 introduces the class of soft thresholding estimators and hard thresholding esti-

mators. In Figure A1, we plot the solution to the nearly adaptive objective function for

soft-thresholding, which corresponds to a threshold that increases with ⇢2. As ⇢2 increases,

to minimize the worst-case adaptation regret, more weight needs to be placed on the optimal

GMM estimator, which explains the increase in the adaptive threshold. Correspondingly,

the adaptive estimator incurs more bias as ⇢2 increase, which narrows the range of true bias

for which the adaptive estimator beats YU in terms of risk.

Figure A1: Threshold for adaptive soft-thresholding estimator

In practice, it is common to use a fixed threshold of 1.96, which corresponds to a pre-test

rule that switches between the unrestricted estimator and the GMM estimator based on

the result of the specification test. Doing so leads to high level of worst-case adaptation
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regret especially when ⇢2 is close to one as shown in Figure A2. To minimize the worst-case

adaptation regret, the adaptive hard-threshold estimator needs to use a threshold that would

increase to infinity as ⇢2 gets closer to one.

Figure A2: “Max regret” refers to the worst case adaptation regret in percentage terms
(Amax(B, �)� 1)⇥ 100.

Figure A3: “Max risk” refers to the worst case risk increase relative to YU in percentage
terms (Rmax(�)� ⌃U)/⌃U ⇥ 100.

A pre-test estimator utilizing a fixed threshold at 1.96 realizes its worst-case risk when

the scaled bias b̃ is itself near the 1.96 threshold. As shown in Figure A3, the pre-test
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Figure A4: “Max risk” refers to the worst case risk increase relative to YU in percentage
terms (Rmax(1, �)�⌃U)/⌃U ⇥ 100. “Min risk” refers to the best case risk decrease relative
to YU in percentage terms (minb R(✓, b, �)�⌃U)/⌃U ⇥100. The calculations are based on the
soft thresholding nearly adaptive estimator. The constrained variant bounds the worst-case
risk to be less than 70% above the risk of YU .

Figure A5: “Max risk” refers to the worst case risk increase relative to YU in percentage
terms (Rmax(1, �)�⌃U)/⌃U ⇥ 100. “Min risk” refers to the best case risk decrease relative
to YU in percentage terms (minb R(✓, b, �) � ⌃U)/⌃U ⇥ 100. The calculations are based on
the optimally adaptive estimator. The constrained variant bounds the worst-case risk to be
less than 20% above the risk of YU .
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estimator tends to exhibit substantially greater worst-case risk than the class of adaptive

estimators for most values of ⇢2. As discussed in Section 4.4, adaptive estimators have large

worst-case risk when ⇢2 is close to one. The pre-test estimator has lower worst-case risk in

these cases, due to the fixed threshold at 1.96. However, one can achieve the same worst-case

risk while achieving a much lower worst-case adaptation regret by constraining the worst-

case risk directly as in Section 4.5. For example, Figure A4 shows that for the constrained

soft-thresholding version of the adaptive estimator, even as we constrain the worst-case risk

to be less than 70% above the risk of YU , the best-case decrease in risk relative to YU is still

greater than the worst-case increase in risk over YU . Figure A5 shows that this property

holds for the unconstrained optimally adaptive estimator so long as ⇢2  0.65 and also when

the optimally adaptive estimator is constrained to exhibit risk no greater than 120% of the

risk of YU .

C.2 Asymptotics as |⇢| ! 1

This section considers the behavior of the worst-case adaptation regret as |⇢| ! 1 for the

optimally adaptive estimator as well as for the hard and soft-thresholding estimators. Let

A(�, ⇢) denote the worst-case adaptation regret of the estimator given by (4) under the given

value of ⇢, so that A(�, ⇢) returns the value of (6) with �̃ = �. We use A
⇤(⇢) = inf� A(�, ⇢)

(where the infimum is over all estimators) to denote the loss of e�ciency under adaptation for

the given value of ⇢. Likewise, we denote by AS(�, ⇢) = A(�S,�, ⇢) and AH(�, ⇢) = A(�H,�, ⇢)

the worst-case adaptation regret for soft and hard-thresholding respectively with threshold

�, where �S,� are �H,� are defined in Section 4.4. Finally, we use A
⇤
S(⇢) = inf�AS(�, ⇢) and

A
⇤
H(⇢) = inf�AH(�, ⇢) to denote the minimum worst-case adaptation regret for soft and

hard-thresholding respectively.

To get some intuition for the interpretation of ⇢ close to 1, consider the Hausman setting

where YR is e�cient under the restriction b = 0. In this case, we have var(YR) = cov(YR, YU),

cov(YO, YU) = cov(YR � YU , YU) = var(YR) � var(YU) and var(YO) = var(YR) + var(YU) �
2 cov(YR, YU) = var(YU)� var(YR). It follows that

⇢
2 =

cov(YO, YU)2

var(YU) var(YO)
=

var(YU)� var(YR)

var(YU)
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and

⇢
�2 � 1 =

var(YU)

var(YU)� var(YR)
� 1 =

var(YR)

var(YU)� var(YR)
=

var(YR)/ var(YU)

1� var(YR)/ var(YU)
.

