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Abstract

We consider estimation and inference for a regression coefficient in panels with in-

teractive fixed effects (i.e., with a factor structure). We show that previously developed

estimators and confidence intervals (CIs) might be heavily biased and size-distorted when

some of the factors are weak. We propose estimators with improved rates of convergence

and bias-aware CIs that are uniformly valid regardless of whether the factors are strong

or not. Our approach applies the theory of minimax linear estimation to form a debiased

estimate using a nuclear norm bound on the error of an initial estimate of the interac-

tive fixed effects. We use the obtained estimate to construct a bias-aware CI taking into

account the remaining bias due to weak factors. In Monte Carlo experiments, we find a

substantial improvement over conventional approaches when factors are weak, with little

cost to estimation error when factors are strong.
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1 Introduction

In this paper, we consider a linear panel regression model of the form

Yit = Xitβ +

K∑
k=1

Zk,itδk + Γit + Uit, (1)

where Yit, Xit, Z1,it, . . . , ZK,it ∈ R are the observed outcome variable and covariates for units

i = 1, . . . , N and time periods t = 1, . . . , T . The error components Γit ∈ R and Uit ∈ R are

unobserved, and the regression coefficients β, δ1, . . . , δK ∈ R are unknown. The parameter of

interest is β ∈ R, the coefficient on Xit. We are interested in “large panels”, where both N

and T are relatively large.

The error component Uit is modelled as a mean-zero random shock that is uncorrelated

with the regressors Xit and Zk,it and that is at most weakly autocorrelated across i and over

t. By contrast, the error component Γit can be correlated with Xit and Zk,it and can also be

strongly autocorrelated across i and over t. Of course, further restrictions on Γit are required

to allow estimation and inference on β. For example, the additive fixed effect model imposes

that Γit = αi+ γt, where αi accounts for any omitted variable that is constant over time, and

γt for any omitted variable that is constant across units. Instead of this additive fixed effect

model we will mostly consider the so-called interactive fixed effect model, where

Γit =
R∑
r=1

λir ftr . (2)

Here, the λir and ftr can either be interpreted as unknown parameters or as unobserved

shocks. This model for Γit is also referred to as a factor model with factors loadings λir and

factors ftr, and we will use the factor and interactive fixed effect terminology synonymously.

The number of factors R is unknown, but is assumed to be small relative to N and T . The

interactive fixed effect model is attractive because it introduces enough restrictions to allow

estimation and inference on β while still incorporating or approximating a large class of data

generating processes (DGPs) for Γit.

The existing econometrics literature on panel regressions with interactive fixed effects is

quite large. Since the seminal work of Pesaran (2006) and Bai (2009), developing tools for

estimation and inference on β in model (1)-(2) under large N and large T asymptotics has

been a primary focus of this literature. Specifically, Pesaran (2006) introduces the common

correlated effects (CCE) estimator, which uses cross-sectional averages of the observed vari-

ables as proxies for the unobserved factors. Bai (2009) derives the large N , T properties of

the least-squares (LS) estimator that jointly minimizes the sum of squared residuals over the

regression coefficients, factors, and factor loadings.1

Bai (2009) shows that, under appropriate assumptions, the LS estimator for the regression

1This estimator was first introduced by Kiefer (1980).
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Figure 1: Finite sample distributions of the LS and the debiased estimators, N = 100, T = 50, R = 1

coefficients is
√
NT -consistent and asymptotically normally distributed as both N and T

grow to infinity. One of the key assumptions imposed for this result is the so-called “strong

factor assumption”, which requires all the factor loadings λir and factors ftr to have sufficient

variation across i and over t, respectively. If the strong factor assumption is violated, then the

LS estimator for λir and ftr may be unable to pick up the true loadings and factors correctly,

because the “weak factors”2 in Γit cannot be distinguished from the noise in Uit. This can

lead to substantial bias and misleading inference, due to omitted variables bias from Γit that

is not picked up by the estimator.

To illustrate how this can lead to problems with conventional estimates and CIs for β,

Figure 1 presents a subset of the results of our Monte Carlo study.3 When the factors are

nonexistent (panel a) or strongly identified (panel d), the distribution of the LS estimator (in

blue) is centered at the true parameter value β (equal to 0 in this case). However, when the

2See, for example, Onatski (2010, 2012) for a discussion and formalization of the notion of weak factors.
3A detailed description of the numerical experiment is provided in Section 5.1.
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factors are present but weak enough that they are difficult to detect (panels b and c), the

LS estimator is heavily biased and non-normally distributed. In our Monte Carlo study in

Section 5, we show that this indeed leads to severe coverage distortion, with conventional CIs

based on the LS estimator having almost zero coverage.

In this paper, we address this issue by developing new tools for estimation and inference

on β in the model (1). We develop a debiased estimator along with a bound on the remaining

bias, which we use to construct a bias-aware confidence interval. As illustrated in Figure 1, our

debiased estimator (shown in red) substantially decreases the bias of the LS estimator when

factors are weak, leading to a large improvement in overall estimation error. In addition, this

improved performance under weak factors does not come at a substantial cost to performance

when factors are strong or nonexistent: our debiased estimator performs similarly to the LS

estimator in these cases. Importantly, our CI requires only an upper bound on the number

of factors: we show that it is valid uniformly over a large class of DGPs that allows for weak,

strong or nonexistent factors up to a specified upper bound on the number of factors. We

derive rates of convergence that hold uniformly over this class of DGPs, and we show that our

estimator achieves a faster uniform rate of convergence than existing approaches when weak

factors are allowed. In the case where N and T grow at the same rate, our estimator achieves

the parametric
√
NT rate.

Our debiasing approach uses a preliminary estimate Γ̂pre of the individual effect matrix

Γ along with a bound Ĉ on the nuclear norm ∥Γ − Γ̂pre∥∗ of its estimation error. Letting

Γ̃ := Γ− Γ̂pre, we then consider the augmented outcomes

Ỹit := Yit − Γ̂pre,it = Xitβ +
K∑
k=1

Zk,itδk + Γ̃it + Uit.

Treating Γ̃it as nuisance parameters satisfying a convex constraint ∥Γ̃∥∗ ≤ Ĉ, we derive linear

weights Ait such that the estimator
∑N

i=1

∑T
t=1AitỸit for β optimally uses this constraint,

using the theory of minimax linear estimators (see Ibragimov and Khas’minskii, 1985; Donoho,

1994; Armstrong and Kolesár, 2018). In particular, the resulting weights Ait control the

remaining omitted variables bias
∑N

i=1

∑T
t=1AitΓ̃it due to possible weak factors in Γ̃ = Γ−Γ̂pre

not picked up by the initial estimate Γ̂pre.

A key step in deriving our CI is the construction of the preliminary estimator Γ̂pre and

bound Ĉ on the nuclear norm of its estimation error. Our CI is bias-aware: it uses the bound

Ĉ to explicitly take into account any remaining bias in the debiased estimator. Our bound is

feasible once an upper bound on the number of factors is specified. In our Monte Carlo study,

we find that, while our CIs are often conservative, they are about as wide as an “oracle” CI

that uses an infeasible critical value to correct the coverage of a CI based on the standard LS

estimator.

Although the main focus of this paper is on models with the pure factor structure (2),

the proposed approach applies to general interactive fixed effects models as long as it is

3



possible to construct an upper bound on ∥Γ̃∥∗. In particular, the proposed approach naturally

extends to settings with nonseparable interactive unobserved heterogeneity (e.g., Zeleneev,

2019; Fernández-Val, Freeman and Weidner, 2021; Freeman and Weidner, 2021), for which, to

the best of our knowledge, no tools for inference were previously available. Our approach also

allows relaxing the strong group separation assumption in models with grouped unobserved

heterogeneity (e.g., Assumption 2(b) in Bonhomme and Manresa, 2015), which is analogous in

spirit to the “strong factor assumption”. This is practically appealing because, unlike existing

approaches, our method allows overspecifying the true number of groups, which in addition

could be weakly separated.

Finally, rather than imposing the factor model (1), one may wish to impose an a priori

bound on the nuclear norm ∥Γ∥∗ of the individual effects matrix directly. In this case, our

approach applies with the initial estimate Γ̂pre set to zero, which leads to a direct application

of minimax linear estimators as in Donoho (1994) and Armstrong and Kolesár (2018). More

generally, our approach can be extended to other panel settings with matrix restrictions, such

as introducing heterogeneous coefficients βit for each Xit and placing rank or nuclear norm

restrictions on the matrix of these coefficients (as in Athey, Bayati, Doudchenko, Imbens and

Khosravi, 2021). The main requirement is the availability of a convex bound on matrices that

enter the regression model, or on the error of an initial estimate of such matrices.

Related literature

There exist various alternative estimation methods for panel regressions with interactive fixed

effects. For example, Holtz-Eakin, Newey and Rosen (1988) introduce the the quasi-difference

approach, Ahn, Lee and Schmidt (2001, 2013) use generalized method of moments estimation,

and Chamberlain and Moreira (2009) use invariance arguments to derive procedures that

satisfy a Bayes-minimax property. All those papers assume fixed T , with only N going

to infinity. More recent papers investigating the fixed T large N case include Robertson

and Sarafidis (2015), Juodis and Sarafidis (2018), Westerlund, Petrova and Norkute (2019),

Higgins (2021), Juodis and Sarafidis (2022). As mentioned before, in the context of large N

and large T panels, two seminal works that have spurred a very large number of follow-up

papers are Pesaran (2006) and Bai (2009) — for a review and further references see Bai and

Wang (2016). A special case of the violation of the strong factor assumption is when some

factor are equal to zero, while all other factors are strong; the inference results of Bai (2009)

are usually robust towards this specific violation of the strong factor assumption (Moon and

Weidner, 2015). This robustness, however, does not carry over to more general weak factors

in the DGP of Γit, as illustrated by Figure 1.

The problem of weak factors is related to the problem of omitted variable bias of LASSO

estimators in high dimensional regression that is the focus of debiased LASSO estimators

(see Belloni, Chernozhukov and Hansen, 2014; Javanmard and Montanari, 2014; van de Geer,

Bühlmann, Ritov and Dezeure, 2014; Zhang and Zhang, 2014). Just as LASSO estimators

omit variables with coefficients that are large enough to cause omitted variables bias but too
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small to distinguish from zero, weak factors in Γ can be difficult to detect, leading to omitted

variables bias in conventional estimates of β. Our approach to using minimax linear estimation

to debias an initial estimate mirrors the approach of Javanmard and Montanari (2014) to

debiasing the LASSO. We discuss this connection further in Section 4.3. Hirshberg and

Wager (2020) provide a general discussion and further references for minimax linear debiasing;

we refer to this general approach as augmented linear estimation following their terminology.

Minimax linear estimation itself goes back at least to Ibragimov and Khas’minskii (1985), with

further results on this approach and its optimality properties in Donoho (1994), Armstrong

and Kolesár (2018) and Yata (2021), among others. The particular form of the minimax

estimator used for debiasing in our setup follows from a formula given in Armstrong, Kolesár

and Kwon (2020).

Requiring Γit to have the factor structure (2) is equivalent to requiring the matrix of un-

observed effects Γ to have rank at most R, i.e., having rank(Γ) ≤ R. Bounding the nuclear

norm of Γ̃ or Γ instead can also be seen as a convex relaxation of this requirement. Simi-

lar convexifications of the rank constraint have been widely used in the matrix completion

literature (e.g., Recht, Fazel and Parrilo 2010 and Hastie, Tibshirani and Wainwright 2015

for recent surveys), and for reduced rank regression estimation (e.g., Rohde and Tsybakov

2011). In the econometrics literature, the numerous applications of this idea include, for ex-

ample, estimation of pure factor models (Bai and Ng, 2017), estimation of panel regression

models with homogeneous (Moon and Weidner, 2018; Beyhum and Gautier, 2019) and het-

erogeneous coefficients (Chernozhukov, Hansen, Liao and Zhu, 2019), estimation of treatment

effects (Athey, Bayati, Doudchenko, Imbens and Khosravi, 2021; Fernández-Val, Freeman and

Weidner, 2021), and many others.4 However, none of these papers obtain asymptotically valid

CIs or improved rates of convergence under weak factors.

In recent work, Chetverikov and Manresa (2022) propose an estimator that, like ours,

achieves a faster rate of convergence than conventional approaches under weak factors.5 While

Chetverikov and Manresa (2022) allow for weak factors in some of their estimation results,

they assume strong factors when constructing CIs. The estimation approach in Chetverikov

and Manresa (2022) also differs from our approach by using modelling assumptions that place

a factor structure on the covariate matrix X.

Our focus is on allowing for weak factors without imposing additional assumptions on

the error term U , such as homoskedasticity or full independence from the individual effects

Γ and regressor X. Such additional structure allows for further identifying information by

making it easier to distinguish between the error term U and the individual effects Γ, leading

4For example, recent economic applications of nuclear norm and related penalization methods also include
latent community detection (Alidaee, Auerbach and Leung, 2020; Ma, Su and Zhang, 2022), quantile regression
(Belloni, Chen, Madrid Padilla and Wang, 2023; Wang, Su and Zhang, 2022; Feng, 2023), and estimation of
panel threshold models and high-dimensional VARs (Miao, Li and Su, 2020 and Miao, Phillips and Su, 2023).

5The main focus of Chetverikov and Manresa (2022) is the grouped effects model of Bonhomme and Manresa
(2015), which is a special case of the interactive fixed effects setting we consider here. However, the authors
extend their results to the general interactive fixed effects setting.
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to a fundamentally different analysis. Zhu (2019) derives asymptotic upper and lower bounds

for estimators and CIs in a setting with possible weak factors under homoskedastic and fully

independent errors. The estimators and CIs constructed by Zhu (2019) take advantage of

the additional structure of Zhu’s setting, making them inapplicable in ours. However, the

lower bounds derived by Zhu (2019) are immediately relevant: they show that no CI can be

asymptotically valid under weak factors while mimicking the performance of the CI of Bai

(2009) when factors are strong.

Beyhum and Gautier (2022), Fan and Liao (2022), and Bai and Ng (2023) consider estima-

tion and inference in various settings under a regime in which a lower bound on the strength

of the factors can decrease with N and T , but is large enough that factors can be consistently

estimated. This is analogous to the “semi-strong” regime in weak instrument and related

settings; see Andrews and Cheng (2012). While the semi-strong regime requires careful the-

oretical analysis, the fact that factors can be consistently estimated leads to asymptotically

unbiased and normal estimators for the main effect β. Our results apply to semi-strong and

strong regimes as well, while also allowing for weak factor regimes in which factors cannot be

consistently estimated.

Finally, Cox (2022) develops tools for inference in low-dimensional factor models with weak

identification. In Cox (2022), the primary objects of interests are the covariance of the factors

and the loadings. The baseline model in Cox (2022) does not include observed covariates,

whereas we focus on estimation and inference on β, the coefficient on Xit, exclusively.
6

The rest of this paper is organized as follows. Section 2 introduces the framework and

describes construction of the debiased estimator and bias-aware CI. Section 3 provides ad-

ditional implementation details for the factor model. Section 4 provides formal statistical

guarantees. Section 5 considers numerical and empirical illustrations. Appendix A contains

proofs of the results in the main text. Appendix B provides additional computational details.

Appendices C and D contain additional results for the numerical and empirical illustrations.

2 Construction of robust estimates and confidence intervals

2.1 Setup

We consider a panel setting in which we observe a scalar outcome Yit, a scalar covariate Xit

of interest and additional control covariates {Zk,it}Kk=1 for i = 1, . . . , N , t = 1, . . . , T , which

follow the regression model (1). The error term Uit is assumed to be mean zero conditional

on X, {Zk,it}Kk=1 and Γ,7 but we allow for heteroskedasticity, which may depend on Xit and

6Cox (2022) mentions that observed covariates could, in principle, be incorporated in his framework as long
as they are uncorrelated with the unobserved effects, which is a primary worry in the panel literature.

7We note that this requires strict exogeneity and in particular rules out using lagged outcomes as covariates.
We leave a extensions to models with lagged outcomes as a topic for future research.
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Γit, as well as some weak dependence. We write the model in matrix notation as

Y = Xβ + Z · δ + Γ + U , E[U |X,Z,Γ] = 0 , (3)

where Z denotes the three dimensional array {Zk,it} and we define Z · δ =
∑K

k=1 Zkδk where

Zk denotes the matrix with i, t-th element Zk,it.

We are interested in the coefficient β of Xit, which can be interpreted as the effect of

a treatment variable Xit in a constant treatment effects model (we discuss extensions to

heterogeneous treatment effects in Remark 2.3). For concreteness, we use panel notation, and

we refer to i and t as individuals and time periods respectively. However, we allow for other

settings such as network data in which i and t both index individuals in a network. While

we will assume a low rank structure on Γ, we allow for arbitrary dependence between the

covariate Xit and the individual effect Γit.

To apply our approach, we require a bound on the nuclear norm of the difference Γ − Γ̂

for some preliminary estimate Γ̂ of the matrix Γ:

∥∥Γ̃∥∥∗ ≤ Ĉ , where Γ̃ := Γ− Γ̂ . (4)

Here, ∥ · ∥∗ denotes the nuclear norm of the argument matrix, and Ĉ ≥ 0 is a known or

estimated constant. We focus on two main cases where such bounds are available.

Case 1. Γ̂ ̸= 0 and Ĉ is estimated from the data. This is the case that is practically most

relevant in this paper, where Γ̂ is estimated such that a relatively small value for Ĉ can be

chosen. To obtain Γ̂ and Ĉ we will later assume that Γ has a linear factor structure with at

most R factors.

Case 2. Γ̂ = 0 and Ĉ is a known constant. In this case we have Γ̃ = Γ and the bound Ĉ

constitutes an a priori bound on the nuclear norm of Γ. While this case is less practically

relevant to this paper, it provides for an idealized setting that motivates some of our arguments

later in this section.

2.2 (Augmented) linear estimators and CIs

We first define a class of estimators and CIs, indexed by an N ×T matrix A. We then provide

a choice of the matrix A, based on finite sample optimality in an idealized setting. Our class

of estimators is given in the following definition.

Definition 2.1. Let A = A(X,Z) be an N × T matrix of weights Ait ∈ R that can depend

on the matrix X and array Z. Let Γ̂ be an initial estimate of Γ, and let Ỹ = Y − Γ̂. The

augmented linear estimator with weight matrix A and initial estimate Γ̂ is given by

β̂A :=
N∑
i=1

T∑
t=1

AitỸit = ⟨A, Ỹ ⟩F . (5)

7



Here, ⟨·, ·⟩F denotes the entry-wise inner product between between the argument matrices.

Remark 2.1. In Case 2, Ỹ = Y so that β̂A is a linear estimator in the classical sense: it is

linear in the outcomes Yit, with weights depending on the design points Xit, Z1,it, . . . , Zk,it. In

Case 1, the estimator β̂A = ⟨A, Ỹ ⟩F applies a linear estimator after an initial estimation step

in which the initial estimate Γ̂ is subtracted from the outcome Y . This mirrors applications

of this idea in other settings going back to Javanmard and Montanari (2014); see Hirshberg

and Wager (2020) for references (the term “augmented linear estimation” is used in the latter

paper).