Therefore, |⇢| ! 1 corresponds to the case where var(YR)/ var(YU) ! 0. Furthermore,

⇢
�2 � 1 = var(YR)

var(YU )
(1 + o(1)) as |⇢| ! 1, revealing that this quantity captures the relative

e�ciency of the restricted estimator under proper specification.

The following theorem characterizes the behavior of A⇤(⇢), A⇤
S(⇢) and A

⇤
H(⇢) as |⇢| ! 1.

Theorem C.1. We have

lim
|⇢|"1

A
⇤(⇢)

2 log(⇢�2 � 1)�1
= lim

|⇢|"1

A
⇤
S(⇢)

2 log(⇢�2 � 1)�1
= lim

|⇢|"1

A
⇤
H(⇢)

2 log(⇢�2 � 1)�1
= 1.

In the remainder of this section, we prove Theorem C.1. We split the proof into upper

bounds (Section C.2.1) and lower bounds (Section C.2.2). The lower bounds in Section C.2.2

are essentially immediate from results in Bickel (1983) for adapting to B 2 B = {0,1},
whereas the upper bounds in Section C.2.1 involve new arguments to deal with intermediate

values of B.

C.2.1 Upper bounds

In this section, we show that A
⇤
S(⇢)  (1 + o(1))2 log(⇢�2 � 1)�1 and A

⇤
H(⇢)  (1 +

o(1))2 log(⇢�2 � 1)�1. Since A
⇤(⇢) is bounded from above by both A

⇤
S(⇢) and A

⇤
H(⇢), this

also implies A⇤(⇢)  (1 + o(1))2 log(⇢�2 � 1)�1.

Let rS(�, t) = ET⇠N(µ,1)(�S,�(T )� µ)2 and rS(�, t) = ET⇠N(µ,1)(�H,�(T )� µ)2 denote the

risk of soft and hard-thresholding. Then

AS(�, ⇢) = sup
µ2R

rS(�, µ) + ⇢
�2 � 1

rBNM(|µ|) + ⇢�2 � 1

and similarly for AH(�, ⇢). We use the following upper bound for rH(�, µ) and rS(�, µ),

which follows immediately from results given in Johnstone (2019).

Lemma C.1. There exists a constant C such that, for � > C, both rS(�, µ) and rH(�, µ)
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are bounded from above by r̄(�, µ) where

r̄(�, µ) =

8
><

>:

min {� exp (��2/2) + 1.2µ2
, 1 + µ

2} |µ|  �

1 + �
2 |µ| > �.

Proof. The bound for rH(�, µ) follows from Lemma 8.5 in Johnstone (2019) along with the

bound rH(�, 0)  2+"p
2⇡
� exp (��2/2) which holds for any " > 0 for � large enough by (8.15)

in Johnstone (2019). The bound for rL(�, µ) follows from Lemma 8.3 and (8.7) in Johnstone

(2019).

Let �̃⇢ =
p

2 log(⇢�2 � 1)�1. By Lemma C.1, A⇤
S(⇢) and A

⇤
H(⇢) are, for (⇢

�2 � 1)�1 large

enough, bounded from above by the supremum over µ of

r̄(�̃⇢, µ) + ⇢
�2 � 1

rBNM(|µ|) + ⇢�2 � 1
(18)

Let c(⇢) be such that c(⇢)/�̃⇢ ! 0 and c(⇢) ! 1 as |⇢| " 1. We bound (18) separately for

|µ|  c(⇢) and for |µ| � c(⇢). For |µ|  c(⇢), we use the bound r
BNM(|µ|) � .8 · µ2

/(µ2 + 1)

(Donoho, 1994), which gives an upper bound for (18) of

r̄(�̃⇢, µ) + ⇢
�2 � 1

.8 · µ2/(µ2 + 1) + ⇢�2 � 1

p

2 log(⇢�2 � 1)�1 · (⇢�2 � 1) + 1.2µ2 + ⇢
�2 � 1

.8 · µ2/(µ2 + 1) + ⇢�2 � 1


p
2 log(⇢�2 � 1)�1 + (1.2/.8) · (µ2 + 1) + 1 

p
2 log(⇢�2 � 1)�1 + (1.2/.8) · (c(⇢)2 + 1) + 1.

As |⇢| " 1, this increases more slowly than log(⇢�2 � 1)�1. For |µ| � c(⇢), we use the bound

r
BNM(|µ|) � r

BNM(c(⇢)) which gives an upper bound for (18) of

r̄(�̃⇢, µ) + ⇢
�2 � 1

rBNM(|c(⇢)|) + ⇢�2 � 1
 r̄(�̃⇢, µ)

rBNM(|c(⇢)|) + 1 
1 + �̃

2

⇢

rBNM(|c(⇢)|) + 1.

As |⇢| " 1, c(⇢) ! 1 and r
BNM(|c(⇢)|) ! 1, so that the above display is equal to a 1 + o(1)

term times �̃2⇢ = 2 log(⇢�2 � 1)�1 as required.
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C.2.2 Lower bounds

In this section, we show that A
⇤(⇢) � (1 + o(1))2 log(⇢�2 � 1)�1. Since A

⇤
S(⇢) and A

⇤
H(⇢)

are bounded from below by A
⇤(⇢) , this also implies A⇤

S(⇢) � (1 + o(1))2 log(⇢�2 � 1)�1 and

A
⇤
H(⇢) � (1 + o(1))2 log(⇢�2 � 1)�1.