To analyze this class of estimators, note that subtracting the initial estimate from both

sides of the equation (3) gives

Ỹ = Xβ + Z · δ + Γ̃ + U (6)

(recall that Ỹ = Y − Γ̂ and Γ̃ = Γ− Γ̂). This gives the decomposition

β̂A − β = bias
β,δ,Γ̃

(β̂A) + ⟨A,U⟩F (7)

where

bias
β,δ,Γ̃

(β̂A) := (⟨A,X⟩F − 1)β + ⟨A,Z · δ⟩F + ⟨A, Γ̃⟩F . (8)

In Case 2, we have Γ = Γ̃ and biasβ,δ,Γ(β̂A) = E[β̂A−β|X,Z,Γ] gives the bias of β̂A conditional

on X,Z and Γ. In Case 1, bias
β,δ,Γ̃

does not literally give the bias or conditional bias of β̂A,

since conditioning on Γ̃ = Γ − Γ̂ means conditioning on an information set that depends on

Y through the preliminary estimate Γ̂. We nonetheless refer to biasβ,δ,Γ(β̂A) as a bias term,

in analogy to Case 2.

Let ŝe be an estimate of the standard deviation of ⟨A,U⟩F =
∑N

i=1

∑T
t=1AitUit. For

example, to allow for arbitrary heteroskedasticity in Uit while imposing independence across

i and t, we can use ŝe =
√∑N

i=1

∑T
t=1A

2
itÛ

2
it where Ûit denotes residuals from an initial

regression. If biasβ,δ,Γ(β̂A) were zero, then we could form a CI by adding and subtracting a

normal critical value times ŝe. To take into account the possibility that biasβ,δ,Γ(β̂A) will in

general be nonnegligible in our setting, we use the bound (4) to obtain an upper bound on

the bias term. In particular, when (4) holds, we have
∣∣∣biasβ,δ,Γ̃(β̂A)∣∣∣ ≤ biasĈ(β̂A), where for

general C ≥ 0 we define

biasC(β̂A) := sup
β,δ,Γ̃:∥Γ̃∥∗≤C

bias
β,δ,Γ̃

(β̂A)

=


sup

Γ̃:∥Γ̃∥∗≤C
⟨A, Γ̃⟩F if ⟨A,X⟩F = 1, and ⟨A,Zk⟩F = 0, for k = 1, . . .K,

∞ otherwise
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=

Cs1(A) if ⟨A,X⟩F = 1, and ⟨A,Zk⟩F = 0, for k = 1, . . .K,

∞ otherwise.
(9)

Here, for the second equality we used that the supremum over β and δ is unbounded unless

⟨A,X⟩F = 1 and ⟨A,Zk⟩F = 0, and for the final step we used that the nuclear norm ∥ · ∥∗ is

dual to the spectral norm, which we denote by s1(·) since it is equal to the largest singular

value of the argument matrix. We refer to biasĈ(β̂A) as the worst-case bias of the estimator

β̂A (again, this is only literally true in Case 2, but we use the same terminology in Case 1 by

analogy).

Note that, whereas bias
β,δ,Γ̃

(β̂A) depends on the unknown matrix of individual effects Γ

through the matrix Γ̃ = Γ − Γ̂, biasĈ(β̂A) is feasible to compute once a bound Ĉ is given.

Taking into account the possible bias leads to a bias-aware CI:{
β̂A ±

[
biasĈ(β̂A) + z1−α/2ŝe

]}
. (10)

To motivate this CI, note that the probability that the lower endpoint is greater than β is

P
(
β̂A − biasĈ(β̂A)− z1−α/2ŝe > β

)
= P

(
N∑
i=1

T∑
t=1

AitUit + bias
β,δ,Γ̃

(β̂A) > biasĈ(β̂A) + z1−α/2ŝe

)

≤ P

(
N∑
i=1

T∑
t=1

AitUit > z1−α/2ŝe

)
≈ α/2,

where the last step assumes that
∑N

i=1

∑T
t=1AitUit is approximately normally distributed

with zero mean and standard deviation close to ŝe. We provide formal justifications for this

later. Combining this with similar calculations for undercoverage in the other direction shows

that the coverage is approximately at least 1− α.

Remark 2.2. In Case 2 where Γ̃ = Γ is non-random, one can take advantage of the fact

that bias
β,δ,Γ̃

is non-random, which allows for the shorter CI
{
β̂A ± cvα

(
biasC(β̂A)/ŝe

)
· ŝe
}

where cvα(t) denotes the 1−α quantile of the absolute value of a N(t, 1) random variable (see

Donoho, 1994; Armstrong and Kolesár, 2018). In order to keep the exposition simple while

covering both cases, we focus on the CI given in (10).

Remark 2.3. In principle, our approach can be extended to a heterogeneous treatment

effect model where the constant coefficient β is replaced by an individual specific coefficient

βit that is allowed to vary with i and t. In particular, if a bound on the nuclear norm of

the matrix of coefficients βit or on the error of preliminary estimates of these coefficients is

available in addition to such a bound for Γ, we can use minimax linear debiasing to estimate

a linear functional of the individual specific effects βit. For example, the linear functional
1
NT

∑N
i=1

∑T
t=1 βit gives the average treatment effect of a one-unit change in Xit over the NT

units in a setting where βit is interpreted as the causal effect of a change in the variable Xit.

9



We leave such extensions as a topic for future research.

2.3 Choice of weights A = (Ait)

As described in the last subsection, one can construct valid confidence intervals for β of the

form (10) for any choice of weight matrix A, subject to weak regularity conditions. To get a

simple baseline procedure, we compute weights that are optimal in an idealized setting where

Uit
iid∼ N(0, σ2). In Case 2, β̂A is then normally distributed with variance σ2

∑N
i=1

∑T
t=1A

2
it =

σ2∥A∥2F (where ∥ · ∥F denotes the Frobenius norm), and with bias ranging from −biasĈ(β̂A)

to biasĈ(β̂A). Thus, if we choose worst-case MSE under i.i.d. normal errors as our criterion

function for the weights, then the optimal weights are obtained by minimizing
(
biasĈ(β̂A)

)2
+

σ2∥A∥2F . Plugging in the formula for biasĈ(β̂A) given in (9) gives the following baseline choice

of weights, indexed by a tuning parameter b that plays the role of Ĉ/σ.

Definition 2.2. For b > 0, define the “optimal” N × T weight matrix by

A∗
b := argmin

A∈RN×T

b2s1(A)
2 + ∥A∥2F s.t. ⟨A,X⟩F = 1 and ⟨A,Zk · δ⟩F = 0,

Here, the constraint ⟨A,Zk · δ⟩F = 0 is imposed for all k ∈ {1, . . . ,K}.

The weights in Definition 2.2 are optimal in Case 2 when Ĉ/σ = b. Heuristically, we also

expect that, in Case 1, a good choice of b will correspond to Ĉ/σ such that the bound Ĉ on

the nuclear norm holds with high probability. Conveniently, our nuclear norm bound in the

exact factor model in Section 3 scales with the standard deviation σ in the homoskedastic

case, which gives us a simple and feasible choice of the tuning parameter b.

We emphasize again that while the definition of A∗
b is motivated by the idealized setting

Uit
iid∼ N(0, σ2), we do not assume that the error terms Uit satisfy this strong assumption in

this paper. Choosing A = A∗
b to construct the estimator β̂A and the confidence intervals (10)

under more general error distributions just means that the resulting estimates and confidence

intervals will not be optimal (in finite samples), but we will nevertheless show them to be

consistent and valid, respectively.

Remark 2.4. While we have used MSE to motivate our baseline choice of weights A∗
b , one

could use other criteria corresponding to different weights on bias and variance. For example,

optimizing CI length when Ĉ/σ = b would give the criterion bs1(A) + z1−α∥A∥F . If β gives

the net welfare gain of an all-or-nothing policy change, then one can target minimax welfare

regret as in Ishihara and Kitagawa (2021) and Yata (2021). In our Monte Carlo simulations

however, we find that the exact choice of criterion has little effect on performance.

2.4 Practical implementation

The definition of A∗
b is a convex optimization problem that can easily be solved numerically for

any given input X, Z, b. Using results from Armstrong, Kolesár and Kwon (2020), it follows
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that A∗
b can also be computed using the residuals of a nuclear norm regularized regression of

X on Z1, . . . , ZK and a matrix of individual effects. In the case with no additional covariates

Z, this nuclear norm regularized regression simplifies further: it can be solved by computing

the singular value decomposition of X, and then performing soft thresholding on the singular

values. The resulting weights A∗
b obtained from the residuals of this regression replace the

largest singular values of X with a constant. We provide details in Appendix B.

In addition to giving alternative methods for computing the weights A∗
b , these results

provide some intuition for these weights. The residuals from this nuclear norm regularized

regression of X on Z1, . . . , ZK and the individual effects “partial out” potential correlation of

X with the estimation error Γ̃, similar to the estimator of Robinson (1988) in the partially

linear model. In the case with no additional covariates Z, this amounts to removing the

largest singular values of X and replacing them with a constant.

To summarize, we can compute an estimator β̂A using Definition 2.1 using any matrix of

weights A. We can also compute a CI
{
β̂A ±

[
biasĈ(β̂A) + z1−α/2ŝe

]}
as in (10), once we

have a standard error ŝe and an upper bound Ĉ for the nuclear norm of the error in the initial

estimate of Γ. Definition 2.2 gives us a heuristic for computing a reasonable choice of the

matrix A, once we have an initial choice of b for the ratio Ĉ/σ of the nuclear norm bound to

variance of Uit.

Thus, to apply our general approach with data Ỹ , X, Z (with Ỹ computed by subtracting

an initial estimate of Γ in Case 1), we need an initial choice b to compute the weights A∗
b

using Definition 2.2. We also need a robust upper bound Ĉ such that the bound (4) holds

with high probability. Finally, we need a robust standard error ŝe. Our CI then takes the

form in (10) with A = A∗
b and the given bound Ĉ and standard error ŝe. In Section 3, we

give details of these choices, as well as how to compute the initial estimate of Γ, for Case 1,

where we impose an exact linear factor structure.

3 Implementation of the panel regression case

In this section we consider the case where rank (Γ) ≤ R, i.e., Γit =
∑R

r=1 λir ftr = λ′ift. Here

R represents an upper bound on the number of factors in the model. As with other methods

(e.g. Bai, 2009), our approach requires that this upper bound be specified by the researcher.

Our approach is motivated by bounds on the nuclear norm of an initial estimate of Γ, which

we derive formally in Section 4. In particular, we show that (4) holds with Ĉ ≈ 4Rs1(U) for

an initial estimate of Γ based on least squares. Furthermore, the weights A∗
b are designed to

be optimal when Uit
iid∼ N(0, σ2), which leads to the approximation s1(U)/σ ≈

√
N +

√
T

(Geman, 1980). We therefore use b = b∗ := 4R(
√
N +

√
T ) as our default choice to calibrate

Ĉ/σ when computing the weights in Definition 2.2. We then use an upper bound Ĉ that is

valid under heteroskedasticity when computing biasĈ(β̂A∗
b∗
) in the construction of the CI.

Below we provide the additional details of our implementation algorithm.
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Algorithm 3.1 (Implementation for the factor model).

Input Data Y,X,Z and R pre-specified by the user, along with tuning parameter ε.

Output Estimator and CI for β.

1. Compute the least squares (LS) estimator

(
β̂LS, δ̂LS, Γ̂LS

)
= argmin

{β∈R,δ∈RK ,G∈RN×T : rank(G)≤R}

N∑
i=1

T∑
t=1

(
Yit −Xitβ − Z ′

itδ −Git
)2
.

2. Compute Ỹpre = Y − Γ̂LS and let b∗ = 4R(
√
N +

√
T ). Let

β̂pre = ⟨A∗
b∗ , Ỹpre⟩.

Compute γ̂pre by computing the j-th element δ̂pre,j in the same way as β̂pre, but with X

and Zj switched.

3. Compute Γ̂pre as

Γ̂pre = argmin
{G∈RN×T : rank(G)≤R}

N∑
i=1

T∑
t=1

(
Yit −Xitβ̂pre − Z ′

itδ̂pre −Git

)2
.

The solution Γ̂pre to this least squares problem is simply given by the leading R principal

components of the residuals Yit −Xitβ̂pre − Z ′
itδ̂pre. Compute Ỹ = Y − Γ̂pre.

4. Compute the final estimate

β̂ = β̂A∗
b∗

= ⟨A∗
b∗ , Ỹ ⟩F .

To compute the CI, let Ĉ = (4 + ε)Rs1(Ûpre) and ŝe2 =
∑N

i=1

∑T
t=1A

∗2
b∗,itÛ

2
pre,it, where

Ûpre = Y −Xβ̂pre − Z · δ̂pre − Γ̂pre.

Compute the CI

β̂A∗
b∗

±
[
biasĈ(β̂A∗

b∗
) + z1−α/2ŝe

]
where biasĈ(β̂A∗

b∗
) = Ĉs1(A

∗
b∗).

Remark 3.1 (Choice of ε). The quantity ε > 0 is used in the bound Ĉ = (4+ε)Rs1(Ûpre) on

∥Γ̂pre − Γ∥∗ needed to compute the CI in the final step. While needed for theoretical results,

in our Monte Carlos, we find that we get good coverage when choosing ε = 0. As a more

principled approach, one could attempt to obtain a sharper bound on the sampling error of
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∥Γ̂pre − Γ∥∗, and then choose Ĉ so that the bound holds with a given probability, and then

account for this with a Bonferroni correction of the critical value in the CI. We leave such

extensions for future research.

Remark 3.2 (Lindeberg condition). The asymptotic validity of the CI depends on asymptotic

normality of the stochastic term ⟨A,U⟩ where A = A∗
b∗ is a non-random matrix of weights.

This, in turn, depends on a Lindeberg condition on the weights A. To ensure that this holds,

we can modify our optimization procedure for computing the weights A = A∗
b∗ by imposing a

bound on the Lindeberg weights

Lind(A) =
max1≤i≤N,1≤t≤T A

2
it∑N

i=1

∑T
t=1A

2
it

. (11)

A similar approach to showing asymptotic validity is taken in Javanmard and Montanari

(2014) in a different setting.

To make this approach practical, we need guidance on what makes Lind(A) “small enough

to use the central limit theorem” in a given sample size. A formal answer to this question

is elusive, due to the difficulty of obtaining finite sample bounds on approximation error in

the central limit theorem that are practically useful. As a heuristic, we can use comparisons

to other settings where the central limit theorem is used. For example, the sample mean

W̄ = 1
n

∑n
i=1Wi with n observations corresponds to an estimator with Lindeberg constant

(1/n)2/[n · (1/n)2] = 1/n. If we are comfortable using the normal approximation in such a

setting with, say, n = 50, then we can impose a bound Lind(A) ≤ 1/50. Noack and Rothe

(2019) provide some discussion of these issues in a related setting involving inference in fuzzy

regression discontinuity.

In our Monte Carlos, we find that Lind(A) is very small for the weights used in Algorithm

3.1 once N and T are larger than, say, 20. Thus, imposing a bound on these weights does not

appear to be necessary in practice in the data generating processes we have examined.

Remark 3.3 (Standard error). The standard error ŝe2 =
∑N

i=1

∑T
t=1A

2
itÛ

2
pre,it assumes that

Uit is uncorrelated across i and t, but allows for heteroskedasticity. Such an assumption

will be reasonable if Γit captures all of the dependence in errors for the outcome. However,

incorporating all dependence in Γit may lead to an unnecessarily conservative choice of C

(either directly in Case 2 or through the bound on the number of factors in Case 1). To

avoid such conservative bounds on Γ, one can incorporate any dependence that is not directly

correlated with Xit into the error term Uit, and allow for such dependence when constructing

the standard error.

4 Asymptotic results

This section gives formal asymptotic results for the estimators and CIs given in Sections 2

and 3. To formally state asymptotic results that allow for weak factors and an unknown error
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distribution, we introduce some additional notation.

We consider uniform-in-the-underlying distribution asymptotics over a set P of distribu-

tions P for Γ and X,Z1, . . . , ZK , U and a set Θ of parameters θ = (β, δ′)′. While we treat

Γ, X, Z1, . . . , Zk as random variables determined by the unknown probability distribution P

for notational purposes, we note that a fixed design setting in which Γ, X, Z1, . . . , Zk are

non-random (sequences of) matrices can be incorporated by considering a set P that places a

probability one mass on a given value of Γ, X, Z1, . . . , Zk. We use PP,θ to denote probability

under the given distribution P and parameters θ. Formally, we consider large N , large T

asymptotics in which N = Nn → ∞ and T = Tn → ∞, and we consider sequences of distri-

butions P = Pn and parameter spaces Θ = Θn. Asymptotic statements are then taken in the

sequence n. However, we suppress the dependence on an index sequence n in order to save on

notation. For a sequence of vectors or matrices AN,T = AN,T (θ, P ) of fixed dimension (which

may depend on θ, P ), we use the notation AN,T = OΘ,P(rN,T ) when, for every ε > 0, there

exists Cε such that

lim sup sup
P∈P,θ∈Θ

PP,θ
(
r−1
N,T ∥AN,T ∥ ≥ Cε

)
≤ ε,

and we use the notation AN,T = oΘ,P(rN,T ) when, for every ε > 0, we have

lim sup sup
P∈P,θ∈Θ

PP,θ
(
r−1
N,T ∥AN,T ∥ ≥ ε

)
→ 0.

We use the notation AN,T ≍Θ,P rN,T when AN,T = OΘ,P(rN,T ) and A
−1
N,T = OΘ,P(r

−1
N,T ). We

use the notation AN,T
d→

Θ,P
L to denote the statement

lim sup

∣∣∣∣∣ sup
θ∈Θ,P∈P

Pθ,P (AN,T ≤ t)− FL(t)

∣∣∣∣∣→ 1 for all t

where FL denotes the cdf of the probability law L.
We first present results in a general asymptotic setting for a generic initial estimate Γ̂ and

bound Ĉ, as in Section 2. We then specialize to the estimator and CI described in Section 3

for the linear factor setting.

4.1 General asymptotic setting

We first show asymptotic validity of the CI (10) under a high level assumption on the weights

Ait and regression error Uit.

Assumption 1.

(i) infθ∈Θ,P∈P Pθ,P
(
∥Γ̂− Γ∥∗ ≤ Ĉ

)
→ 1;

(ii) ⟨A,U⟩F
ŝe

d→
Θ,P

N(0, 1).
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Theorem 1. Suppose that Assumption 1 holds. Then

lim inf inf
θ∈Θ,P∈P

Pθ,P
(
β ∈

{
β̂A ±

[
biasĈ(β̂A) + z1−α/2ŝe

]})
≥ 1− α.