Given an estimator �(Y ) of µ in the normal means problem Y ⇠ N(µ, 1), let m(�) =

ET⇠N(0,1)�(Y )2 denote the risk at µ = 0 and let M(�) = supµ2R ET⇠N(µ,1)(�(Y )� µ)2 denote

worst-case risk. The following lemma is immediate from Bickel (1983, Theorem 4.1).

Lemma C.2 (Bickel 1983, Theorem 4.1). For t 2 (0, 1], let �t be an estimator that satisfies

m(�t)  1� t. Then, as t " 1, M(�t) � (1 + o(1)) · 2 log(1� t).

Using this result, we prove the following lemma, which gives a lower bound for the worst-

case adaptation regret and the worst-case risk of any estimator achieving the upper bound

in Section C.2.1. The required lower bound A
⇤(⇢) � (1 + o(1))2 log(⇢�2 � 1)�1 follows from

this result.

Lemma C.3. For ⇢ 2 (�1, 1), let �⇢ : R ! R be an estimator of µ in the normal means

problem Y ⇠ N(µ, 1). Suppose that the worst-case adaptation regret A(�⇢, ⇢) of the corre-

sponding estimator (4) satisfies A(�⇢, ⇢)  (1 + o(1))2 log(⇢�2 � 1)�1 as |⇢| ! 1. Then the

following results hold as |⇢| ! 1.

i.) The worst-case risk of the corresponding estimator (4) is bounded from below by a

1 + o(1) term times 2⌃U log(⇢�2 � 1)�1

ii.) A(�⇢, ⇢) � (1 + o(1)) · 2 log(⇢�2 � 1)�1.

Proof. By the arguments Section A.1, the worst-case risk of the estimator (4) with � = �⇢

is given by ⌃U ·
⇥
⇢
2 supµ ET⇠N(µ,1)(�⇢(T )� µ)2 + 1� ⇢

2
⇤
. As |⇢| " 1, this is bounded from

below by a 1+ o(1) term times ⌃U supµ ET⇠N(µ,1)(�⇢(T )�µ)2. Similarly, A(�⇢, ⇢) is bounded

from below by a 1 + o(1) term times supµ ET⇠N(µ,1)(�⇢(T )� µ)2 as |⇢| " 1. Thus, it su�ces

to show that supµ ET⇠N(µ,1)(�⇢(T )� µ)2 � (1 + o(1)) · 2 log(⇢�2 � 1)�1.

To show this, note that it follows from plugging in b̃ = 0 to the objective in (6) that, for

any " > 0, we have, for |⇢| close enough to 1,

ET⇠N(0,1)�⇢(T )2

⇢�2 � 1
 A(�⇢, ⇢)  (2 + ") log(⇢�2 � 1)�1

.
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Applying Lemma C.2 with 1� t = (⇢�2 � 1) · (2 + ") log(⇢�2 � 1)�1, it follows that

sup
µ

ET⇠N(µ,1)(�⇢(T )� µ)2 � (1 + o(1)) · 2 log
⇥
(⇢�2 � 1) · (2 + ") log(⇢�2 � 1)�1

⇤

= (1 + o(1)) ·
⇥
2 log(⇢�2 � 1) + log(2 + ") + log log(⇢�2 � 1)�1

⇤
= (1 + o(1)) · 2 log(⇢�2 � 1)

as required.

Appendix D Computational details

In this section, we provide additional details on our computation of the adaptive estimator.

D.1 Discrete approximation to estimators and risk function

Operationally, discretizing the support of the random variable T 2 T into K points, finding

an estimator �(T ) is equivalent to finding a “policy” function � (t) : T ! R:

� (t) =
KX

k=1

 k1 {t = tk} .

Hence, we can rewrite the risk of estimator �(T ) when T ⇠ N(b, 1) as

ET⇠N(b,1)

 
KX

k=1

 k1 {T = tk}� b

!2

. (19)

Define µkb = PrT⇠N(b,1) (T = tk) as the probability of falling into the k’th grid point given

bias b, which can be evaluated analytically via the following discrete approximation to the

normal distribution

µkb = � ((tk + tk+1) /2� b)� � ((tk + tk�1) /2� b) , (20)

where we define t0 = �1 and tK+1 = 1, which ensures that
PK

k=1
µkb = 1. The discretized
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approximation to the risk function (19) is therefore

KX

k=1

 
2

kµkb � 2b
KX

k=1

 kµkb + b
2
. (21)

D.2 Computing minimax risk in the bounded normal mean prob-

lem

We now provide details on how to compute the minimax risk r
BNM(|b̃|) in the bounded

normal mean problem, which allows us to easily compute the B-minimax risk for the main

example as described in 5 for each B 2 B. This subsection is a specialized version of the

first step of Algorithm 4.1.