4.2 Asymptotic Results for the Factor Model

We now apply these results to the initial estimate and bound given in Section 3, under the

assumption of a linear factor model for Γ. We allow for a side condition on the Lindeberg

weights Lind(A) defined in (11), as described in Remark 3.2. Let A∗
b,c be defined in the same

way as A∗
b , with the modification that we impose the constraint Lind(A) ≤ c:

min
A

∥A∥2F + b2s1(A)
2,

s.t. Lind(A) ≤ c, ⟨A,X⟩F = 1, ⟨A,Zk⟩F = 0 for k = 1, . . . ,K. (12)

In particular, the weights used in Algorithm 3.1 are given by A∗
b∗,∞ = A∗

b∗ , and the weights

A∗
b∗,c with c <∞ correspond to the modification described in Remark 3.2.

We impose the following conditions.

Assumption 2 (Factor Model). Suppose that rank (Γ) ≤ R with probability one for all P ∈ P
and the following conditions hold:

(i) Write W for X,Z1, . . . , ZK and W ·γ = Xβ+
∑K

k=1 Zkδk where γ = (β, δ′)′. We assume

that there exists s2 > 0 such that

min
γ∈RK+1:∥γ∥=1

1

NT

min{N,T}∑
r=2R+1

s2r(W · γ) ≥ s2

with probability approaching 1 uniformly over P ∈ P;

(ii) s1(X) = OΘ,P

(√
NT

)
, s1(Zk) = OΘ,P

(√
NT

)
for k ∈ {1, . . . ,K}, and s1(U) ≍Θ,P

max{
√
N,

√
T};

(iii) 1√
NT

⟨X,U⟩F = OΘ,P(1) and
1√
NT

⟨Zk, U⟩F = OΘ,P(1) for k ∈ {1, . . . ,K};

(iv) (s1(U)− sr(U)) /s1(U) = oΘ,P(1) for any fixed positive integer r;

(v) For any sequence of matrices A = AN,T (X,Z) that is a function of X,Z1, . . . , Zk, we

have ⟨A,U⟩F = OΘ,P(∥A∥F ).

Assumption 2(i) is a generalized non-collinearity condition, which requires that there is

enough variation in the regressors after concentrating out 2R arbitrary factors. It is closely

related to Assumption A of Bai (2009), but our version here avoids mentioning the unobserved

factor loadings. The same generalized non-collinearity assumption is imposed in Moon and

Weidner (2015). The assumption would be violated if some linear combination W · γ of the
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covariates were to have rank smaller or equal to 2R. In particular, “low-rank regressors” are

ruled out by this condition.

Assumption 2(ii) places mild bounds on X and Zk, and places a rate restriction on s1(U)

that will hold as long as Uit does not exhibit too much dependence over i and t. This rate for

s1(U) is closely related to Assumption 2(iv), which is discussed below. Assumption 2(iii) again

holds as long as Uit does not exhibit too much dependence over i and t, and is uncorrelated

with Xit and Zit. Finally, Assumption 2(v) holds as long as U is mean zero given X and Z

and satisfies bounds on dependence and second moments.

Assumption 2(iv) is a high level assumption on the first few singular values of U (note that

r is fixed as N and T converge to infinity). The singular values of U are the square roots of the

eigenvalues of UU ′. The random matrix theory literature shows that, if U is an appropriate

noise matrix, the largest few eigenvalues of UU ′ converge to the Tracy-Widom law, after

appropriate rescaling: if N and T grow at the same rate, then each of the largest eigenvalues

of UU ′ grows at rate N , while the gaps between them grow at rate N1/3. Johnstone (2001)

establish the Tracy-Widom law for the largest eigenvalues of UU ′, for the case of i.i.d. normal

error Uit. The subsequent literature has shown the universality of this result for more general

error distributions, see e.g. Soshnikov (2002), Pillai and Yin (2012) and Yang (2018).

We also place conditions on the matrix X requiring that there is sufficient variation after

controlling for individual effects and the additional covariates Z.

Assumption 3. For all P ∈ P, there exists π = πP and random matrices H and V such that

X = Z · π +H + V and the following conditions hold:

(i) ∥V ∥F ≍Θ,P
√
NT , s1(V ) = OΘ,P(max{

√
N,

√
T});

(ii) ∥H∥F = OΘ,P(
√
NT ) and ⟨H,V ⟩F = OΘ,P(

√
NT );

(iii) ∥Zk∥F = OΘ,P(
√
NT ) and ⟨Zk, V ⟩F = OΘ,P(

√
NT ) for k ∈ {1, . . . ,K};

(iv) (Z′Z)−1 = OΘ,P
(

1
NT

)
where Z = [vec(Z1), . . . , vec(ZK)];

(v) maxi,t V
2
it = oΘ,P(NTcN,T ) and maxi,t Z

2
k,it = oΘ,P

(
(NT )2cN,T

)
for k ∈ {1, . . . ,K}.

Assumption 3 uses a decomposition of Xit that depends on an individual effect Hit and a

random variable Vit that is approximately independent and uncorrelated with Z1,it . . . , Zk,it

as well as being approximately uncorrelated with the individual effect Hit. Importantly, the

individual effect Hit can be arbitrarily correlated with Γit and with the variables Zk,it. Note

also that we do not place any assumptions on the rank or nuclear norm of the matrix Hit.

Part (v) holds under a tail bound on Vit and Zk,it. For example, if Vit are (uniformly) sub-

Gaussian then maxi,t V
2
it = OΘ,P(log(N + T )), and the condition maxi,t V

2
it = oΘ,P(NTcN,T )

is satisfied provided that NTcN,T / log(N + T ) → ∞. The only other requirement on cN,T is

the requirement that cN,T max{N,T} → 0 in Theorem 3 below. Thus, our results allow for a

range of choices of cN,T .
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Theorem 2. Let β̂ = β̂A∗
b∗,c

and Ĉ = 4Rs1(Ûpre)(1+ ε) be defined in Algorithm 3.1, with the

modification described in Remark 3.2. Suppose that Assumption 2 holds, and that Assumption

3 holds as stated and with Zk and X interchanged for each k = 1, . . . ,K, for the given sequence

c = cN,T . Then

β̂ − β = OΘ,P(1/min{N,T}).

If, in addition, ⟨A∗
b∗,c, U⟩F /ŝe

d→
Θ,P

N(0, 1), then

lim inf inf
θ∈Θ,P∈P

Pθ,P
(
β ∈

{
β̂ ±

[
biasĈ(β̂) + z1−α/2ŝe

]})
≥ 1− α.

Theorem 2 establishes the rate of uniform convergence of the debiased estimator β̂ and

demonstrates that the bias-aware confidence interval based on β̂ is (asymptotically) uniformly

valid. These results are uniform over a large class of DGPs allowing for weak factors. To the

best of our knowledge, these results are the first to demonstrate an asymptotically valid CI

or to attain the min{N,T} rate of convergence while allowing for weak factors and without

placing additional structure on the covariate of interest Xit or its correlation with the factors.

We provide a more detailed comparison with the literature in Section 4.3

Theorem 2 assumes ⟨A∗
b∗,c, U⟩F /ŝe

d→
Θ,P

N(0, 1) as a high level condition. We now give

primitive conditions for the case where Uit is independent but not necessarily identically

distributed, conditional on the covariates W = (X,Z1, . . . , Zk) and the individual effects Γ.

It would be a rather straightforward and mechanical extension to allow for weakly dependent

Uit by appropriately adjusting the expression for ŝe. We leave this question for future research.

Assumption 4. There exist constants σ > 0 and η > 0 such that, for all P ∈ P, Uit is

independent over i, t conditional on W,Γ and, for all i, t,

EP [Uit|W,Γ] = 0, EP [U2
it|W,Γ] > σ2, EP [U4

it|W,Γ] < 1/η.

Theorem 3. Let β̂ = β̂A∗
b∗,c

and Ĉ = 4Rs1(Ûpre)(1 + ε) be defined in Algorithm 3.1, with

the modification described in Remark 3.2 for c = cN,T with cN,T max{N,T} → 0. Suppose

that Assumptions 2(i)-(iv) hold, and that Assumption 3 holds as stated and with Zk and X

interchanged for each k = 1, . . . ,K, for the given sequence c = cN,T , and that Assumption

4 holds. Let ŝe2 =
∑N

i=1

∑T
t=1A

2
itÛ

2
it where A = A∗

b∗,c and Ûit is the residual from the least

squares estimator. Then

β̂ − β = OΘ,P(1/min{N,T})

and

lim inf inf
θ∈Θ,P∈P

Pθ,P
(
β ∈

{
β̂ ±

[
biasĈ(β̂) + z1−α/2ŝe

]})
≥ 1− α.
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4.3 Comparison to other results in the literature

Our debiasing approach leads to the faster rate min{N,T} compared to the rate min{
√
N,

√
T}

for β̂LS (see, e.g., Moon and Weidner, 2015). While our results appear to be the first to

demonstrate a min{N,T} rate of convergence under the conditions above, recent papers have

proposed estimators that use additional structure to construct estimators that achieve the

same or better rates. Chetverikov and Manresa (2022) impose a factor structure on X, which

corresponds to imposing a low-rank assumption on the matrix H in our Assumption 3. They

use this assumption to construct an estimator that, like ours, achieves a min{N,T} rate un-

der weak factors. Zhu (2019) imposes homoskedastic and independent errors in addition to a

factor structure on X, and shows that this allows for a faster
√
NT rate of convergence, even

under weak factors.

While robust to weak factors, our CI will be wider than a CI based on the strong factor

asymptotics in Bai (2009). Ideally, one would like to form a CI that is adaptive to the strength

of factors. Such a CI would be robust to weak factors, while being asymptotically equivalent

to the CI in Bai (2009) when factors are strong. However, as shown by Zhu (2019), such

an adaptive CI cannot be obtained, even if one imposes homoskedastic errors and additional

structure on the covariate matrix X. Thus, while there may be some room for efficiency gains

over our CI, one must allow for some increase in CI length relative to the CI in Bai (2009) in

order to allow for weak factors.

As discussed in the introduction, our debiasing approach is analogous to the approach to

debiasing the LASSO taken in Javanmard and Montanari (2014) and, more broadly, other

papers in the debiased LASSO literature such as Belloni, Chernozhukov and Hansen (2014),

van de Geer, Bühlmann, Ritov and Dezeure (2014) and Zhang and Zhang (2014). Interestingly,

this analogy extends to the rates of convergence in our asymptotic results. The debiased lasso

applies to a high dimensional regression model with s nonzero coefficients and n observations.

The resulting estimator has bias of order s/n, up to log terms, and variance 1/n. Note that s

is the dimension of the constraint set for the unknown parameter, while n is the total number

of observations. In our setting, the debiased estimator has bias of order max{N,T}/(NT )
and variance 1/(NT ). The set of matrices Γ with rank at most R has dimension of order

max{N,T} so, just as with the debiased lasso, the bias term is of the same order of magnitude

as the ratio of the dimension of the constraint set to the total number of observations. In

the debiased lasso setting, one can justify a CI that ignores bias by assuming that s increases

slowly enough relative to n for the order s/n bias term to be asymptotically negligible relative

to the order 1/
√
n standard deviation term. Unfortunately, this cannot occur in our setting

even if R = 1, since the bias term is of order max{N,T}/(NT ) which is always of at least the

same order of magnitude as the standard deviation 1/
√
NT . This necessitates our bias-aware

approach.
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5 Numerical Evidence

5.1 Simulation Study

We consider the following design:

Yit = Xitβ +

R∑
r=1

κrλirftr + Uit,

Xit =

R∑
r=1

λirftr + Vit,

where κr controls the strength of factor ftr, and R stands for the number of factors. In

addition, λi, ft, Uit and Vit are all mutually independent across both i and t and

λi ∼ N(0, IR) ⊥ ft ∼ N(0, IR) ⊥

(
Uit

Vit

)
∼ N

((
0

0

)
,

(
σ2U 0

0 σ2V

))
.

In the designs considered below, we fix (β, σ2U , σ
2
V ) = (0, 1, 1) and vary N , T , the number

of factors R, and their strengths controlled by κr. The number of simulations in all of the

considered designs is 5000. As before, we are interested in estimation of and inference on β.

In Tables 1-3, we report the bias, standard deviation, and rmse for the benchmark LS

estimator of Bai (2009) and for the proposed debiased estimator in various designs with 1 and

2 factors.8 We also report the size of the corresponding tests (with 5% nominal size) and the

average length of the CIs (with 95% nominal coverage).

The LS estimator is heavily biased and the associated tests and CIs are heavily size

distorted unless all the factors are strong. At the same time, the proposed estimator effectively

reduces the “weak factors” bias without inflating the variance. As a result, the potential

efficiency gains from using the debiased estimator can be very large when there is a weak

factor, especially for larger sample sizes (see Appendix C for additional simulation results).

Importantly, even if all the factors are strong, the debiased estimator performs comparably

to the LS estimator.

When weak factors are present, the LS CIs can have zero coverage because they are (i)

centered around the biased LS estimator and (ii) too short. Hence, the average length of

the LS CIs is not a proper benchmark to compare the average length of the bias-aware CIs.

To provide a relevant comparison, we also construct identification robust CIs by inverting

the (absolute value of the) LS based t-statistic using appropriate identification robust critical

values (instead of z1−α/2). Specifically, for a given design (here, for fixed N , T , and R),

we (numerically) compute the least favorable (over κ) critical value for the absolute value of

the t-statistic based on the LS estimator. We also construct analogous CIs by inverting the

8Note that the CCE estimator of Pesaran (2006) would not work in these designs, regardless of whether the
factors are strong or not, because the cross-sectional averages of λir are zeros.
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(absolute value of the) t-statistic based on the debiased estimator using the corresponding least

favorable critical values. We refer to such CIs as the LS and debiased oracle CIs (because they

are based on unknown design-specific least favorable critical values) and report their average

length denoted by “length*” in the tables below.

Notice that the average length of the LS oracle CIs is often comparable to or greater than

the actual length of the bias-aware CIs, especially for larger sample sizes (again, see Appendix

C for additional simulation results). The average length of the debiased oracle CIs is much

smaller than the average length of the LS oracle CIs.

5.2 Empirical Illustration

In this section, we illustrate the finite sample properties of the proposed estimator and con-

fidence intervals in a numerical experiment calibrated to imitate an actual empirical setting.

Specifically, we calibrate our experiment based on the seminal studies of the effects of uni-

lateral divorce law reforms on the US divorce rates by Friedberg (1998) and Wolfers (2006),

subsequently revisited by Kim and Oka (2014) and Moon and Weidner (2015) in the context

of interactive fixed effects models.

For simplicity of the experiment, as a benchmark, we use the following static specification

also considered in Friedberg (1998) and Wolfers (2006)

Yit = Xitβ + αi + ζit+ νit
2 + ϕt + Uit,

where Yit denotes the annual divorce rate (per 1,000 persons) in state i in year t, and Xit

is a dummy variable indicating if state i had a unilateral divorce law in year t. Following

Friedberg (1998) and Wolfers (2006), we also control for state-specific quadratic time trends

and time effects.

We follow Kim and Oka (2014) and use their data to construct a balanced panel with

N = 48 states and T = 33 years. As in Moon and Weidner (2015), first we profile out the

individual trends and time effects from Yit and Xit to form the projected model

Y ⊥
it = X⊥

it β + U⊥
it

and obtain the estimates β̂ and σ̂2
U⊥ . We also extract the first principal component of the

matrix of regressors X⊥ denoted by ΓX
⊥
= λX

⊥
i fX

⊥
t .

In our numerical experiment, we fix X⊥, {λX⊥
i }Ni=1, and {fX⊥

t }Tt=1, and consider the

following DGP

Y ⊥
it = X⊥

it β̂ + κλX
⊥

i fX
⊥

t + U⊥
it ,

where we introduce an additional factor fX
⊥

t and a parameter κ controlling the strength of

fX
⊥

t . For every repetition, we draw U⊥
it as iid N(0, σ̂2U ) and treat all the other parts of the
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DGP as fixed.

As before, we compare the performance of the LS estimator and inference to the proposed

approach for various values of κ. Both approaches use the correctly specified number of factors

R = 1. The results are based on 5,000 simulations and provided in Table 4. We report the

same statistics as in Section 5.1.

The results are qualitatively similar to the results in Section 5.1. The LS estimator

is heavily biased when the factor is weak, and the standard tests and confidence intervals

are severely size distorted. Compared to the LS estimator, the debiased estimator has a

substantially smaller bias, standard deviation, and rmse when the factor is weak. It also

performs competitively if the factor is strong. The LS CIs are much shorter than the bias-

aware CIs but have very poor coverage. The oracle CIs based on the LS estimator have the

correct coverage and are also considerably wider than the naive CIs and comparable with

the bias-aware CIs. Again, the oracle CIs based on the debiased estimator are considerably

shorter than the bias-aware CIs and LS oracle CIs, indicating that there is a potential scope

for improvement.

Overall, our empirically calibrated simulation study shows that the presence of a weak

factor can lead to poor performance of conventional estimators and inference procedures in

an actual empirical setting. It also demonstrates that in such settings, the gains from using

the debiased estimator could be substantial.

Finally, we also report estimation and inference results for the actual data set. For con-

sistency with the numerical experiment above, we focus on the same single covariate Xit. In

Appendix D, we also consider a specification with dynamic treatment effects as in Wolfers

(2006). Similarly to Kim and Oka (2014) and Moon and Weidner (2015), we estimate

Yit = Xitβ + αi + ζit+ νit
2 + ϕt +

R∑
r=1

λirftr + Uit

for various values of R using the LS and the debiased approaches and construct confidence

intervals for β. As before, we first profile out the individual trends and time effects, and then

use the residual outcomes and regressors as inputs for the LS and debiased estimators.