By definition, the minimax risk r
BNM(|b̃|) is the minimized value of the following minimax

problem

min
�

max
b2[�|b̃|,|b̃|]

ET⇠N(b,1)(�(Y )� b)2

whose solution is the minimax estimator �BNM

⇣
T ; |b̃|

⌘
. In particular, for each |b̃| = B/

p
⌃O 2

{0.1, 0.2, . . . , 9} we calculate the minimax risk r
BNM(|b̃|) following the steps below. To com-

pute the minimax risk function r
BNM(|b̃|) for values of |b̃| that are not included in the fine

grid, we rely on spline interpolation.

1. Approximate the prior ⇡ with the finite dimensional vector ⇡ 2 �J , where the param-

eter space [�|b̃|, |b̃|] is approximated by an equally spaced grid of b values spanning

[�|b̃|, |b̃|] with a step size of 0.05, totaling to J grid values. Approximate the condi-

tional risk function as in (21), where the support for T ⇠ N(b, 1) is approximated by

an equally spaced grid of t values spanning [�|b̃| � 3, |b̃| + 3] with a step size of 0.1,

totaling to K grid values. The minimax problem becomes

max
⇡2�J

min
{ k}Kk=1

JX

`=1

⇡`

 
KX

k=1

 
2

kµkb` � 2b`

KX

k=1

 kµkb` + b
2

`

!
. (22)

2. The solution to the inner optimization yields the posterior mean  ⇤
k (⇡) =

P
J

`=1 ⇡`µkb`
b`P

J

`=1 ⇡`µkb`

.
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The outer problem is then

max
⇡2�J

JX

`=1

⇡`

 
KX

k=1

( ⇤
k (⇡))

2
µkb` � 2b`

KX

k=1

 
⇤
k (⇡)µkb` + b

2

`

!
.

3. Solve the outer problem for the least favorable prior ⇡⇤ based on sequential quadratic

programming via MATLAB’s fmincon routine. The minimax estimator �BNM

⇣
T ; |b̃|

⌘

is therefore
PK

k=1
 

⇤
k (⇡

⇤) 1 {t = tk} and the minimax risk r
BNM(|b̃|) is the minimized

value.

Since the objective is concave in ⇡ (it is the pointwise infimum over a set of linear functions;

see Boyd and Vandenberghe, 2004, p. 81), we can check that the algorithm has found a

global maximum by checking for a local maximum.

D.3 Computing the optimally adaptive estimator for a given ⇢
2

As explained in the main text, the adaptive problem in the main example only depends on

⌃ through the correlation coe�cient ⇢2. For a given value of ⇢2, we use convex programming

methods to solve for the function �̃adapt(t; ⇢) based on the steps described below, which is a

specialized version of the second step of Algorithm 4.1.

1. Approximate the prior ⇡ with the finite dimensional vector ⇡ 2 �J , where the param-

eter space for b/
p
⌃O is approximated by an equally spaced grid of b̃ values spanning

[�9, 9] with a step size of 0.025, totaling to J grid values. Approximate the conditional

risk function as in (21), where the support for T ⇠ N(b̃, 1) is approximated by an

equally spaced grid of t values spanning [�12, 12] with a step size of 0.05, totaling to

K grid values. The adaptation problem (6) becomes

max
⇡2�J

min
{ k}Kk=1

JX

`=1

⇡`!`

 
KX

k=1

 
2

kµkb` � 2b`

KX

k=1

 kµkb` + b
2

`

!
+ ⇢

�2 � 1 (23)

where !` =
⇣
r
BNM(|b̃`|) + ⇢

�2 � 1
⌘�1

using output from the previous subsection.

2. The solution to the inner optimization yields  ⇤
k (⇡) =

P
J

`=1 ⇡`µkb`
!`b`P

J

`=1 ⇡`µkb`
!`

. The outer prob-
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lem is then

max
⇡2�J

JX

`=1

⇡`!`

 
KX

k=1

( ⇤
k (⇡))

2
µkb` � 2b`

KX

k=1

 
⇤
k (⇡)µkb` + b

2

`

!
+ ⇢

�2 � 1.

3. Solve the outer problem for the least favorable (adaptive) prior ⇡⇤ based on sequen-

tial quadratic programming via Matlab’s fmincon routine. The adaptive estimator

�̃
adapt(t; ⇢) is therefore

PK
k=1

 
⇤
k (⇡

⇤) 1 {t = tk}. The loss of e�ciency under adaptation

is the minimized value.

As with the bounded normal mean problem, the objective is concave in ⇡, so we can check

that the algorithm has found a global maximum by checking for a local maximum.

D.4 Computing the optimally adaptive estimator based on the

lookup table

To simplify the computation of the optimally adaptive estimator, we pre-calculate the adap-

tive estimates over an unequally spaced grid tanh([0, 0.05, 0.10, . . . , 3]) of correlation coef-

ficients using the algorithm described above. As ⇢2 approaches one, the solution becomes

sensitive to small changes in ⇢. The uneven spacing of the ⇢ grid allows for more accurate

interpolation based on the simple pre-tabulated lookup table that we describe next.

To rapidly obtain a final estimator �̃adapt(TO; ⇢) for a given application, we conduct 2D

interpolation across ⇢2 and t values to tailor the adaptive estimates to the exact parameter

values desired. For example, we obtain �̃ (TO;�0.524) based on spline interpolation at ⇢2 =

(�0.524)2 together with the observed test statistic TO based on the 2D grid of ⇢2 and t

values.