The results are provided in Table 5. For some values of R, the difference between the

LS and debiased estimates is comparable to the standard error of the LS estimator, which

again might indicate that the LS CIs could be severely size distorted. The bias-aware CIs are

substantially wider than the LS CIs. However, as the numerical experiment above suggests,

this is how wide identification robust CIs appear to have to be in this setting. The results for

a dynamic specification are qualitatively similar and provided in Appendix D.
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Table 1: N = 100, R = 1

LS Debiased

κ bias std rmse size length length* bias std rmse size length length*

T = 20

0.00 -0.0000 0.0171 0.0171 7.1 0.061 0.299 0.0002 0.0206 0.0206 0.0 0.535 0.137

0.05 0.0242 0.0178 0.0300 37.3 0.062 0.300 0.0095 0.0207 0.0228 0.0 0.535 0.137

0.10 0.0478 0.0200 0.0518 79.3 0.062 0.302 0.0181 0.0215 0.0281 0.0 0.537 0.137

0.15 0.0690 0.0249 0.0734 91.6 0.063 0.308 0.0244 0.0235 0.0339 0.0 0.540 0.138

0.20 0.0792 0.0382 0.0879 85.7 0.067 0.324 0.0251 0.0275 0.0372 0.0 0.544 0.138

0.25 0.0670 0.0531 0.0855 64.8 0.074 0.358 0.0189 0.0306 0.0360 0.0 0.549 0.139

0.50 0.0049 0.0244 0.0248 8.2 0.087 0.425 0.0013 0.0239 0.0240 0.0 0.555 0.139

1.00 0.0004 0.0232 0.0232 5.9 0.088 0.427 0.0001 0.0237 0.0237 0.0 0.555 0.140

T = 50

0.00 -0.0002 0.0103 0.0103 5.9 0.039 0.228 -0.0001 0.0136 0.0136 0.0 0.294 0.079

0.05 0.0244 0.0108 0.0267 67.5 0.039 0.228 0.0064 0.0137 0.0151 0.0 0.295 0.080

0.10 0.0484 0.0124 0.0500 98.2 0.039 0.230 0.0121 0.0143 0.0187 0.0 0.296 0.080

0.15 0.0683 0.0189 0.0709 96.8 0.040 0.237 0.0135 0.0164 0.0213 0.0 0.299 0.080

0.20 0.0580 0.0390 0.0699 72.4 0.046 0.269 0.0084 0.0180 0.0198 0.0 0.301 0.080

0.25 0.0229 0.0306 0.0382 33.5 0.053 0.308 0.0032 0.0164 0.0167 0.0 0.302 0.080

0.50 0.0016 0.0144 0.0145 5.7 0.055 0.324 0.0002 0.0151 0.0151 0.0 0.303 0.080

1.00 0.0001 0.0142 0.0142 5.1 0.055 0.324 -0.0001 0.0151 0.0151 0.0 0.303 0.080

T = 100

0.00 -0.0001 0.0073 0.0073 6.1 0.028 0.183 -0.0001 0.0109 0.0109 0.0 0.203 0.059

0.05 0.0246 0.0077 0.0258 91.0 0.028 0.183 0.0051 0.0109 0.0121 0.0 0.204 0.059

0.10 0.0486 0.0093 0.0495 99.9 0.028 0.185 0.0089 0.0118 0.0148 0.0 0.205 0.059

0.15 0.0619 0.0224 0.0658 92.9 0.030 0.197 0.0068 0.0133 0.0150 0.0 0.207 0.059

0.20 0.0239 0.0267 0.0358 47.4 0.037 0.243 0.0023 0.0126 0.0128 0.0 0.208 0.059

0.25 0.0077 0.0120 0.0143 17.9 0.039 0.256 0.0009 0.0120 0.0121 0.0 0.208 0.059

0.50 0.0009 0.0103 0.0103 5.9 0.039 0.260 0.0001 0.0119 0.0119 0.0 0.208 0.059

1.00 0.0001 0.0102 0.0102 5.4 0.039 0.260 -0.0000 0.0119 0.0119 0.0 0.208 0.059

T = 300

0.00 -0.0000 0.0042 0.0042 5.3 0.016 0.121 0.0000 0.0056 0.0056 0.0 0.138 0.033

0.05 0.0247 0.0046 0.0252 100.0 0.016 0.122 0.0047 0.0056 0.0073 0.0 0.138 0.033

0.10 0.0482 0.0070 0.0487 99.8 0.016 0.123 0.0057 0.0067 0.0088 0.0 0.139 0.033

0.15 0.0178 0.0173 0.0248 60.5 0.021 0.161 0.0015 0.0063 0.0065 0.0 0.140 0.033

0.20 0.0047 0.0064 0.0080 16.4 0.022 0.170 0.0005 0.0061 0.0061 0.0 0.140 0.033

0.25 0.0023 0.0060 0.0064 7.6 0.023 0.171 0.0003 0.0061 0.0061 0.0 0.140 0.033

0.50 0.0003 0.0057 0.0058 4.9 0.023 0.172 0.0001 0.0060 0.0060 0.0 0.140 0.033

1.00 0.0001 0.0057 0.0057 4.9 0.023 0.172 0.0000 0.0060 0.0060 0.0 0.140 0.033

Lind(A) ∈ {0.0063, 0.0028, 0.0015, 0.0006} for T ∈ {20, 50, 100, 300}.
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Table 2: N = 100, T = 50, R = 2

LS Debiased

κ1

κ2
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 1.00 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 1.00

bias

0.00 -0.000 0.016 0.031 0.035 0.018 0.008 0.004 0.002 0.001 0.000 -0.000 0.006 0.010 0.010 0.005 0.002 0.001 0.000 0.000 -0.000

0.05 0.016 0.033 0.049 0.060 0.052 0.036 0.030 0.027 0.026 0.025 0.006 0.012 0.017 0.018 0.014 0.010 0.009 0.008 0.007 0.007

0.10 0.031 0.049 0.066 0.080 0.083 0.067 0.057 0.051 0.050 0.049 0.010 0.017 0.022 0.025 0.022 0.018 0.015 0.014 0.014 0.013

0.15 0.035 0.060 0.080 0.097 0.108 0.099 0.082 0.072 0.070 0.068 0.010 0.018 0.025 0.029 0.028 0.024 0.020 0.018 0.017 0.017

0.20 0.018 0.052 0.083 0.108 0.123 0.114 0.089 0.068 0.064 0.060 0.005 0.014 0.022 0.028 0.029 0.024 0.018 0.014 0.013 0.012

0.25 0.008 0.036 0.067 0.099 0.114 0.088 0.054 0.032 0.028 0.025 0.002 0.010 0.018 0.024 0.024 0.017 0.010 0.006 0.005 0.005

0.30 0.004 0.030 0.057 0.082 0.089 0.054 0.027 0.015 0.012 0.010 0.001 0.009 0.015 0.020 0.018 0.010 0.005 0.003 0.002 0.002

0.40 0.002 0.027 0.051 0.072 0.068 0.032 0.015 0.007 0.005 0.004 0.000 0.008 0.014 0.018 0.014 0.006 0.003 0.001 0.001 0.001

0.50 0.001 0.026 0.050 0.070 0.064 0.028 0.012 0.005 0.004 0.002 0.000 0.007 0.014 0.017 0.013 0.005 0.002 0.001 0.001 0.000

1.00 0.000 0.025 0.049 0.068 0.060 0.025 0.010 0.004 0.002 0.000 -0.000 0.007 0.013 0.017 0.012 0.005 0.002 0.001 0.000 -0.000

std

0.00 0.009 0.009 0.012 0.019 0.019 0.013 0.011 0.011 0.010 0.010 0.013 0.013 0.014 0.015 0.015 0.014 0.014 0.014 0.014 0.014

0.05 0.009 0.009 0.010 0.014 0.021 0.015 0.012 0.011 0.011 0.011 0.013 0.013 0.013 0.015 0.015 0.014 0.014 0.014 0.014 0.014

0.10 0.012 0.010 0.010 0.012 0.019 0.020 0.014 0.013 0.013 0.013 0.014 0.013 0.014 0.015 0.016 0.015 0.015 0.014 0.014 0.014

0.15 0.019 0.014 0.012 0.012 0.017 0.025 0.021 0.019 0.019 0.020 0.015 0.015 0.015 0.016 0.016 0.017 0.016 0.016 0.016 0.016

0.20 0.019 0.021 0.019 0.017 0.025 0.043 0.045 0.040 0.039 0.039 0.015 0.015 0.016 0.016 0.018 0.020 0.020 0.019 0.019 0.019

0.25 0.013 0.015 0.020 0.025 0.043 0.064 0.055 0.037 0.034 0.032 0.014 0.014 0.015 0.017 0.020 0.023 0.021 0.018 0.018 0.017

0.30 0.011 0.012 0.014 0.021 0.045 0.055 0.036 0.021 0.019 0.019 0.014 0.014 0.015 0.016 0.020 0.021 0.018 0.016 0.016 0.016

0.40 0.011 0.011 0.013 0.019 0.040 0.037 0.021 0.016 0.015 0.015 0.014 0.014 0.014 0.016 0.019 0.018 0.016 0.016 0.016 0.016

0.50 0.010 0.011 0.013 0.019 0.039 0.034 0.019 0.015 0.015 0.015 0.014 0.014 0.014 0.016 0.019 0.018 0.016 0.016 0.015 0.015

1.00 0.010 0.011 0.013 0.020 0.039 0.032 0.019 0.015 0.015 0.015 0.014 0.014 0.014 0.016 0.019 0.017 0.016 0.016 0.015 0.015

rmse

0.00 0.009 0.019 0.033 0.039 0.026 0.015 0.012 0.011 0.010 0.010 0.013 0.014 0.017 0.018 0.016 0.014 0.014 0.014 0.014 0.014

0.05 0.019 0.034 0.050 0.061 0.056 0.039 0.032 0.029 0.028 0.027 0.014 0.017 0.021 0.023 0.021 0.017 0.016 0.016 0.016 0.016

0.10 0.033 0.050 0.066 0.081 0.085 0.070 0.058 0.053 0.051 0.050 0.017 0.021 0.026 0.029 0.027 0.023 0.021 0.020 0.020 0.020

0.15 0.039 0.061 0.081 0.098 0.109 0.102 0.085 0.075 0.073 0.071 0.018 0.023 0.029 0.033 0.033 0.029 0.026 0.024 0.024 0.023

0.20 0.026 0.056 0.085 0.109 0.125 0.122 0.099 0.079 0.075 0.071 0.016 0.021 0.027 0.033 0.034 0.032 0.027 0.024 0.023 0.022

0.25 0.015 0.039 0.070 0.102 0.122 0.109 0.077 0.049 0.044 0.041 0.014 0.017 0.023 0.029 0.032 0.028 0.023 0.019 0.018 0.018

0.30 0.012 0.032 0.058 0.085 0.099 0.077 0.045 0.026 0.023 0.021 0.014 0.016 0.021 0.026 0.027 0.023 0.018 0.016 0.016 0.016

0.40 0.011 0.029 0.053 0.075 0.079 0.049 0.026 0.017 0.016 0.016 0.014 0.016 0.020 0.024 0.024 0.019 0.016 0.016 0.016 0.016

0.50 0.010 0.028 0.051 0.073 0.075 0.044 0.023 0.016 0.015 0.015 0.014 0.016 0.020 0.024 0.023 0.018 0.016 0.016 0.016 0.015

1.00 0.010 0.027 0.050 0.071 0.071 0.041 0.021 0.016 0.015 0.015 0.014 0.016 0.020 0.023 0.022 0.018 0.016 0.016 0.015 0.015
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Table 3: N = 100, T = 50, R = 2

LS Debiased

κ1

κ2
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 1.00 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 1.00

size

0.00 7.6 52.3 88.3 80.0 42.8 17.9 10.6 6.7 6.3 5.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.05 52.3 96.2 99.8 99.6 95.9 88.3 81.6 73.7 70.8 68.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.10 88.3 99.8 100.0 100.0 100.0 99.7 99.2 98.6 98.4 98.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.15 80.0 99.6 100.0 100.0 99.8 99.5 98.7 97.9 97.4 96.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.20 42.8 95.9 100.0 99.8 98.3 93.1 87.3 80.0 76.9 73.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.25 17.9 88.3 99.7 99.5 93.1 76.1 60.5 45.2 39.9 36.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.30 10.6 81.6 99.2 98.7 87.3 60.5 38.9 23.3 18.9 16.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.40 6.7 73.7 98.6 97.9 80.0 45.2 23.3 11.3 9.2 7.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.50 6.3 70.8 98.4 97.4 76.9 39.9 18.9 9.2 7.4 6.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.00 5.9 68.0 98.0 96.6 73.8 36.2 16.2 7.9 6.4 5.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

length

0.00 0.031 0.031 0.032 0.034 0.037 0.038 0.039 0.039 0.039 0.039 0.468 0.469 0.471 0.474 0.477 0.478 0.478 0.479 0.479 0.479

0.05 0.031 0.031 0.032 0.033 0.036 0.038 0.038 0.039 0.039 0.039 0.469 0.469 0.470 0.474 0.477 0.478 0.479 0.479 0.479 0.479

0.10 0.032 0.032 0.032 0.032 0.034 0.037 0.039 0.039 0.039 0.039 0.471 0.470 0.471 0.474 0.477 0.479 0.480 0.481 0.481 0.481

0.15 0.034 0.033 0.032 0.032 0.033 0.036 0.039 0.040 0.040 0.040 0.474 0.474 0.474 0.477 0.480 0.482 0.484 0.484 0.485 0.485

0.20 0.037 0.036 0.034 0.033 0.034 0.037 0.042 0.045 0.045 0.046 0.477 0.477 0.477 0.480 0.483 0.486 0.488 0.489 0.490 0.490

0.25 0.038 0.038 0.037 0.036 0.037 0.043 0.049 0.052 0.052 0.052 0.478 0.478 0.479 0.482 0.486 0.489 0.491 0.492 0.492 0.492

0.30 0.039 0.038 0.039 0.039 0.042 0.049 0.053 0.054 0.054 0.054 0.478 0.479 0.480 0.484 0.488 0.491 0.492 0.493 0.493 0.493

0.40 0.039 0.039 0.039 0.040 0.045 0.052 0.054 0.055 0.055 0.055 0.479 0.479 0.481 0.484 0.489 0.492 0.493 0.493 0.493 0.493

0.50 0.039 0.039 0.039 0.040 0.045 0.052 0.054 0.055 0.055 0.055 0.479 0.479 0.481 0.485 0.490 0.492 0.493 0.493 0.493 0.493

1.00 0.039 0.039 0.039 0.040 0.046 0.052 0.054 0.055 0.055 0.055 0.479 0.479 0.481 0.485 0.490 0.492 0.493 0.493 0.493 0.494

length*

0.00 0.345 0.346 0.353 0.373 0.406 0.420 0.424 0.427 0.427 0.428 0.114 0.114 0.114 0.115 0.115 0.115 0.115 0.115 0.115 0.115

0.05 0.346 0.346 0.349 0.360 0.391 0.416 0.424 0.427 0.428 0.429 0.114 0.114 0.114 0.115 0.115 0.115 0.115 0.115 0.115 0.115

0.10 0.353 0.349 0.348 0.354 0.375 0.409 0.424 0.430 0.432 0.432 0.114 0.114 0.114 0.115 0.115 0.115 0.115 0.115 0.115 0.116

0.15 0.373 0.360 0.354 0.354 0.365 0.399 0.428 0.441 0.443 0.445 0.115 0.115 0.115 0.115 0.115 0.116 0.116 0.116 0.116 0.116

0.20 0.406 0.391 0.375 0.365 0.371 0.410 0.459 0.491 0.497 0.503 0.115 0.115 0.115 0.115 0.116 0.116 0.116 0.116 0.116 0.116

0.25 0.420 0.416 0.409 0.399 0.410 0.475 0.536 0.568 0.573 0.576 0.115 0.115 0.115 0.116 0.116 0.116 0.116 0.116 0.116 0.116

0.30 0.424 0.424 0.424 0.428 0.459 0.536 0.579 0.595 0.598 0.599 0.115 0.115 0.115 0.116 0.116 0.116 0.116 0.116 0.116 0.117

0.40 0.427 0.427 0.430 0.441 0.491 0.568 0.595 0.604 0.606 0.607 0.115 0.115 0.115 0.116 0.116 0.116 0.116 0.117 0.117 0.117

0.50 0.427 0.428 0.432 0.443 0.497 0.573 0.598 0.606 0.608 0.609 0.115 0.115 0.115 0.116 0.116 0.116 0.116 0.117 0.117 0.117

1.00 0.428 0.429 0.432 0.445 0.503 0.576 0.599 0.607 0.609 0.610 0.115 0.115 0.116 0.116 0.116 0.116 0.117 0.117 0.117 0.117
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Table 4: Simulation results for the empirically calibrated experiment, N = 48, T = 33, R = 1

LS Debiased

κ bias std rmse size length length* bias std rmse size length length*

0.00 -0.0007 0.0647 0.0647 6.9 0.236 1.075 -0.0010 0.0797 0.0797 0.0 2.469 0.688

0.10 0.0458 0.0649 0.0794 14.1 0.236 1.077 0.0255 0.0799 0.0839 0.0 2.470 0.688

0.20 0.0920 0.0656 0.1130 35.0 0.237 1.080 0.0517 0.0805 0.0957 0.0 2.472 0.690

0.30 0.1376 0.0673 0.1531 61.5 0.238 1.087 0.0772 0.0818 0.1125 0.0 2.475 0.692

0.40 0.1822 0.0703 0.1953 81.9 0.240 1.097 0.1012 0.0843 0.1318 0.0 2.481 0.695

0.50 0.2247 0.0762 0.2372 91.5 0.243 1.110 0.1227 0.0887 0.1514 0.0 2.489 0.699

0.60 0.2620 0.0890 0.2766 93.4 0.248 1.129 0.1390 0.0967 0.1693 0.0 2.499 0.703

0.70 0.2904 0.1106 0.3107 90.9 0.254 1.156 0.1468 0.1098 0.1833 0.0 2.511 0.706

0.80 0.3001 0.1468 0.3340 84.6 0.262 1.195 0.1424 0.1267 0.1906 0.0 2.525 0.708

0.90 0.2818 0.1887 0.3391 72.2 0.273 1.245 0.1253 0.1416 0.1891 0.0 2.539 0.708

1.00 0.2352 0.2167 0.3198 57.4 0.286 1.304 0.0968 0.1464 0.1755 0.0 2.551 0.705

1.10 0.1725 0.2197 0.2794 41.2 0.298 1.358 0.0643 0.1391 0.1532 0.0 2.560 0.700

1.20 0.1134 0.1954 0.2260 26.8 0.307 1.398 0.0411 0.1245 0.1311 0.0 2.566 0.697

1.30 0.0678 0.1526 0.1670 17.7 0.312 1.423 0.0263 0.1125 0.1156 0.0 2.569 0.695

1.40 0.0427 0.1168 0.1243 12.6 0.315 1.436 0.0177 0.1045 0.1060 0.0 2.571 0.694

1.50 0.0304 0.0994 0.1040 10.3 0.316 1.442 0.0132 0.1007 0.1016 0.0 2.572 0.694

1.60 0.0235 0.0921 0.0950 8.8 0.317 1.445 0.0104 0.0992 0.0997 0.0 2.573 0.694

1.70 0.0190 0.0896 0.0916 8.0 0.317 1.447 0.0084 0.0985 0.0989 0.0 2.573 0.694

1.80 0.0157 0.0879 0.0893 7.3 0.318 1.448 0.0070 0.0981 0.0984 0.0 2.574 0.694

1.90 0.0132 0.0872 0.0882 7.0 0.318 1.449 0.0059 0.0979 0.0980 0.0 2.574 0.694

2.00 0.0112 0.0867 0.0875 6.8 0.318 1.450 0.0050 0.0977 0.0978 0.0 2.575 0.694

Table 5: LS and debiased estimates and CIs for β

R = 1 R = 2 R = 3 R = 4 R = 5 R = 6 R = 7

LS

0.047 0.160 0.101 0.043 0.028 0.091 0.101

[−0.06, 0.15] [0.04, 0.28] [−0.02, 0.22] [−0.07, 0.16] [−0.10, 0.16] [−0.04, 0.22] [−0.03, 0.23]

Debiased

0.089 0.162 0.130 0.084 0.071 0.106 0.119

[−1.53, 1.71] [−2.43, 2.75] [−2.91, 3.17] [−3.26, 3.42] [−3.34, 3.48] [−3.26, 3.47] [−3.60, 3.83]
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A Proofs

This section contains proofs of the results in the main text. Section A.1 states and proves a

general result on rates of convergence using high level conditions on the covariates X and Z

and the bound Ĉ on ∥Γ̂ − Γ∥∗. Section A.2 proves Theorem 1. Section A.3 proves Theorem

2. Section A.4 proves Theorem 3.

A.1 General result for rates of convergence

We first prove a result giving rates of convergence for estimators β̂ = ⟨A∗
b,c, Ỹ ⟩ given in

Definition 2.1 with weights A∗
b,c given in (12) under high level conditions on the bound Ĉ on

the initial estimation error in (4). The proofs of Theorems 2 and 3, given in Sections A.3 and

A.4 below, verify the conditions of this theorem for the initial estimator and bounds used in

the factor setting in Section 3.

We make the following assumption on the class of distributions of X, Z1, . . . , Zk and U

and the sequence c = cN,T used in the Lindeberg constraint.

Assumption 5. There exists a sequence of N × T random matrices Ξ such that

∥Ξ∥F = OΘ,P(
√
NT ), |⟨Ξ, X⟩F |−1 = OΘ,P((NT )

−1),

s1(Ξ) = OΘ,P(max{
√
N,

√
T}),

and, with probability approaching one,

Lind(Ξ) ≤ cN,T and ⟨Ξ, Zk⟩ = 0 for k = 1, . . . ,K.

Assumption 5 holds as long as we have Xit = Hit + Ξ̃it where Ξ̃it is mean zero given Hit

and does not have too much dependence over i and t.

Theorem 4. Let β̂ = ⟨A∗
b,c, Ỹ ⟩ for some sequences c = cN,T and b = bN,T . Suppose Assump-

tion 5 and Assumption 2(v) hold and that Assumption 1(i) holds with Ĉ = OΘ,P(CN,T ) for

some sequence CN,T . Then

|β̂ − β| = OΘ,P

(
max

{
CN,T /bN,T , 1

}
·max

{
(NT )−1/2, bN,T ·max{

√
N,

√
T}/(NT )

})
.

Proof. We have

|β̂ − β| ≤
∣∣⟨A∗

b,c, U⟩F
∣∣+ biasC̃(A

∗
b,c) =

∣∣⟨A∗
b,c, U⟩F

∣∣+ C̃s1(A
∗
b,c)
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where C̃ = ∥Γ− Γ̂∥∗. Thus,

|β̂ − β|2 ≤ 4
∣∣⟨A∗

b,c, U⟩F
∣∣2 + 4C̃2s1(A

∗
b,c)

2

≤ 4max


∣∣∣⟨A∗

b,c, U⟩F
∣∣∣2

∥A∗
b,c∥2F

,
C̃2

b2

 ·
[
∥A∗

b,c∥2F + b2s1(A
∗
b,c)

2
]
. (13)

Consider the oracle weights Ã = Ξ/⟨Ξ, X⟩. With probability approaching one uniformly over

θ, P , the weights Ã are feasible for (12), so that

∥A∗
b,c∥2F + b2s1(A

∗
b,c)

2 ≤ ∥Ã∥2F + b2s1(Ã)
2 =

∥Ξ∥2F + b2s1(Ξ)
2

|⟨Ξ, X⟩F |2

= OΘ,P((NT )
−1) + b2 · OΘ,P(max{N,T}/(NT )2).

Plugging this into (13) gives the result.

A.2 Proof of Theorem 1

The probability that the upper endpoint of the CI is less than β is

Pθ,P
(
β̂ + biasĈ(β̂) + z1−α/2ŝe < β

)
= Pθ,P

(
⟨A,Xβ + Z · δ + Γ− Γ̂⟩F − β + biasĈ(β̂) + ⟨A,U⟩F < −z1−α/2ŝe

)
≤ Pθ,P

(
⟨A,Xβ + Z · δ + Γ− Γ̂⟩F − β < −biasĈ(β̂)

)
+ Pθ,P

(
⟨A,U⟩F < −z1−α/2ŝe

)
.

The first term is, by definition, bounded by Pθ,P
(∥∥∥Γ̂− Γ

∥∥∥
∗
> Ĉ

)
, which converges to zero

uniformly over θ ∈ Θ, P ∈ P by Assumption 1(i). The second term converges to α/2 uniformly

over θ ∈ Θ, P ∈ P by Assumption 1(ii). Applying a symmetric argument to the probability

that the lower endpoint of the CI is greater than β gives the result.

A.3 Proof of Theorem 2

To prove this result, we first prove a series of lemmas. The first statement will then follow

from Lemma 8 below and Theorem 4, along with Lemma 9 verifying Assumption 5. The

second statement is immediate from Lemma 8 below and Theorem 1, along with Lemma 9

verifying Assumption 5.

Lemma 5. Under Assumptions 2(i)-(iii),

γ̂LS − γ0 = OΘ,P

(
1

min{
√
N,

√
T}

)
.

Proof. The result follows from the proof of Theorem 4.1 in Moon and Weidner (2015). As-

sumptions 2 (i)-(iii) are uniform analogues of Assumptions NC, SN, and EX in Moon and
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Weidner (2015). The derived rate of convergence is immediately uniform over θ ∈ Θ, P ∈ P be-

cause the proof of Theorem 4.1 in Moon and Weidner (2015) explicitly bounds ∥γ̂LS − γ0∥.

Lemma 6. Under Assumption 2,
∥∥∥Γ̂LS − Γ

∥∥∥
∗
= OΘ,P(max{

√
N,

√
T})

Proof. Since (γ̂LS, Γ̂LS) are defined to be the minimizers of the least-squares objective function

and (γ̂LS,Γ) are potential alternative arguments we have∥∥∥(Γ̂LS − Γ) +W · (γ̂LS − γ)− U
∥∥∥2
F
≤ ∥W · (γ̂LS − γ)− U∥2F ,

and therefore ∥∥∥Γ̂LS − Γ
∥∥∥2
F
≤ 2⟨Γ̂LS − Γ, U −W · (γ̂LS − γ)⟩F

≤ 2∥Γ̂LS − Γ∥∗s1(U −W · (γ̂LS − γ))

≤ 2
√
2R∥Γ̂LS − Γ∥F s1(U −W · (γ̂LS − γ))

where in the second step we used that ⟨A,B⟩F ≤ ∥A∥∗s1(B) and in the final step we used

that ∥A∥∗ ≤
√
rank(A)∥A∥F and rank(Γ̂LS − Γ) ≤ 2R. We thus have∥∥∥Γ̂LS − Γ

∥∥∥
F
≤ 2

√
2Rs1(U −W · (γ̂LS − γ))

and therefore∥∥∥Γ̂LS − Γ
∥∥∥
∗
≤

√
2R
∥∥∥Γ̂LS − Γ

∥∥∥
F

≤ 4Rs1(U −W · (γ̂LS − γ))

≤ 4R

(
s1(U) + s1(X)

∣∣∣β̂LS − β0

∣∣∣+ K∑
k=1

s1(Zk)
∣∣∣δ̂LS,k − δk

∣∣∣) . (14)

Using Lemma 5 and Assumption 2(ii) gives the result.

Lemma 7. Suppose that Assumption 2 holds, and that Assumption 5 holds as stated and with

Zk and X interchanged for each k = 1, . . . ,K. Then

γ̂pre − γ = OΘ,P (1/min{N,T}) .

Proof. The result is immediate from Lemma 6 and Theorem 4, using the fact that b∗ is

bounded from above and below by a constant times max{
√
N,

√
T}.

Lemma 8. Suppose that Assumption 2 holds, and that Assumption 5 holds as stated and with

Zk and X interchanged for each k = 1, . . . ,K. Then

∥Γ̂pre − Γ∥∗ ≤ 4Rs1(U)(1 + oΘ,P(1)) = OΘ,P(max{
√
N,

√
T})
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and

s1(U) ≤ s1(Ûpre)(1 + oΘ,P(1)) = OΘ,P(max{
√
N,

√
T}).

Proof. The first statement follows by using the same arguments used to obtain (14) in the

proof of Lemma 6, applied to the objective function with γ̂pre plugged in, and then applying

Lemma 7 and Assumption 2(ii). For the second statement, first note that, letting ∆Γ =

Γ̂pre − Γ, we have

∣∣∣s1(Ûpre)− s1(U −∆Γ)
∣∣∣ ≤ s1(X)

∣∣∣β̂pre − β
∣∣∣+ K∑

k=1

s1(Zk)
∣∣∣δ̂pre,k − δ0k

∣∣∣
≤ oΘ,P (

√
NT/min{

√
N,

√
T}) = oΘ,P (max{

√
N,

√
T}) (15)

where we use Lemma 7 and Assumption 2(ii) in the last inequality.

Now, using the fact that rank (∆Γ) ≤ 2R and the general inequality si+j−1(A + B) ≤
si(A) + sj(B) with A = U −∆Γ, B = ∆Γ, i = 1, j = 2R + 1 gives s2R+1(U) ≤ s1(U −∆Γ).

Thus,

s1(U) ≤ s2R+1(U) + oΘ,P (max{
√
N,

√
T}) ≤ s1(Ûpre) + oΘ,P (max{

√
N,

√
T}) (16)

where we apply Assumption 2(iv) for the first inequality and (15) for the second inequality.

Similarly,

s1(Ûpre) ≥ s1(U −∆Γ)− oΘ,P(max{
√
N,

√
T}) ≥ s2R+1(U)− oΘ,P(max{

√
N,

√
T}).

Hence, using Assumptions 2(ii) and (iv), we conclude s1(Ûpre) ≍Θ,P max{
√
N,

√
T}. This,

together with (16), gives the first inequality of the second statement of the theorem. For the

second inequality of the second statement of the theorem, we can again apply (15) and note

that s1(U −∆Γ) ≤ s1(U)s1(∆Γ) and s1(∆Γ) ≤ ∥∆Γ∥∗ = OΘ,P(max{
√
N,

√
T}).

Lemma 9. Suppose that Assumptions 2 and 3 hold. Then Assumption 5 holds with Ξit

given by the residual in the regression of Vit on Zit, i.e., vec(Ξ) = MZvec(V ) where MZ =

INT − Z(Z′Z)−1Z′.

Proof. First, notice that Ξ = V −Z · φ̂ = V −
∑K

k=1 Zkφ̂k where φ̂ = (Z′Z)−1Z′vec(V ). Also,

it follows from Assumption 3(iii) and (iv) that ∥φ̂∥ = OΘ,P

(
1√
NT

)
.

Next we verify all the conditions required by Assumption 5.

Verification of ⟨Ξ, Zk⟩F = 0 for k = 1, . . . ,K. By construction.

Verification of ∥Ξ∥F = OΘ,P(
√
NT ). ∥Ξ∥F = ∥vec(Ξ)∥ ≤ ∥vec(V )∥ = ∥V ∥F = OΘ,P(

√
NT ).
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Verification of s1(Ξ) = OΘ,P(max{
√
N,

√
T}). Notice that

s1(Ξ) = s1

(
V −

K∑
k=1

Zkφ̂k

)
≤ s1(V ) +

K∑
k=1

|φ̂k| s1(Zk) = OΘ,P(max{
√
N,

√
T}),

using the fact that |φ̂k| s1(Zk) = OΘ,P(1) since φ̂k = OΘ,P(1/
√
NT ) and s1(Zk) ≤ ∥Zk∥F =

OΘ,P(
√
NT ) under these assumptions.

Verification of |⟨Ξ, X⟩F |−1 = OΘ,P((NT )
−1). Using the fact that ⟨Ξ, Zk⟩F = 0 for each k, we

have

⟨Ξ, X⟩F = ⟨Ξ, H⟩F + ⟨Ξ, V ⟩F ,= ⟨V,H⟩F −
K∑
k=1

φ̂k⟨Zk, H⟩F + ∥V ∥2F −
K∑
k=1

φ̂k⟨Zk, V ⟩F .

The first term isOΘ,P(
√
NT ) = oΘ,P(NT ) by Assumption 3(ii). The second term isOΘ,P(

√
NT ) =

oΘ,P(NT ) since φ̂k = OΘ,P(1/
√
NT ) and ⟨Zk, H⟩F ≤ ∥H∥F · ∥Zk∥F = OΘ,P(NT ) under

these assumptions. Similarly, the fourth term is OΘ,P(1) = oΘ,P(NT ). Thus, ⟨Ξ, X⟩F =

∥V ∥2F + oΘ,P(NT ) and the result follows since ∥V ∥2F ≍Θ,P NT by Assumption 3(i).

Verification of Lind(Ξ) ≤ cN,T with probability approaching one.

Lind(Ξ) =
maxi,t Ξ

2
it

∥Ξ∥2F
,

where

∥Ξ∥2F = ∥V ∥2F − 2

K∑
k=1

φ̂k⟨V,Zk⟩F +

∥∥∥∥∥
K∑
k=1

Zkφ̂k

∥∥∥∥∥
2

F

,

where
∑K

k=1 φ̂k⟨V,Zk⟩F = OΘ,P(1) and
∥∥∥∑K

k=1 Zkφ̂k

∥∥∥2
F
= OΘ,P(1), so ∥Ξ∥2F ≍Θ,P NT . Next,

max
i,t

Ξ2
it = max

i,t

(
Vit −

K∑
k=1

φ̂kZk,it

)2

≤ (K + 1)2

(
max
i,t

V 2
it +

K∑
k=1

φ̂2
kmax

i,t
Z2
k,it

)
= oΘ,P(NTcN,T ).

Hence, Lind(Ξ) = oΘ,P(cN,T ), which completes the proof.

A.4 Proof of Theorem 3

The result will follow from Theorem 2 once we verify Assumption 2(v) and the condition

⟨A∗
b∗,c, U⟩F /ŝe

d→
Θ,P

N(0, 1). Assumption 2(v) is immediate from Assumption 4 and Cheby-
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shev’s inequality. To verify ⟨A∗
b∗,c, U⟩F /ŝe

d→
Θ,P

N(0, 1), we show that ⟨A,U⟩F /ŝe
d→

Θ,P
N(0, 1)

for ŝe2 =
∑N

i=1

∑T
t=1A

2
itÛ

2
it with any sequence of matrices A satisfying Lind(A) ≤ cN,T with

cN,T satisfying the condition cN,T max{N,T} → 0 given in the statement of the theorem.

To this end, we first prove a bound on ∥Û − U∥F (Lemma 10), and then use this to

show consistency of the standard error (Lemma 11, using a condition verified in Lemma 12).

Lemma 13 completes the proof. We note that the conditions of Lemma 10 hold under the

conditions of Theorem 3 by Lemma 5.

Lemma 10. Let Û = Y −W · γ̂ − Γ̂, where

Γ̂ = argmin
{G∈RN×T : rank(G)≤R}

N∑
i=1

T∑
t=1

(
Yit −W ′

itγ̂ −Git
)2
.

Suppose that

(i) γ̂ − γ = OΘ,P

(
1

min{
√
N,

√
T}

)
;

(ii) ∥X∥F = OΘ,P(
√
NT ) and ∥Zk∥F = OΘ,P(

√
NT ) for k ∈ {1, . . . ,K};

(iii) s1(X) = OΘ,P

(√
NT

)
, s1(Zk) = OΘ,P

(√
NT

)
for k ∈ {1, . . . ,K}, and s1(U) =

OΘ,P(max{
√
N,

√
T}).

Then, ∥∥∥Û − U
∥∥∥2
F
= OΘ,P(max{N,T}).

Proof. Using Û =W · (γ − γ̂) + Γ− Γ̂ + U ,∥∥∥Û − U
∥∥∥2
F
= ∥W · (γ̂ − γ)∥2F +

∥∥∥Γ̂− Γ
∥∥∥2
F
+ 2⟨W · (γ̂ − γ), Γ̂− Γ⟩F .

To prove the result, we show that all the terms on the right hand side of the equation above

are OΘ,P(max{N,T}).
First,

∥W · (γ̂ − γ)∥F ≤ ∥X∥F
∣∣∣β̂ − β

∣∣∣+ K∑
k=1

∥Zk∥F
∣∣∣δ̂k − δk

∣∣∣ = OΘ,P

(
max{

√
N,

√
T}
)
.

where we used conditions (i) and (ii).

Second, using the previously derived result (14) and conditions (i) and (iii),∥∥∥Γ̂− Γ
∥∥∥
F
= OΘ,P(max{

√
N,

√
T}).
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Third,

∣∣∣⟨W · (γ̂ − γ), Γ̂− Γ⟩F
∣∣∣ ≤ ∣∣∣⟨X(β̂ − β), Γ̂− Γ⟩F

∣∣∣+ K∑
k=1

∣∣∣⟨Zk(δ̂k − δk), Γ̂− Γ⟩F
∣∣∣ ,

where ∣∣∣⟨X(β̂ − β), Γ̂− Γ⟩F
∣∣∣ ≤ ∥X∥F

∥∥∥Γ̂− Γ
∥∥∥
F

∣∣∣β̂ − β
∣∣∣ = OΘ,P (max{N,T}) .

Similarly,

K∑
k=1

∣∣∣⟨Zk(δ̂k − δk), Γ̂− Γ⟩F
∣∣∣ = OΘ,P (max{N,T}) ,

which implies ∣∣∣⟨W · (γ̂ − γ), Γ̂− Γ⟩F
∣∣∣ = OΘ,P(max{N,T})

and completes the proof.

Lemma 11. Suppose that the hypotheses of Lemma 10 are satisfied. Suppose, in addition,

that the following conditions hold:

(i) for any collections of weights {ωit}1≤i≤N,1≤t≤T , which are non-random conditional on

W and Γ, such that |ωit| ≤ ω a.s. for all W and Γ and for all i, t, N , and T , we have

1

NT

N∑
i=1

T∑
t=1

ωitU
2
it −

1

NT

N∑
i=1

T∑
t=1

ωitE
[
U2
it|W,Γ

]
= OΘ,P

(
1√
NT

)
;

(ii) for some σ2 > 0, E
[
U2
it|W,Γ

]
≥ σ2 a.s. for all i, t, N , and T ;

(iii) Lind(A) ≤ cN,T and max{N,T} cN,T → 0.

Then, ∑N
i=1

∑T
t=1A

2
itÛ

2
it∑N

i=1

∑T
t=1A

2
itU

2
it

− 1 = oΘ,P(1),

where Û is defined in Lemma 10.