Figure A6 plots the maximum and minimum values of �(TO)/TO against ⇢2. For all

enumerated values of ⇢2, the adaptive estimator “shrinks” TO towards zero.

D.5 Computing the nearly adaptive estimators

To find the nearly adaptive estimators in the class of soft thresholding estimators and hard

thresholding estimators, it su�ces to solve the two dimensional minimax problem in thresh-

old � and scaled bias level b̃. We provide details for the claim in the main text that this two
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Figure A6: Shrinkage pattern for the adaptive estimator

dimensional minimax problem can be easily solved in practice even though the minimax the-

orem does not apply to these restricted classes of estimators. The derivation is largely based

on the following equality using moments of a truncated standard normal Xi | a < Xi < b.

Let �(x) and �(x) denote the pdf and cdf of a standard normal distribution. Then for any

a < b, we have

Z b

a

x
2
�(x)dx = � (b)� � (a)� (b�(b)� a�(a)) . (24)

D.5.1 Soft thresholding

Rewrite the soft thresholding estimator as �S,� (TO) = 1 {TO > �} (TO � �)+1 {TO < ��} (TO + �)

and its risk function can be expressed as

ETO⇠N(b̃,1))

⇣
�S,� (TO)� b̃

⌘2

= ETO⇠N(b̃,1)

⇣
1 {TO > �}

⇣
TO � �� b̃

⌘
+ 1 {TO < ��}

⇣
TO + �� b̃

⌘
� 1 {�� < TO < �} b̃

⌘2

= b̃
2

⇣
�
⇣
�� b̃

⌘
� �

⇣
��� b̃

⌘⌘
+

Z 1

��b̃

(x� �)2 �(x)dx+

Z ���b̃

�1
(x+ �)2 �(x)dx (25)
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The integrals in (25) simplify to

Z 1

��b̃

(x� �)2 �(x)dx+

Z ���b̃

�1
(x+ �)2 �(x)dx

=

Z 1

��b̃

x
2
�(x)dx+

Z ���b̃

�1
x
2
�(x)dx

� 2�

 Z 1

��b̃

x�(x)dx�
Z ���b̃

�1
x�(x)dx

!

+ �
2

⇣
1� �

⇣
�� b̃

⌘
+ �

⇣
��� b̃

⌘⌘

=1� �
⇣
�� b̃

⌘
+ �

⇣
��� b̃

⌘
+
⇣
(�� b̃)�(�� b̃)� (��� b̃)�(��� b̃)

⌘

� 2�
⇣
�(�� b̃) + �(��� b̃)

⌘
+ �

2

⇣
1� �

⇣
�� b̃

⌘
+ �

⇣
��� b̃

⌘⌘

where we use the fact that
R1
��b̃ x

2
�(x)dx+

R ���b̃

�1 x
2
�(x)dx =

R1
�1 x

2
�(x)dx�

R ��b̃

���b̃ x
2
�(x)dx

and Equation (24).

The nearly adaptive objective function

min
�

max
b̃

ETO⇠N(b̃,1))

⇣
�S,� (TO)� b̃

⌘2
+ ⇢

�2 � 1

rBNM(|b̃|) + ⇢�2 � 1
,

can now be easily solved by Matlab’s fminimax function when the risk function is evaluated

based on the simplified expression derived above.

To simplify the computation of the nearly adaptive estimator, we pre-calculate the adap-

tive thresholds over an unequally spaced grid tanh([0, 0.05, 0.10, . . . , 3]) of correlation co-

e�cients as explained above. To rapidly obtain a final estimator �S,� (TO; ⇢) for a given

application, we conduct a spline interpolation across ⇢2 values to tailor the threshold to the

exact parameter values desired. For example, we obtain �S,� (TO;�0.524) firstly based on

spline interpolation at ⇢2 = (�0.524)2 to obtain the threshold �, and then with the observed

test statistic TO.
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D.5.2 Hard thresholding

Similarly rewrite hard thresholding as �H,� (TO) = (1� 1 {�� < TO < �})TO and its risk

function can be simplified due to Equation (24)

ETO⇠N(b̃,1))

⇣
�H,� (TO)� b̃

⌘2

= ETO⇠N(b̃,1)

⇣
(1� 1 {�� < TO < �})

⇣
TO � b̃

⌘
� 1 {�� < TO < �} b̃

⌘2

= b̃
2

⇣
�
⇣
�� b̃

⌘
� �

⇣
��� b̃

⌘⌘
+

Z 1

�1
x
2
�(x)dx�

Z ��b̃

���b̃

x
2
�(x)dx.

Appendix E Pooling controls (LaLonde, 1986)

LaLonde (1986) contrasted experimental estimates of the causal e↵ects of job training derived

from the National Supported Work (NSW) demonstration with econometric estimates de-

rived from observational controls, concluding that the latter were highly sensitive to modeling

choices. Subsequent work by Heckman and Hotz (1989) argued that proper use of specifica-

tion tests would have guarded against large biases in LaLonde (1986)’s setting. An important

limitation of the NSW experiment, however, is that its small sample size inhibits a precise

assessment of the magnitude of selection bias associated with any given non-experimental

estimator. In what follows, we explore the prospects of improving experimental estimates of

the NSW’s impact on earnings by utilizing additional non-experimental control groups and

adapting to the biases their inclusion engenders.