Proof. For simplicity of notation, we use
∑

i,t ≡
∑N

i=1

∑T
t=1 and maxi,t ≡ max1≤i≤N,1≤t≤T

throughout the proof.
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Notice that

∑
i,tA

2
itÛ

2
it∑

i,tA
2
itU

2
it

− 1 =

∑
i,tA

2
it

(
Û2
it − U2

it

)
∑

i,tA
2
itU

2
it

=

∑
i,tA

2
it

(
Ûit − Uit

)(
Ûit − Uit + 2Uit

)
∑

i,tA
2
itU

2
it

=

∑
i,tA

2
it

(
Ûit − Uit

)2∑
i,tA

2
itU

2
it

+
2
∑

i,tA
2
itUit

(
Ûit − Uit

)
∑

i,tA
2
itU

2
it

. (17)

The first term in (17) can be bounded as

∑
i,tA

2
it

(
Ûit − Uit

)2∑
i,tA

2
itU

2
it

≤
maxi,tA

2
it

∥∥∥Û − U
∥∥∥2
F∑

i,tA
2
itU

2
it

,

and and the second term in (17) can be bounded as

∑
i,tA

2
itUit

(
Ûit − Uit

)
∑

i,tA
2
itU

2
it

≤

(∑
i,tA

4
itU

2
it

)1/2(∑
i,t

(
Ûit − Uit

)2)1/2

∑
i,tA

2
itU

2
it

≤

√√√√√maxi,tA2
it

∥∥∥Û − U
∥∥∥2
F∑

i,tA
2
itU

2
it

,

where the first inequality follows from the Cauchy-Schwarz inequality.

Hence, to complete the proof, it is sufficient to demonstrate

maxi,tA
2
it

∥∥∥Û − U
∥∥∥2
F∑

i,tA
2
itU

2
it

= oΘ,P(1).

Next, notice that

1

NT

∑
i,t

A2
it

maxi,tA2
it

U2
it =

1

NT

∑
i,t

A2
it

maxi,tA2
it

E
[
U2
it|W,Γ

]
+OΘ,P

(
1√
NT

)

≥ σ2

NT Lind(A)
+OΘ,P

(
1√
NT

)
≥ σ2

NT cN,T
+OΘ,P

(
1√
NT

)
>Θ,P 0,

where we used condition (i), (ii), and (iii) consequently, and the last inequality (which holds

holds wpa1 uniformly) is ensured by condition (iii).
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Then

maxi,tA
2
it

∥∥∥Û − U
∥∥∥2
F∑

i,tA
2
itU

2
it

=

1
NT

∥∥∥Û − U
∥∥∥2
F

1
NT

∑
i,t

A2
it

maxi,t A2
it
U2
it

≤
cN,T

∥∥∥Û − U
∥∥∥2
F

σ2 +OΘ,P

(√
NT cN,T

)
≤
cN,T

∥∥∥Û − U
∥∥∥2
F

σ2 + oΘ,P(1)

= oΘ,P(1),

where the last inequality uses condition (iii), and the last equality follows from
∥∥∥Û − U

∥∥∥2
F
=

OΘ,P(max{N,T}) (the result of Lemma 10) and condition (iii). This completes the proof.

Lemma 12. Condition (i) of Lemma 11 holds under Assumption 4.

Proof. The quantity in condition (i) of Lemma 11 has mean zero and variance conditional on

W,Γ bounded by

ω2

(NT )2

N∑
i=1

T∑
t=1

EP [U4
i |W,Γ] ≤

ω2/η

NT
.

This gives the OΘ,P(1/
√
NT ) rate as claimed.

Lemma 13. Suppose that the hypotheses of Lemma 11 are satisfied, and that Assumption 4

holds. Then, Assumption 1 (ii) holds with ŝe =
√∑

i,tA
2
itÛ

2
it, where Û is defined in Lemma

10.

Proof of Lemma 13. First, we verify∑
i,tA

2
itU

2
it∑

i,tA
2
itσ

2
it

− 1 = oΘ,P(1).

Here σ2it ≡ σ2it(W,Γ) = E[U2
it|W,Γ], where we drop the dependence of σ2it(W,Γ) on W and Γ

for brevity of notation. Notice that∑
i,tA

2
itU

2
it∑

i,tA
2
itσ

2
it

− 1 =

√
NT maxi,tA

2
it∑

i,tA
2
itσ

2
it︸ ︷︷ ︸

→
Θ,P

0

1√
NT

∑
i,t

A2
it

maxi,tA2
it

(U2
it − σ2it)︸ ︷︷ ︸

OΘ,P (1)

= oΘ,P(1),
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where the first factor (uniformly) converges to zero due to conditions (ii) and (iii) of Lemma

11, and the second factor is (uniformly) bounded in probability due to condition (i) of Lemma

11. Combining this result with the result of Lemma 11, we obtain√∑
itA

2
itÛ

2
it∑

itA
2
itσ

2
it

− 1 = oΘ,P(1). (18)

Second, we demonstrate ∑
i,tAitUit√∑
i,tA

2
itσ

2
it

d→
Θ,P

N(0, 1). (19)

Let Qit = AitUit/
√∑

i,tA
2
itσ

2
it and SN,T =

∑
i,tQit. Following the lines of the proof of Lemma

F.1 in Armstrong and Kolesár (2018) (and using Assumption 4 and conditions (ii) and (iii) of

Lemma 11), we conclude that for all sequences of W = WN,T and Γ = ΓN,T we have for any

fixed ε > 0 ∑
i,t

E
[
Q2
it1{|Qit| > ε}|W,Γ

]
→
Θ,P

0. (20)

Note that (20) is a uniform version of the Lindeberg condition (applied conditional on W and

Γ). Hence, following the lines of the proof of the Lindeberg CLT (see, for example, Theorem

27.2 and its proof in Billingsley, 1995), we establish that, for any fixed t ∈ R,∣∣∣E [eiSN,T t|W,Γ
]
− e−t

2/2
∣∣∣ ⩽
Θ,P

rN,T a.s.

for some rN,T ↓ 0. Hence, we also have∣∣∣E [eiSN,T t
]
− e−t

2/2
∣∣∣ →
Θ,P

0,

which implies SN,T
d→

Θ,P
N(0, 1) and verifies (19). (18) and (19) together deliver the result.

B Computational details

The optimal weights A∗
b given in Definition 2.2 can be computed directly using convex pro-

gramming. Alternatively, we can obtain these weights from a nuclear norm regularized “par-

tialling out” regression of X on Z and a matrix of individual effects. This follows by applying

a result from Armstrong, Kolesár and Kwon (2020) to our setting, as we now describe. We

first consider the general case with covariates (Section B.1), and then obtain a further sim-

plification by specializing to the case with no additional covariates Z.
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B.1 General case

The weights A∗
b minimize

(
biasĈ(β̂A)

)2
+ σ2∥A∥2F when Ĉ/σ = b. Equivalently, we can

minimize σ2∥A∥2F subject to a bound on biasĈ(β̂A):

min
A
σ2∥A∥2F s.t. biasĈ(β̂A) ≤ B. (21)

We can then vary the bound B to optimize any increasing function of the variance σ2∥A∥2F
and worst-case bias biasĈ(β̂A).

Let Π∗
µ, ψ

∗
µ solve the nuclear norm regularized regression

min
Π,ψ

∥X − Z · ψ −Π∥2F /2 + µ∥Π∥∗ (22)

where µ indexes the penalty on the nuclear norm. Let

Ω∗
µ = X − Z · ψ∗

µ −Π∗
µ (23)

denote the matrix of residuals from this regression. Let

β̂Ã∗
µ
= ⟨Ã∗

µ, Ỹ ⟩F =
⟨Ω∗

µ, Ỹ ⟩F
⟨Ω∗

µ, X⟩F
where Ã∗

µ =
Ω∗
µ

⟨Ω∗
µ, X⟩F

(24)

and let

Bµ =
⟨Ω∗

µ,Π
∗
µ⟩F

⟨Ω∗
µ, X⟩F

and Vµ = σ2
∥Ω∗

µ∥2F
⟨Ω∗

µ, X⟩2F
. (25)

The following theorem follows immediately from applying Theorem 2.1 in Armstrong,

Kolesár and Kwon (2020) to our setup (in applying the formulas from this paper, we use the

fact that ⟨Ω∗
µ, Z · ψ∗

µ⟩F = 0 by the first order conditions for ψ, since ψ is unconstrained).

Theorem 14. Let Π∗
µ, ψ

∗
µ be a solution to (22) and let Ω∗

µ be the matrix of residuals in (23),

and suppose ∥Ω∗
µ∥ > 0. Then Ã∗

µ and the corresponding estimator β̂Ã∗
µ
given in (24) solve

(21) for B = ĈBµ, with minimized value Vµ, where Bµ and Vµ are given in (25).

Thus, to compute the MSE optimizing weights A∗
b , it suffices to compute the weights Ã∗

µ

for each µ > 0, and then minimize Ĉ2B
2
µ+Vµ over the one-dimensional parameter µ. We can

also minimize other criteria, as in Remark 2.4 by choosing µ to minimize other functions of

worst-case bias ĈBµ and variance Vµ.
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B.2 No additional covariates

In the case where there are no additional covariates, the nuclear norm regularized “partialling

out” regression (22) reduces to

min
Π

∥X −Π∥2F /2 + µ∥Π∥∗. (26)

The solution Π∗
µ can then be computed using soft thresholding on the singular values ofX. We

describe the solution here, and refer to Moon and Weidner (2018, Lemma S.1) for a detailed

derivation.

Let the singular value decomposition of X be given by X = VXSXW
′
X where VX is

an N × N orthogonal matrix (i.e. V ′
XVX = IN ), WX is a T × T orthogonal matrix (i.e.

W ′
XWX = IT ) and SX is a N × T rectangular diagonal matrix, with j-th diagonal element

given by the j-th singular value sj(X) of X. Let S̃X(µ) be the N × T diagonal matrix with

j-th diagonal element given by max{sj(X) − µ, 0} (i.e. we perform soft thresholding on the

j-th singular value).

Then the solution Π∗
µ to (26) and residuals Ω∗

µ = X −Π∗
µ are given by

Π∗
µ = VX S̃X(µ)W

′
X , Ω∗

µ = VX(SX − S̃X(µ))W
′
X ,

Note that SX − S̃X(µ) is a N × T diagonal matrix with j-th diagonal element given by

min{sj(X), µ}. Thus, the weights Ã∗
µ = Ω∗

µ/⟨Ω∗
µ, X⟩F used in the estimator β̂ = ⟨Ã∗

µ, Ỹ ⟩F
given in (24) can be obtained by replacing the singular values sj(X) that are larger than µ

with the constant µ, and then dividing by the constant ⟨Ω∗
µ, X⟩F = ⟨SX − S̃X(µ), SX⟩F =∑min{N,T}

j=1 min{sj(X), µ}sj(X).
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C Additional Simulation Results for Section 5.1

Table 6: N = 50, R = 1

LS Debiased

κ bias std rmse size length length* bias std rmse size length length*

T = 20

0.00 -0.0006 0.0242 0.0242 7.4 0.086 0.348 -0.0007 0.0300 0.0300 0.0 0.624 0.184

0.05 0.0233 0.0249 0.0340 22.5 0.087 0.349 0.0088 0.0302 0.0314 0.0 0.625 0.184

0.10 0.0466 0.0268 0.0538 56.5 0.087 0.351 0.0177 0.0310 0.0357 0.0 0.627 0.185

0.15 0.0683 0.0309 0.0750 78.5 0.089 0.357 0.0251 0.0327 0.0413 0.0 0.630 0.185

0.20 0.0847 0.0401 0.0937 83.8 0.091 0.368 0.0293 0.0361 0.0465 0.0 0.634 0.186

0.25 0.0879 0.0555 0.1040 76.0 0.097 0.390 0.0280 0.0406 0.0493 0.0 0.639 0.187

0.50 0.0115 0.0398 0.0414 12.1 0.122 0.493 0.0025 0.0359 0.0360 0.0 0.653 0.189

1.00 0.0004 0.0330 0.0330 6.1 0.124 0.499 -0.0006 0.0346 0.0346 0.0 0.655 0.189

T = 50

0.00 0.0003 0.0147 0.0147 6.0 0.055 0.279 -0.0001 0.0214 0.0214 0.0 0.383 0.119

0.05 0.0247 0.0152 0.0290 44.0 0.055 0.280 0.0070 0.0215 0.0226 0.0 0.383 0.119

0.10 0.0487 0.0169 0.0515 87.9 0.055 0.282 0.0134 0.0221 0.0259 0.0 0.385 0.120

0.15 0.0703 0.0214 0.0734 95.9 0.056 0.287 0.0173 0.0241 0.0296 0.0 0.387 0.120

0.20 0.0784 0.0368 0.0866 86.3 0.060 0.306 0.0157 0.0270 0.0312 0.0 0.391 0.121

0.25 0.0583 0.0510 0.0774 59.2 0.068 0.344 0.0097 0.0276 0.0292 0.0 0.394 0.121

0.50 0.0035 0.0207 0.0210 6.5 0.078 0.398 0.0003 0.0239 0.0239 0.0 0.397 0.121

1.00 0.0003 0.0201 0.0201 5.0 0.078 0.399 -0.0003 0.0238 0.0238 0.0 0.397 0.122

T = 100

0.00 0.0002 0.0105 0.0105 6.0 0.039 0.229 -0.0001 0.0137 0.0137 0.0 0.295 0.080

0.05 0.0247 0.0109 0.0270 68.4 0.039 0.229 0.0064 0.0138 0.0152 0.0 0.295 0.080

0.10 0.0487 0.0124 0.0502 98.1 0.039 0.231 0.0120 0.0143 0.0187 0.0 0.296 0.080

0.15 0.0684 0.0188 0.0709 97.3 0.040 0.238 0.0134 0.0165 0.0212 0.0 0.299 0.080

0.20 0.0577 0.0390 0.0697 72.5 0.046 0.271 0.0082 0.0179 0.0197 0.0 0.301 0.081

0.25 0.0225 0.0300 0.0375 33.9 0.053 0.310 0.0031 0.0164 0.0167 0.0 0.302 0.081

0.50 0.0016 0.0145 0.0146 5.6 0.055 0.325 0.0001 0.0153 0.0153 0.0 0.303 0.081

1.00 0.0001 0.0143 0.0143 5.1 0.055 0.326 -0.0001 0.0152 0.0152 0.0 0.303 0.081

T = 300

0.00 -0.0001 0.0059 0.0059 5.8 0.023 0.170 -0.0002 0.0077 0.0077 0.0 0.225 0.049

0.05 0.0245 0.0066 0.0254 96.7 0.023 0.171 0.0060 0.0078 0.0098 0.0 0.225 0.049

0.10 0.0481 0.0088 0.0489 99.8 0.023 0.173 0.0100 0.0089 0.0134 0.0 0.227 0.049

0.15 0.0482 0.0271 0.0553 83.6 0.026 0.196 0.0059 0.0103 0.0119 0.0 0.229 0.049

0.20 0.0117 0.0143 0.0185 33.3 0.031 0.234 0.0015 0.0090 0.0091 0.0 0.229 0.049

0.25 0.0047 0.0093 0.0104 12.6 0.032 0.239 0.0006 0.0087 0.0087 0.0 0.229 0.049

0.50 0.0004 0.0084 0.0085 5.6 0.032 0.241 -0.0001 0.0086 0.0086 0.0 0.229 0.049

1.00 -0.0001 0.0084 0.0084 5.5 0.032 0.241 -0.0002 0.0086 0.0086 0.0 0.229 0.049

Lind(A) ∈ {0.0109, 0.0049, 0.0028, 0.0011} for T ∈ {20, 50, 100, 300}.

42



Table 7: N = 300, R = 1

LS Debiased

κ bias std rmse size length length* bias std rmse size length length*

T = 20

0.00 0.0001 0.0096 0.0096 6.4 0.036 0.219 0.0001 0.0115 0.0115 0.0 0.450 0.088

0.05 0.0242 0.0106 0.0264 72.7 0.036 0.220 0.0091 0.0117 0.0148 0.0 0.451 0.088

0.10 0.0474 0.0136 0.0493 96.6 0.036 0.223 0.0169 0.0127 0.0211 0.0 0.452 0.088

0.15 0.0633 0.0235 0.0675 93.0 0.038 0.233 0.0192 0.0159 0.0249 0.0 0.455 0.088

0.20 0.0475 0.0382 0.0610 65.4 0.044 0.267 0.0120 0.0182 0.0218 0.0 0.459 0.088

0.25 0.0192 0.0276 0.0336 31.4 0.049 0.297 0.0047 0.0155 0.0162 0.0 0.460 0.088

0.50 0.0015 0.0134 0.0135 6.3 0.051 0.310 0.0004 0.0134 0.0134 0.0 0.461 0.089

1.00 0.0002 0.0132 0.0132 5.6 0.051 0.310 0.0001 0.0133 0.0133 0.0 0.462 0.089

T = 50

0.00 -0.0001 0.0060 0.0060 5.8 0.023 0.173 -0.0002 0.0078 0.0078 0.0 0.225 0.048

0.05 0.0246 0.0067 0.0254 96.8 0.023 0.173 0.0060 0.0079 0.0099 0.0 0.225 0.048

0.10 0.0482 0.0090 0.0490 99.8 0.023 0.175 0.0100 0.0090 0.0134 0.0 0.226 0.049

0.15 0.0478 0.0272 0.0550 83.6 0.026 0.199 0.0058 0.0103 0.0118 0.0 0.228 0.049

0.20 0.0117 0.0144 0.0186 32.5 0.031 0.237 0.0014 0.0090 0.0091 0.0 0.229 0.049

0.25 0.0047 0.0093 0.0105 12.8 0.032 0.243 0.0005 0.0088 0.0088 0.0 0.229 0.049

0.50 0.0004 0.0085 0.0085 5.7 0.032 0.245 -0.0001 0.0087 0.0087 0.0 0.229 0.049

1.00 -0.0001 0.0084 0.0084 5.6 0.032 0.245 -0.0002 0.0086 0.0086 0.0 0.229 0.049

T = 100

0.00 0.0001 0.0041 0.0041 5.0 0.016 0.123 0.0001 0.0055 0.0055 0.0 0.138 0.033

0.05 0.0248 0.0046 0.0253 100.0 0.016 0.123 0.0047 0.0056 0.0073 0.0 0.138 0.033

0.10 0.0482 0.0071 0.0488 99.9 0.016 0.125 0.0056 0.0067 0.0088 0.0 0.139 0.033

0.15 0.0178 0.0172 0.0248 61.1 0.021 0.163 0.0015 0.0063 0.0065 0.0 0.140 0.033

0.20 0.0048 0.0064 0.0080 16.3 0.022 0.172 0.0006 0.0060 0.0061 0.0 0.140 0.033

0.25 0.0024 0.0059 0.0064 7.6 0.023 0.173 0.0003 0.0060 0.0060 0.0 0.140 0.033

0.50 0.0004 0.0057 0.0057 4.8 0.023 0.174 0.0001 0.0060 0.0060 0.0 0.140 0.033

1.00 0.0001 0.0057 0.0057 4.9 0.023 0.174 0.0001 0.0060 0.0060 0.0 0.140 0.033

T = 300

0.00 -0.0000 0.0024 0.0024 5.5 0.009 0.105 -0.0001 0.0037 0.0037 0.0 0.072 0.018

0.05 0.0249 0.0028 0.0250 100.0 0.009 0.106 0.0030 0.0038 0.0048 0.0 0.072 0.018

0.10 0.0310 0.0169 0.0352 95.9 0.011 0.123 0.0011 0.0041 0.0042 0.0 0.073 0.018

0.15 0.0036 0.0037 0.0051 21.8 0.013 0.148 0.0002 0.0039 0.0039 0.0 0.073 0.018

0.20 0.0014 0.0034 0.0037 7.5 0.013 0.149 0.0000 0.0039 0.0039 0.0 0.073 0.018

0.25 0.0007 0.0033 0.0034 5.2 0.013 0.149 -0.0000 0.0039 0.0039 0.0 0.073 0.018

0.50 0.0000 0.0033 0.0033 4.5 0.013 0.149 -0.0001 0.0039 0.0039 0.0 0.073 0.018

1.00 -0.0000 0.0033 0.0033 4.5 0.013 0.149 -0.0001 0.0039 0.0039 0.0 0.073 0.018

Lind(A) ∈ {0.0025, 0.0011, 0.0006, 0.0002} for T ∈ {20, 50, 100, 300}.
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Table 8: N = 100, T = 20, R = 2