We consider three analysis samples di↵erentiated by the origin of the untreated (“con-

trol”) observations. All three samples include the experimental NSW treatment group ob-

servations. In the first sample the untreated observations are given by the experimental

NSW controls. In a second sample the controls come from LaLonde (1986)’s observational

“CPS-1” sample, as reconstructed by Dehejia and Wahba (1999). In the third sample, the

controls are a propensity score screened subsample of CPS-1. To estimate treatment e↵ects

in the samples with observational controls, we follow Angrist and Pischke (2009) in fitting

linear models for 1978 earnings to a treatment dummy, 1974 and 1975 earnings, a quadratic

in age, years of schooling, a dummy for no degree, a race and ethnicity dummies, and a

dummy for marriage status. The propensity score is generated by fitting a probit model of

treatment status on the same covariates and dropping observations with predicted treatment
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probabilities outside of the interval [0.1, 0.9].

Let YU be the mean treatment / control contrast in the experimental NSW sample.

We denote by YR1 the estimated coe�cient on the treatment dummy in the linear model

described above when the controls are drawn from the CPS-1 sample. Finally, YR2 gives

the corresponding estimate obtained from the linear model when the controls come from

the propensity score screened CPS-1 sample. We follow the applied literature in assuming

trimming does not meaningfully change the estimand, a perspective that can be formalized by

viewing the trimmed estimator as one realization of a sequence of estimators with trimming

shares that decrease rapidly with the sample size (Huber et al., 2013).

Table A1 reports point estimates from all three estimation approaches along with stan-

dard errors derived from the pairs bootstrap. The realizations of (YR1, YR2) exactly reproduce

those found in the last row of Table 3.3.3 of Angrist and Pischke (2009) but the reported

standard errors are somewhat larger due to our use of the bootstrap, which accounts both for

heteroscedasticity and uncertainty in the propensity score screening procedure. The realiza-

tion of YU matches the point estimate reported in the first row of Angrist and Pischke (2009)’s

Table 3.3.3 but again exhibits a modestly larger standard error reflecting heteroscedasticity

with respect to treatment status.

YU YR1 YR2 GMM2 GMM3 Adaptive Pre-test

Estimate 1794 794 1362 1629 1210 1597 1629
Std error (668) (618) (741) (619) (595)

Max Regret 26% 1 1 1 1 7.77% 47.5%
Risk rel. to YU

when b1 = 0 and b2 = 0 1 0.853 1.23 0.858 0.793 0.855 0.80
when b1 6= 0 and b2 = 0 1 1 1.23 0.858 1 0.925 0.993
when b1 6= 0 and b2 6= 0 1 1 1 1 1 1.077 1.475

Table A1: Estimates of the impact of NSW job training on earnings. Bootstrap standard
errors in parentheses computed using 1,000 bootstrap samples. TheGMM2 estimate imposes
b2 = 0 only while the GMM3 estimate imposes b1 = 0 and b2 = 0. A J-test of the null
b1 = b2 = 0 motivating GMM3 yields a p-value at 0.04. A corresponding test of the null
b2 = 0 motivating GMM2 yields a p-value of 0.51. “Risk rel. to YU” gives worst case risk
scaled by the risk (i.e. variance) of YU . “Max regret” refers to the worst case adaptation
regret in percentage terms (Amax(B, �)� 1)⇥ 100.

While the experimental mean contrast (YU) of $1,794 is statistically distinguishable from

zero at the 5% level, considerable uncertainty remains about the magnitude of the average

treatment e↵ect of the NSW program on earnings. The propensity trimmed CPS-1 estimate
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lies closer to the experimental estimate than does the estimate from the untrimmed CPS-

1 sample. However, the untrimmed estimate has a much smaller standard error than its

trimmed analogue. Though the two restricted estimators are both derived from the CPS-1

sample, our bootstrap estimate of the correlation between them is only 0.75, revealing that

each measure contains substantial independent information.

Combining the three estimators together via GMM, a procedure we denote GMM3,

yields roughly an 11% reduction in standard errors relative to relying on YU alone. However,

the J-test associated with the GMM3 procedure rejects the null hypothesis that the three

estimators share the same probability limit at the 5% level (p = 0.04). Combining only YU

and YR2 by GMM, a procedure we denote GMM2, yields a standard error 7% below that of

YU alone. The J-test associated with GMM2 fails to reject the restriction that YU and YR2

share a common probability limit (p = 0.51). Hence, sequential pre-testing selects GMM2.

Letting b1 ⌘ E[YR1 � ✓] and b2 ⌘ E[YR2 � ✓] our pre-tests reject the null that b1 = b2 = 0

and fail to reject that b2 = 0. However, it seems plausible that both restricted estimators

su↵er from some degree of bias. The adaptive estimator seeks to determine the magnitude

of those biases and make the best possible use of the observational estimates. In adapting

to misspecification, we operate under the assumption that |b1| � |b2|, which is in keeping

with the common motivation of propensity score trimming as a tool for bias reduction (e.g.,

Angrist and Pischke, 2009, Section 3.3.3). Denoting the bounds on (|b1|, |b2|) by (B1, B2), we

adapt over the finite collection of bounds B = {(0, 0), (1, 0), (1,1)}, the granular nature of
which dramatically reduces the computational complexity of finding the optimally adaptive

estimator. Note that the scenario (B1, B2) = (0,1) has been ruled out by assumption,

reflecting the belief that propensity score trimming reduces bias. See Appendix F for further

details.

From Table A1, the multivariate adaptive estimator yields an estimated training e↵ect

of $1,597: roughly two thirds of the way towards YU from the e�cient GMM3 estimate.

Hence, the observational evidence, while potentially quite biased, leads to a non-trivial (11%)

adjustment of our best estimate of the e↵ect of NSW training away from the experimental

benchmark. In Table A2 we show that pairwise adaptation using only YU and YR1 or only YU

and YR2 yields estimates much closer to YU . A kindred approach, which avoids completely

discarding the information in either restricted estimator, is to combine YR1 and YR2 together

via optimally weighted GMM and then adapt between YU and the composite GMM estimate.
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As shown in Table A3, this two step approach yields an estimate of $1,624, extremely close

to the multivariate adaptive estimate of $1,597, but comes with substantially elevated worst

case adaptation regret relative to a multivariate oracle who knows which pair of bounds in

B prevails.

While the multivariate adaptive estimate of $1,597 turns out to be very close to the

pre-test estimate of $1,629, the adaptive estimator’s worst case adaptation regret of 7.7% is

substantially lower than that of the pre-test estimator, which exhibits a maximal regret of

47.5%. The adaptive estimator achieves this advantage by equalizing the maximal adaptation

regret across the three bias scenarios {(b1 = 0, b2 = 0), (b1 6= 0, b2 = 0), (b1 6= 0, b2 6= 0)}
allowed by our specification of B. When both restricted estimators are unbiased, the adaptive

estimator yields a 14.5% reduction in worst case risk relative to YU . However, an oracle that

knows both restricted estimators are unbiased would choose to employ GMM3, implying

maximal adaptation regret of 0.855/0.793 ⇡ 1.077. When YR1 is biased, but YR2 is not, the

adaptive estimator yields a 7.5% reduction in worst case risk. An oracle that knows only YR1

is biased will rely on GMM2, which yields worst case scaled risk of 0.858; hence, the worst

case adaptation regret of not having employed GMM2 in this scenario is 0.925/0.858 ⇡ 1.077.

Finally, when both restricted estimators are biased, the adaptive estimator can exhibit up

to a 7.7% increase in risk relative to YU .

The near oracle performance of the optimally adaptive estimator in this setting suggests

it should prove attractive to researchers with a wide range of priors regarding the degree of

selection bias present in the CPS-1 samples. Both the skeptic that believes the restricted

estimators may be immensely biased and the optimist who believes the restricted estimators

are exactly unbiased should face at most a 7.7% increase in maximal risk from using the

adaptive estimator. In contrast, an optimist could very well object to a proposal to rely on

YU alone, as doing so would raise risk by 26% over employing GMM3.

Appendix F Details of bivariate adaptation

In Section Appendix E, we report the results of adapting simultaneously to the bias in two

restricted estimators when the bias spaces take a nested structure. Denoting the bounds

on (|b1|, |b2|) of the two restricted estimators by (B1, B2), we adapt over the finite collection

of bounds B = {(0, 0), (1, 0), (1,1)}. Note that the scenario (B1, B2) = (0,1) has been
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ruled out by assumption, reflecting the belief that propensity score trimming reduces bias.

The minimax risk over each bias space C(B1,B2) is therefore

R
⇤(C(B1,B2)) =

8
>>>><

>>>>:

⌃U for (B1, B2) = (1,1)

⌃U � ⌃UO,2⌃
�1

O,2⌃UO,2 for (B1, B2) = (1, 0)

⌃U � ⌃UO⌃
�1

O ⌃UO for (B1, B2) = (0, 0)

(26)

Then �(YO) is the solution to the following problem

inf
�

max
(B1,B2)2B

maxb2C(B1,B2)
EYO⇠N(b,⌃O)(�(YO)� ⌃UO⌃

�1

O b)2 + ⌃U � ⌃UO⌃
�1

O ⌃UO

R⇤(C(B1,B2))

Since the three spaces are nested, we can rewrite the adaptation problem as

inf
�

sup
b2R⇥R

EYO⇠N(b,⌃O)(�(YO)� ⌃UO⌃
�1

O b)2 + ⌃U � ⌃UO⌃
�1

O ⌃UO

R̃(S̃(b))

where the scaling is

R̃(S̃(b)) =

8
>>>><

>>>>:

⌃U � ⌃UO⌃
�1

O ⌃UO if b1 = b2 = 0

⌃U � ⌃UO,2⌃
�1

O,2⌃UO,2 if b1 6= 0, b2 = 0

⌃U if b1 6= 0, b2 6= 0

(27)

Given the high dimensionality of the adaptation problem, we use CVX instead of Matlab’s

fmincon to solve the scaled minimax problem.