LS Debiased

κ1

κ2
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 1.00 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 1.00

bias

0.00 0.000 0.016 0.031 0.040 0.037 0.024 0.014 0.005 0.003 0.000 0.000 0.008 0.015 0.019 0.016 0.010 0.006 0.002 0.001 0.000

0.05 0.016 0.033 0.048 0.061 0.064 0.054 0.042 0.030 0.027 0.025 0.008 0.017 0.024 0.029 0.029 0.023 0.018 0.013 0.012 0.011

0.10 0.031 0.048 0.065 0.080 0.088 0.084 0.071 0.055 0.051 0.048 0.015 0.024 0.032 0.038 0.040 0.036 0.030 0.024 0.022 0.021

0.15 0.040 0.061 0.080 0.097 0.109 0.111 0.100 0.080 0.073 0.069 0.019 0.029 0.038 0.046 0.049 0.047 0.041 0.033 0.030 0.029

0.20 0.037 0.064 0.088 0.109 0.125 0.131 0.124 0.097 0.087 0.081 0.016 0.029 0.040 0.049 0.055 0.056 0.050 0.038 0.034 0.031

0.25 0.024 0.054 0.084 0.111 0.131 0.140 0.132 0.095 0.080 0.071 0.010 0.023 0.036 0.047 0.056 0.057 0.052 0.036 0.030 0.026

0.30 0.014 0.042 0.071 0.100 0.124 0.132 0.118 0.074 0.056 0.045 0.006 0.018 0.030 0.041 0.050 0.052 0.044 0.027 0.020 0.016

0.40 0.005 0.030 0.055 0.080 0.097 0.095 0.074 0.032 0.020 0.013 0.002 0.013 0.024 0.033 0.038 0.036 0.027 0.011 0.007 0.005

0.50 0.003 0.027 0.051 0.073 0.087 0.080 0.056 0.020 0.012 0.006 0.001 0.012 0.022 0.030 0.034 0.030 0.020 0.007 0.004 0.002

1.00 0.000 0.025 0.048 0.069 0.081 0.071 0.045 0.013 0.006 0.001 0.000 0.011 0.021 0.029 0.031 0.026 0.016 0.005 0.002 0.001

std

0.00 0.015 0.016 0.018 0.024 0.031 0.030 0.024 0.019 0.018 0.018 0.019 0.019 0.020 0.022 0.025 0.024 0.023 0.021 0.021 0.021

0.05 0.016 0.015 0.016 0.020 0.027 0.030 0.026 0.020 0.019 0.018 0.019 0.019 0.019 0.021 0.024 0.025 0.023 0.021 0.021 0.021

0.10 0.018 0.016 0.016 0.018 0.024 0.030 0.030 0.022 0.021 0.020 0.020 0.019 0.020 0.021 0.023 0.025 0.024 0.022 0.022 0.022

0.15 0.024 0.020 0.018 0.019 0.023 0.030 0.034 0.027 0.026 0.025 0.022 0.021 0.021 0.022 0.023 0.026 0.026 0.024 0.024 0.023

0.20 0.031 0.027 0.024 0.023 0.026 0.034 0.043 0.040 0.038 0.038 0.025 0.024 0.023 0.023 0.025 0.028 0.030 0.029 0.028 0.028

0.25 0.030 0.030 0.030 0.030 0.034 0.047 0.060 0.060 0.055 0.053 0.024 0.025 0.025 0.026 0.028 0.032 0.036 0.035 0.034 0.033

0.30 0.024 0.026 0.030 0.034 0.043 0.060 0.076 0.070 0.059 0.054 0.023 0.023 0.024 0.026 0.030 0.036 0.042 0.038 0.034 0.033

0.40 0.019 0.020 0.022 0.027 0.040 0.060 0.070 0.049 0.036 0.031 0.021 0.021 0.022 0.024 0.029 0.035 0.038 0.031 0.027 0.026

0.50 0.018 0.019 0.021 0.026 0.038 0.055 0.059 0.036 0.027 0.025 0.021 0.021 0.022 0.024 0.028 0.034 0.034 0.027 0.025 0.025

1.00 0.018 0.018 0.020 0.025 0.038 0.053 0.054 0.031 0.025 0.024 0.021 0.021 0.022 0.023 0.028 0.033 0.033 0.026 0.025 0.024

rmse

0.00 0.015 0.022 0.036 0.047 0.049 0.039 0.028 0.020 0.018 0.018 0.019 0.021 0.025 0.029 0.030 0.027 0.023 0.021 0.021 0.021

0.05 0.022 0.036 0.051 0.064 0.070 0.062 0.049 0.036 0.033 0.031 0.021 0.025 0.031 0.036 0.037 0.034 0.029 0.025 0.024 0.024

0.10 0.036 0.051 0.067 0.082 0.092 0.090 0.077 0.060 0.055 0.052 0.025 0.031 0.038 0.044 0.046 0.044 0.038 0.032 0.031 0.030

0.15 0.047 0.064 0.082 0.098 0.111 0.115 0.106 0.084 0.078 0.074 0.029 0.036 0.044 0.051 0.055 0.054 0.049 0.041 0.038 0.037

0.20 0.049 0.070 0.092 0.111 0.127 0.136 0.131 0.105 0.095 0.089 0.030 0.037 0.046 0.055 0.061 0.062 0.058 0.048 0.044 0.042

0.25 0.039 0.062 0.090 0.115 0.136 0.147 0.145 0.112 0.097 0.089 0.027 0.034 0.044 0.054 0.062 0.065 0.063 0.050 0.045 0.042

0.30 0.028 0.049 0.077 0.106 0.131 0.145 0.140 0.102 0.081 0.071 0.023 0.029 0.038 0.049 0.058 0.063 0.061 0.047 0.040 0.036

0.40 0.020 0.036 0.060 0.084 0.105 0.112 0.102 0.059 0.041 0.034 0.021 0.025 0.032 0.041 0.048 0.050 0.047 0.033 0.028 0.026

0.50 0.018 0.033 0.055 0.078 0.095 0.097 0.081 0.041 0.030 0.026 0.021 0.024 0.031 0.038 0.044 0.045 0.040 0.028 0.026 0.025

1.00 0.018 0.031 0.052 0.074 0.089 0.089 0.071 0.034 0.026 0.024 0.021 0.024 0.030 0.037 0.042 0.042 0.036 0.026 0.025 0.024
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Table 9: N = 100, T = 20, R = 2

LS Debiased

κ1

κ2
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 1.00 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 1.00

size

0.00 9.0 31.0 63.0 72.6 59.7 38.2 22.8 11.7 9.3 7.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.05 31.0 70.9 91.0 94.8 90.5 79.3 66.4 50.2 44.3 38.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.10 63.0 91.0 98.4 99.3 98.4 96.0 92.3 86.0 82.3 79.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.15 72.6 94.8 99.3 99.7 99.6 98.6 97.5 94.4 92.7 91.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.20 59.7 90.5 98.4 99.6 99.0 97.8 95.6 91.6 89.0 86.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.25 38.2 79.3 96.0 98.6 97.8 94.4 88.7 78.0 72.4 67.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.30 22.8 66.4 92.3 97.5 95.6 88.7 77.2 58.7 50.2 43.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.40 11.7 50.2 86.0 94.4 91.6 78.0 58.7 31.2 21.4 15.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.50 9.3 44.3 82.3 92.7 89.0 72.4 50.2 21.4 12.9 8.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.00 7.9 38.8 79.2 91.0 86.4 67.9 43.1 15.0 8.7 6.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

length

0.00 0.049 0.050 0.050 0.052 0.055 0.058 0.060 0.061 0.061 0.062 0.831 0.832 0.834 0.839 0.844 0.849 0.852 0.854 0.854 0.855

0.05 0.050 0.049 0.050 0.051 0.053 0.057 0.059 0.061 0.061 0.062 0.832 0.832 0.834 0.838 0.843 0.848 0.852 0.854 0.855 0.856

0.10 0.050 0.050 0.050 0.050 0.052 0.055 0.059 0.061 0.062 0.062 0.834 0.834 0.835 0.838 0.843 0.848 0.853 0.856 0.857 0.858

0.15 0.052 0.051 0.050 0.051 0.052 0.054 0.058 0.062 0.063 0.063 0.839 0.838 0.838 0.840 0.845 0.850 0.855 0.860 0.861 0.862

0.20 0.055 0.053 0.052 0.052 0.052 0.054 0.058 0.064 0.066 0.067 0.844 0.843 0.843 0.845 0.848 0.854 0.859 0.865 0.867 0.869

0.25 0.058 0.057 0.055 0.054 0.054 0.056 0.060 0.069 0.072 0.073 0.849 0.848 0.848 0.850 0.854 0.859 0.864 0.872 0.875 0.877

0.30 0.060 0.059 0.059 0.058 0.058 0.060 0.066 0.076 0.079 0.080 0.852 0.852 0.853 0.855 0.859 0.864 0.871 0.878 0.881 0.883

0.40 0.061 0.061 0.061 0.062 0.064 0.069 0.076 0.084 0.086 0.086 0.854 0.854 0.856 0.860 0.865 0.872 0.878 0.885 0.886 0.888

0.50 0.061 0.061 0.062 0.063 0.066 0.072 0.079 0.086 0.087 0.087 0.854 0.855 0.857 0.861 0.867 0.875 0.881 0.886 0.888 0.889

1.00 0.062 0.062 0.062 0.063 0.067 0.073 0.080 0.086 0.087 0.088 0.855 0.856 0.858 0.862 0.869 0.877 0.883 0.888 0.889 0.890

length*

0.00 0.438 0.440 0.448 0.463 0.491 0.518 0.534 0.543 0.546 0.547 0.211 0.211 0.212 0.213 0.214 0.214 0.214 0.215 0.215 0.215

0.05 0.440 0.440 0.443 0.453 0.475 0.506 0.528 0.543 0.546 0.548 0.211 0.211 0.212 0.213 0.213 0.214 0.215 0.215 0.215 0.215

0.10 0.448 0.443 0.443 0.449 0.464 0.493 0.522 0.545 0.550 0.553 0.212 0.212 0.212 0.213 0.214 0.214 0.215 0.215 0.216 0.216

0.15 0.463 0.453 0.449 0.450 0.459 0.482 0.516 0.551 0.559 0.563 0.213 0.213 0.213 0.213 0.214 0.215 0.216 0.216 0.216 0.217

0.20 0.491 0.475 0.464 0.459 0.463 0.481 0.516 0.569 0.584 0.592 0.214 0.213 0.214 0.214 0.215 0.216 0.216 0.217 0.217 0.218

0.25 0.518 0.506 0.493 0.482 0.481 0.499 0.537 0.614 0.637 0.650 0.214 0.214 0.214 0.215 0.216 0.217 0.217 0.218 0.218 0.218

0.30 0.534 0.528 0.522 0.516 0.516 0.537 0.585 0.673 0.700 0.714 0.214 0.215 0.215 0.216 0.216 0.217 0.218 0.218 0.219 0.219

0.40 0.543 0.543 0.545 0.551 0.569 0.614 0.673 0.746 0.762 0.769 0.215 0.215 0.215 0.216 0.217 0.218 0.218 0.219 0.219 0.219

0.50 0.546 0.546 0.550 0.559 0.584 0.637 0.700 0.762 0.773 0.778 0.215 0.215 0.216 0.216 0.217 0.218 0.219 0.219 0.219 0.219

1.00 0.547 0.548 0.553 0.563 0.592 0.650 0.714 0.769 0.778 0.783 0.215 0.215 0.216 0.217 0.218 0.218 0.219 0.219 0.219 0.219
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Table 10: N = 100, T = 100, R = 2

LS Debiased

κ1

κ2
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 1.00 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 1.00

bias

0.00 0.000 0.017 0.030 0.023 0.008 0.004 0.002 0.001 0.000 0.000 -0.000 0.005 0.007 0.004 0.002 0.001 0.000 0.000 0.000 -0.000

0.05 0.017 0.033 0.049 0.056 0.038 0.030 0.027 0.026 0.025 0.025 0.005 0.010 0.013 0.011 0.008 0.006 0.006 0.006 0.006 0.005

0.10 0.030 0.049 0.066 0.080 0.072 0.056 0.052 0.050 0.049 0.049 0.007 0.013 0.017 0.017 0.014 0.011 0.011 0.010 0.010 0.010

0.15 0.023 0.056 0.080 0.098 0.103 0.080 0.070 0.064 0.063 0.062 0.004 0.011 0.017 0.019 0.016 0.012 0.011 0.010 0.009 0.009

0.20 0.008 0.038 0.072 0.103 0.095 0.054 0.036 0.029 0.026 0.025 0.002 0.008 0.014 0.016 0.012 0.007 0.005 0.004 0.003 0.003

0.25 0.004 0.030 0.056 0.080 0.054 0.020 0.013 0.010 0.009 0.008 0.001 0.006 0.011 0.012 0.007 0.003 0.002 0.001 0.001 0.001

0.30 0.002 0.027 0.052 0.070 0.036 0.013 0.009 0.006 0.005 0.004 0.000 0.006 0.011 0.011 0.005 0.002 0.001 0.001 0.001 0.001

0.40 0.001 0.026 0.050 0.064 0.029 0.010 0.006 0.003 0.003 0.002 0.000 0.006 0.010 0.010 0.004 0.001 0.001 0.000 0.000 0.000

0.50 0.000 0.025 0.049 0.063 0.026 0.009 0.005 0.003 0.002 0.001 0.000 0.006 0.010 0.009 0.003 0.001 0.001 0.000 0.000 0.000

1.00 0.000 0.025 0.049 0.062 0.025 0.008 0.004 0.002 0.001 0.000 -0.000 0.005 0.010 0.009 0.003 0.001 0.001 0.000 0.000 -0.000

std

0.00 0.006 0.007 0.009 0.016 0.009 0.008 0.007 0.007 0.007 0.007 0.010 0.010 0.011 0.012 0.011 0.011 0.011 0.011 0.011 0.011

0.05 0.007 0.006 0.007 0.013 0.013 0.009 0.008 0.008 0.008 0.008 0.010 0.010 0.011 0.012 0.011 0.011 0.011 0.011 0.011 0.011

0.10 0.009 0.007 0.007 0.009 0.016 0.011 0.010 0.009 0.009 0.009 0.011 0.011 0.011 0.012 0.012 0.012 0.012 0.012 0.012 0.012

0.15 0.016 0.013 0.009 0.009 0.019 0.022 0.021 0.022 0.022 0.022 0.012 0.012 0.012 0.013 0.014 0.014 0.014 0.014 0.014 0.014

0.20 0.009 0.013 0.016 0.019 0.047 0.046 0.034 0.029 0.028 0.027 0.011 0.011 0.012 0.014 0.015 0.015 0.014 0.013 0.013 0.013

0.25 0.008 0.009 0.011 0.022 0.046 0.023 0.015 0.013 0.013 0.012 0.011 0.011 0.012 0.014 0.015 0.013 0.012 0.012 0.012 0.012

0.30 0.007 0.008 0.010 0.021 0.034 0.015 0.012 0.011 0.011 0.011 0.011 0.011 0.012 0.014 0.014 0.012 0.012 0.012 0.012 0.012

0.40 0.007 0.008 0.009 0.022 0.029 0.013 0.011 0.011 0.011 0.011 0.011 0.011 0.012 0.014 0.013 0.012 0.012 0.012 0.012 0.012

0.50 0.007 0.008 0.009 0.022 0.028 0.013 0.011 0.011 0.011 0.010 0.011 0.011 0.012 0.014 0.013 0.012 0.012 0.012 0.012 0.012

1.00 0.007 0.008 0.009 0.022 0.027 0.012 0.011 0.011 0.010 0.010 0.011 0.011 0.012 0.014 0.013 0.012 0.012 0.012 0.012 0.012

rmse

0.00 0.006 0.018 0.032 0.028 0.012 0.009 0.008 0.007 0.007 0.007 0.010 0.011 0.013 0.013 0.011 0.011 0.011 0.011 0.011 0.011

0.05 0.018 0.034 0.050 0.057 0.040 0.031 0.028 0.027 0.026 0.026 0.011 0.014 0.017 0.016 0.014 0.013 0.013 0.012 0.012 0.012

0.10 0.032 0.050 0.066 0.080 0.074 0.057 0.053 0.051 0.050 0.050 0.013 0.017 0.021 0.021 0.018 0.016 0.016 0.016 0.015 0.015

0.15 0.028 0.057 0.080 0.098 0.104 0.083 0.073 0.068 0.067 0.066 0.013 0.016 0.021 0.023 0.021 0.018 0.017 0.017 0.017 0.016

0.20 0.012 0.040 0.074 0.104 0.106 0.071 0.050 0.041 0.039 0.037 0.011 0.014 0.018 0.021 0.020 0.016 0.014 0.014 0.014 0.014

0.25 0.009 0.031 0.057 0.083 0.071 0.031 0.020 0.016 0.015 0.015 0.011 0.013 0.016 0.018 0.016 0.013 0.013 0.012 0.012 0.012

0.30 0.008 0.028 0.053 0.073 0.050 0.020 0.015 0.013 0.012 0.012 0.011 0.013 0.016 0.017 0.014 0.013 0.012 0.012 0.012 0.012

0.40 0.007 0.027 0.051 0.068 0.041 0.016 0.013 0.011 0.011 0.011 0.011 0.012 0.016 0.017 0.014 0.012 0.012 0.012 0.012 0.012