F.1 Shrinkage pattern

To illustrate the shrinkage properties of the multivariate adaptive estimator, Figure A7 plots

the adaptive minimax estimator of bias against its unbiased counterpart ⌃U,O⌃
�1

O YO. The

figure reveals a complex shrinkage pattern reflecting the asymmetric nature of CB. When

YO1 = YR1�YU is small, YO2 = YR2�YU is shrunk aggressively towards zero. However when

YO2 is small, YO1 is shrunk less aggressively towards zero. When both YO1 and YO2 are large,

the biases exhibit little shrinkage.
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Figure A7: The adaptive minimax estimator of bias are illustrated by blue dots in the back-
ground, plotted against the their unbiased counterparts. The highlights are the estimates
holding YO1 and YO2 constant respectively. In particular, the big blue dot highlights the
adaptive estimate for the LaLonde example, which involves shrinkage.

F.2 Pairwise adaptation

For comparison with the trivariate adaptation estimates reported in the text, we also consider

pairwise adaptation using only YU and YR1 or only YU and YR2, keeping the bias spaces as

before. Specifically to adapt using only YU and YRj, we consider an oracle where the set B
of bounds B on the bias consists of the two elements 0 and 1.

Table A2 shows that pairwise adaptation produces estimates much closer to YU than

the multivariate adaptive estimate. While pairwise adaptive estimates both incur smaller

adaptation regret, the e�ciency gain when the model is correct is smaller than with the

multivariate adaptive estimate.

F.3 Bivariate adaptation with GMM composite

For another comparison with the trivariate adaptation estimates reported in the text, we also

consider combining YR1 and YR2 first via optimally weighted GMM, which is a composite

of the two Ycomp. We then adapt between YU and Ycomp. The bias space is now also a

composite of the two-dimensional bias space C(B1,B2), and we consider an oracle where the
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YU YR GMM Adaptive Soft-threshold Pre-test

CPS-1 untrimmed 1794 794 1123 1659 1608 1794
Std error (668) (617) (600)

Rel. risk when b = 0 1 0.85 0.81 0.863 0.869 0.894
Rel. risk when b 6= 0 1 1 1 1.071 1.078 1.541

Max Regret 24% 1 1 7.1% 7.8% 54%
Max Regret 26% 1 1 24.8% 25.6% 79.5%

(rel. to multivariate)
Threshold 0.63 1.96

CPS-1 trimmed 1794 1362 1629 1657 1638 1362
Std error (668) (741) (619)

Rel. risk when b = 0 1 1.23 0.86 0.9 0.91 1.166
Rel. risk when b 6= 0 1 1 1 1.05 1.055 2.051

Max Regret 16.4% 1 1 5% 5.5% 105%
Max Regret 26% 1 1 13.6% 14.2% 105%

(rel. to multivariate)
Threshold 0.62 1.96

Table A2: Estimates of the impact of NSW job training on earnings. Bootstrap standard
errors in parentheses computed using 1,000 bootstrap samples. In the top panel YR corre-
sponds to estimates using the untrimmed CPS-1 as controls, which are referred to as YR1 in
the main text. In the bottom panel, YR corresponds to estimates derived from the propensity
score trimmed CPS-1 sample, which are referred to as YR2 in the main text. Adaptive esti-
mates adapt pairwise between YU and YR within panel. If applicable, the adaptive thresholds
are reported. “Max regret” refers to the worst case adaptation regret in percentage terms
(Amax(B, �) � 1) ⇥ 100. “Max Regret (rel. to multivariate)” refers to the worst case adap-
tation regret in terms of the multivariate oracle. “Rel. risk” gives worst case risk scaled by
the risk (i.e. variance) of YU . The correlation between YU and YRj � YU is -0.44 in the top
panel and -0.38 in the bottom panel.

set B of bounds B on the bias consists of the two elements 0 and 1.

Table A3 shows that composite adaptation produces estimates very similar to the mul-

tivariate adaptive estimate. The adaptation regret relative to an oracle who knows a bound

on the bias of composite is also small. However, for a fair comparison with multivariate

adaptation, one should compare its e�ciency loss relative to the multivariate oracle with

minimax risk specified in (26). This notion of worst case regret is substantially higher at

25% because bivariate adaptation against the GMM composite cannot leverage the nested

structure of the multivariate parameter space B.
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YU Ycomp GMM Adaptive Soft-threshold Pre-test

Estimate 1794 882 1173 1624 1601 1794
Std error (668) (612) (595)

Max Regret 26% 1 1 8% 8.3% 56%
Max Regret 26% 1 1 25.4% 26.3% 81.5%

(rel. to multivariate)
Threshold 1 0.64 1.96

Table A3: Adaptive estimates for the impact of job training, adapting to Bcomp 2 {0,1},
which is the bound on the bias of the composite estimator Ycomp = argmin✓(YR�✓)0⌃R(YR�
✓). If applicable, the adaptive thresholds are reported. “Max regret” refers to the worst
case adaptation regret in percentage terms (Amax(B, �) � 1) ⇥ 100. “Max Regret (rel. to
multivariate)” refers to the worst case adaptation regret relative to the multivariate oracle
in (26). The correlation coe�cient between YU and Ycomp � YU is -0.45.
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