0.50 0.007 0.026 0.050 0.067 0.039 0.015 0.012 0.011 0.011 0.010 0.011 0.012 0.015 0.017 0.014 0.012 0.012 0.012 0.012 0.012

1.00 0.007 0.026 0.050 0.066 0.037 0.015 0.012 0.011 0.010 0.010 0.011 0.012 0.015 0.016 0.014 0.012 0.012 0.012 0.012 0.012
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Table 11: N = 100, T = 100, R = 2

LS Debiased

κ1

κ2
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 1.00 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 1.00

size

0.00 5.9 79.3 97.3 69.9 24.7 11.3 7.7 6.1 5.8 5.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.05 79.3 100.0 100.0 99.9 98.8 96.8 95.0 92.6 91.8 90.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.10 97.3 100.0 100.0 100.0 100.0 100.0 99.9 99.9 99.9 99.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.15 69.9 99.9 100.0 100.0 99.3 97.8 96.0 94.4 93.9 93.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.20 24.7 98.8 100.0 99.3 89.1 73.7 62.8 54.0 51.0 48.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.25 11.3 96.8 100.0 97.8 73.7 45.0 32.3 23.4 21.0 18.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.30 7.7 95.0 99.9 96.0 62.8 32.3 19.9 13.2 11.4 10.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.40 6.1 92.6 99.9 94.4 54.0 23.4 13.2 8.1 7.3 6.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.50 5.8 91.8 99.9 93.9 51.0 21.0 11.4 7.3 6.6 6.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.00 5.7 90.9 99.9 93.1 48.5 18.8 10.1 6.8 6.2 5.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

length

0.00 0.022 0.022 0.023 0.025 0.027 0.027 0.027 0.028 0.028 0.028 0.327 0.327 0.329 0.331 0.332 0.332 0.332 0.332 0.333 0.333

0.05 0.022 0.022 0.023 0.024 0.026 0.027 0.027 0.028 0.028 0.028 0.327 0.327 0.329 0.331 0.332 0.333 0.333 0.333 0.333 0.333

0.10 0.023 0.023 0.023 0.023 0.025 0.027 0.028 0.028 0.028 0.028 0.329 0.329 0.330 0.332 0.333 0.334 0.334 0.335 0.335 0.335

0.15 0.025 0.024 0.023 0.023 0.024 0.028 0.029 0.029 0.030 0.030 0.331 0.331 0.332 0.334 0.336 0.337 0.338 0.338 0.338 0.338

0.20 0.027 0.026 0.025 0.024 0.027 0.033 0.035 0.036 0.036 0.036 0.332 0.332 0.333 0.336 0.339 0.340 0.340 0.340 0.340 0.340

0.25 0.027 0.027 0.027 0.028 0.033 0.037 0.038 0.038 0.038 0.039 0.332 0.333 0.334 0.337 0.340 0.340 0.340 0.340 0.340 0.341

0.30 0.027 0.027 0.028 0.029 0.035 0.038 0.039 0.039 0.039 0.039 0.332 0.333 0.334 0.338 0.340 0.340 0.340 0.341 0.341 0.341

0.40 0.028 0.028 0.028 0.029 0.036 0.038 0.039 0.039 0.039 0.039 0.332 0.333 0.335 0.338 0.340 0.340 0.341 0.341 0.341 0.341

0.50 0.028 0.028 0.028 0.030 0.036 0.038 0.039 0.039 0.039 0.039 0.333 0.333 0.335 0.338 0.340 0.340 0.341 0.341 0.341 0.341

1.00 0.028 0.028 0.028 0.030 0.036 0.039 0.039 0.039 0.039 0.039 0.333 0.333 0.335 0.338 0.340 0.341 0.341 0.341 0.341 0.341

length*

0.00 0.285 0.287 0.293 0.323 0.346 0.350 0.352 0.352 0.353 0.353 0.079 0.079 0.079 0.079 0.080 0.080 0.080 0.080 0.080 0.080

0.05 0.287 0.286 0.289 0.304 0.339 0.349 0.352 0.353 0.354 0.354 0.079 0.079 0.079 0.079 0.080 0.080 0.080 0.080 0.080 0.080

0.10 0.293 0.289 0.288 0.294 0.326 0.349 0.354 0.356 0.357 0.357 0.079 0.079 0.079 0.080 0.080 0.080 0.080 0.080 0.080 0.080

0.15 0.323 0.304 0.294 0.293 0.312 0.355 0.370 0.377 0.379 0.380 0.079 0.079 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080

0.20 0.346 0.339 0.326 0.312 0.351 0.426 0.452 0.463 0.465 0.467 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080

0.25 0.350 0.349 0.349 0.355 0.426 0.480 0.488 0.492 0.493 0.493 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080

0.30 0.352 0.352 0.354 0.370 0.452 0.488 0.494 0.497 0.498 0.498 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080

0.40 0.352 0.353 0.356 0.377 0.463 0.492 0.497 0.500 0.500 0.501 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080

0.50 0.353 0.354 0.357 0.379 0.465 0.493 0.498 0.500 0.501 0.501 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080

1.00 0.353 0.354 0.357 0.380 0.467 0.493 0.498 0.501 0.501 0.502 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080
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Table 12: N = 100, T = 300, R = 2

LS Debiased

κ1

κ2
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 1.00 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 1.00

bias

0.00 -0.000 0.016 0.025 0.006 0.002 0.001 0.001 0.000 0.000 -0.000 0.000 0.004 0.004 0.001 0.000 0.000 0.000 0.000 0.000 0.000

0.05 0.016 0.033 0.048 0.037 0.028 0.026 0.026 0.025 0.025 0.025 0.004 0.009 0.010 0.007 0.005 0.005 0.005 0.005 0.005 0.005

0.10 0.025 0.048 0.066 0.074 0.054 0.051 0.049 0.048 0.048 0.048 0.004 0.010 0.013 0.011 0.008 0.007 0.007 0.007 0.007 0.007

0.15 0.006 0.037 0.074 0.082 0.037 0.025 0.022 0.020 0.019 0.019 0.001 0.007 0.011 0.008 0.004 0.003 0.002 0.002 0.002 0.002

0.20 0.002 0.028 0.054 0.037 0.011 0.008 0.006 0.005 0.005 0.005 0.000 0.005 0.008 0.004 0.001 0.001 0.001 0.001 0.001 0.001

0.25 0.001 0.026 0.051 0.025 0.008 0.005 0.004 0.003 0.003 0.002 0.000 0.005 0.007 0.003 0.001 0.001 0.001 0.000 0.000 0.000

0.30 0.001 0.026 0.049 0.022 0.006 0.004 0.003 0.002 0.002 0.001 0.000 0.005 0.007 0.002 0.001 0.001 0.000 0.000 0.000 0.000

0.40 0.000 0.025 0.048 0.020 0.005 0.003 0.002 0.001 0.001 0.001 0.000 0.005 0.007 0.002 0.001 0.000 0.000 0.000 0.000 0.000

0.50 0.000 0.025 0.048 0.019 0.005 0.003 0.002 0.001 0.001 0.000 0.000 0.005 0.007 0.002 0.001 0.000 0.000 0.000 0.000 0.000

1.00 -0.000 0.025 0.048 0.019 0.005 0.002 0.001 0.001 0.000 0.000 0.000 0.005 0.007 0.002 0.001 0.000 0.000 0.000 0.000 0.000

std

0.00 0.003 0.004 0.009 0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.005 0.005 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006

0.05 0.004 0.004 0.005 0.009 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006

0.10 0.009 0.005 0.004 0.010 0.007 0.007 0.007 0.007 0.007 0.007 0.006 0.006 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007

0.15 0.005 0.009 0.010 0.030 0.030 0.022 0.020 0.019 0.019 0.018 0.006 0.006 0.007 0.008 0.007 0.007 0.007 0.007 0.007 0.007

0.20 0.004 0.005 0.007 0.030 0.008 0.007 0.007 0.007 0.007 0.007 0.006 0.006 0.007 0.007 0.006 0.006 0.006 0.006 0.006 0.006

0.25 0.004 0.005 0.007 0.022 0.007 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.007 0.007 0.006 0.006 0.006 0.006 0.006 0.006

0.30 0.004 0.005 0.007 0.020 0.007 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.007 0.007 0.006 0.006 0.006 0.006 0.006 0.006

0.40 0.004 0.005 0.007 0.019 0.007 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.007 0.007 0.006 0.006 0.006 0.006 0.006 0.006

0.50 0.004 0.005 0.007 0.019 0.007 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.007 0.007 0.006 0.006 0.006 0.006 0.006 0.006

1.00 0.004 0.005 0.007 0.018 0.007 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.007 0.007 0.006 0.006 0.006 0.006 0.006 0.006

rmse

0.00 0.003 0.017 0.026 0.008 0.005 0.004 0.004 0.004 0.004 0.004 0.005 0.007 0.008 0.006 0.006 0.006 0.006 0.006 0.006 0.006

0.05 0.017 0.033 0.049 0.038 0.029 0.027 0.026 0.025 0.025 0.025 0.007 0.010 0.011 0.009 0.008 0.008 0.008 0.008 0.008 0.007

0.10 0.026 0.049 0.066 0.075 0.055 0.051 0.050 0.049 0.049 0.049 0.008 0.011 0.014 0.012 0.010 0.010 0.010 0.010 0.010 0.010

0.15 0.008 0.038 0.075 0.087 0.048 0.033 0.030 0.027 0.027 0.026 0.006 0.009 0.012 0.011 0.008 0.007 0.007 0.007 0.007 0.007

0.20 0.005 0.029 0.055 0.048 0.013 0.010 0.009 0.009 0.008 0.008 0.006 0.008 0.010 0.008 0.006 0.006 0.006 0.006 0.006 0.006

0.25 0.004 0.027 0.051 0.033 0.010 0.008 0.007 0.007 0.007 0.007 0.006 0.008 0.010 0.007 0.006 0.006 0.006 0.006 0.006 0.006

0.30 0.004 0.026 0.050 0.030 0.009 0.007 0.007 0.006 0.006 0.006 0.006 0.008 0.010 0.007 0.006 0.006 0.006 0.006 0.006 0.006

0.40 0.004 0.025 0.049 0.027 0.009 0.007 0.006 0.006 0.006 0.006 0.006 0.008 0.010 0.007 0.006 0.006 0.006 0.006 0.006 0.006

0.50 0.004 0.025 0.049 0.027 0.008 0.007 0.006 0.006 0.006 0.006 0.006 0.008 0.010 0.007 0.006 0.006 0.006 0.006 0.006 0.006

1.00 0.004 0.025 0.049 0.026 0.008 0.007 0.006 0.006 0.006 0.006 0.006 0.007 0.010 0.007 0.006 0.006 0.006 0.006 0.006 0.006
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Table 13: N = 100, T = 300, R = 2

LS Debiased

κ1

κ2
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 1.00 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 1.00

size

0.00 5.8 99.4 96.5 33.0 9.9 6.2 5.3 4.9 4.8 4.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.05 99.4 100.0 100.0 100.0 100.0 99.9 99.9 99.9 99.9 99.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.10 96.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.9 99.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.15 33.0 100.0 100.0 97.7 85.1 75.2 70.2 65.8 64.6 63.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.20 9.9 100.0 100.0 85.1 47.0 30.5 23.8 19.8 18.4 17.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.25 6.2 99.9 100.0 75.2 30.5 16.1 11.8 9.5 8.7 7.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.30 5.3 99.9 100.0 70.2 23.8 11.8 8.7 6.9 6.3 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.40 4.9 99.9 100.0 65.8 19.8 9.5 6.9 5.8 5.6 5.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.50 4.8 99.9 99.9 64.6 18.4 8.7 6.3 5.6 5.4 5.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.00 4.7 99.9 99.9 63.5 17.4 7.9 6.0 5.4 5.1 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

length

0.00 0.013 0.013 0.014 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.231 0.231 0.233 0.234 0.234 0.234 0.234 0.234 0.234 0.234

0.05 0.013 0.013 0.013 0.015 0.016 0.016 0.016 0.016 0.016 0.016 0.231 0.231 0.233 0.234 0.234 0.234 0.234 0.234 0.234 0.234

0.10 0.014 0.013 0.013 0.014 0.016 0.016 0.016 0.016 0.016 0.016 0.233 0.233 0.234 0.235 0.236 0.236 0.236 0.236 0.236 0.236

0.15 0.016 0.015 0.014 0.015 0.020 0.021 0.021 0.021 0.021 0.021 0.234 0.234 0.235 0.237 0.237 0.237 0.237 0.238 0.238 0.238

0.20 0.016 0.016 0.016 0.020 0.022 0.022 0.022 0.022 0.022 0.022 0.234 0.234 0.236 0.237 0.238 0.238 0.238 0.238 0.238 0.238

0.25 0.016 0.016 0.016 0.021 0.022 0.022 0.022 0.023 0.023 0.023 0.234 0.234 0.236 0.237 0.238 0.238 0.238 0.238 0.238 0.238

0.30 0.016 0.016 0.016 0.021 0.022 0.022 0.023 0.023 0.023 0.023 0.234 0.234 0.236 0.237 0.238 0.238 0.238 0.238 0.238 0.238

0.40 0.016 0.016 0.016 0.021 0.022 0.023 0.023 0.023 0.023 0.023 0.234 0.234 0.236 0.238 0.238 0.238 0.238 0.238 0.238 0.238

0.50 0.016 0.016 0.016 0.021 0.022 0.023 0.023 0.023 0.023 0.023 0.234 0.234 0.236 0.238 0.238 0.238 0.238 0.238 0.238 0.238

1.00 0.016 0.016 0.016 0.021 0.022 0.023 0.023 0.023 0.023 0.023 0.234 0.234 0.236 0.238 0.238 0.238 0.238 0.238 0.238 0.238

length*

0.00 0.213 0.215 0.227 0.258 0.261 0.262 0.263 0.263 0.263 0.263 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047

0.05 0.215 0.214 0.217 0.249 0.261 0.263 0.263 0.263 0.264 0.264 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047

0.10 0.227 0.217 0.216 0.229 0.261 0.266 0.267 0.268 0.268 0.268 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047

0.15 0.258 0.249 0.229 0.245 0.323 0.340 0.344 0.346 0.347 0.347 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047

0.20 0.261 0.261 0.261 0.323 0.363 0.366 0.367 0.368 0.368 0.368 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047

0.25 0.262 0.263 0.266 0.340 0.366 0.369 0.370 0.371 0.371 0.371 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047

0.30 0.263 0.263 0.267 0.344 0.367 0.370 0.371 0.372 0.372 0.372 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047

0.40 0.263 0.263 0.268 0.346 0.368 0.371 0.372 0.372 0.373 0.373 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047

0.50 0.263 0.264 0.268 0.347 0.368 0.371 0.372 0.373 0.373 0.373 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047

1.00 0.263 0.264 0.268 0.347 0.368 0.371 0.372 0.373 0.373 0.373 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047
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D Additional Results for Empirical Illustration

In this section, following Kim and Oka (2014) and Moon and Weidner (2015), we consider

the following specification

Yit =

8∑
k=1

Xk,itβk + αi + ζit+ νit
2 + ϕt +

R∑
r=1

λirftr + Uit

with dynamic treatment effects. As in Wolfers (2006), Xk,it are the treatment bi-annual

dummies defined as

Xk,it = 1{Di + 2(k − 1) ≤ t ≤ Di + 2k − 1} for k ∈ {1, . . . , 7},

X8,it = 1{Di + 2(k − 1) ≤ t},

where Di denotes the year in which state i adopted a unilateral divorce law.

As before, we estimate and construct CIs for βk using the LS and our approaches. The

results are provided in Table 14 below. They are qualitatively similar to the results reported

in Section 5.2.
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Table 14: LS and debiased estimates and CIs for dynamic effects of divorce law reform

R = 1 R = 2 R = 3 R = 4 R = 5 R = 6 R = 7 R = 8 R = 9

LS

years 1-2 0.034 0.048 0.102 0.053 0.042 0.088 0.095 0.071 0.107

[−0.09, 0.15] [−0.09, 0.18] [−0.02, 0.23] [−0.07, 0.17] [−0.08, 0.17] [−0.03, 0.20] [−0.02, 0.21] [−0.04, 0.19] [−0.02, 0.23]

years 3-4 0.146 0.155 0.265 0.221 0.186 0.223 0.251 0.210 0.228

[0.01, 0.28] [0.01, 0.30] [0.12, 0.41] [0.07, 0.37] [0.03, 0.34] [0.07, 0.38] [0.09, 0.41] [0.05, 0.37] [0.06, 0.39]

years 5-6 0.058 0.045 0.201 0.154 0.106 0.207 0.215 0.175 0.204

[−0.11, 0.23] [−0.15, 0.24] [0.00, 0.40] [−0.04, 0.34] [−0.09, 0.30] [0.02, 0.39] [0.03, 0.40] [−0.01, 0.36] [0.02, 0.39]

years 7-8 0.044 −0.011 0.192 0.136 0.113 0.190 0.212 0.149 0.159

[−0.18, 0.27] [−0.26, 0.24] [−0.08, 0.47] [−0.12, 0.40] [−0.13, 0.35] [−0.04, 0.42] [−0.02, 0.45] [−0.08, 0.38] [−0.08, 0.40]

years 9-10 −0.041 −0.151 0.044 −0.023 −0.050 0.070 0.093 0.018 0.056

[−0.29, 0.21] [−0.45, 0.15] [−0.27, 0.36] [−0.32, 0.27] [−0.33, 0.23] [−0.21, 0.35] [−0.19, 0.38] [−0.26, 0.29] [−0.22, 0.33]

years 11-12 −0.029 −0.195 −0.011 −0.079 −0.109 0.045 0.071 0.020 0.030

[−0.33, 0.27] [−0.54, 0.14] [−0.37, 0.34] [−0.42, 0.26] [−0.43, 0.21] [−0.28, 0.37] [−0.26, 0.40] [−0.30, 0.34] [−0.28, 0.34]

years 13-14 0.043 −0.183 −0.043 −0.135 −0.159 0.012 0.032 −0.004 −0.001

[−0.31, 0.40] [−0.57, 0.21] [−0.43, 0.35] [−0.51, 0.24] [−0.52, 0.21] [−0.37, 0.39] [−0.35, 0.42] [−0.38, 0.37] [−0.37, 0.36]

years 15+ 0.284 −0.004 0.094 −0.005 −0.019 0.125 0.152 0.112 0.065

[−0.17, 0.74] [−0.46, 0.46] [−0.35, 0.54] [−0.45, 0.44] [−0.45, 0.41] [−0.33, 0.58] [−0.31, 0.61] [−0.32, 0.55] [−0.37, 0.50]

Debiased

years 1-2 0.065 0.112 0.036 0.010 0.008 0.019 0.015 0.007 0.018

[−1.68, 1.81] [−2.75, 2.97] [−3.30, 3.37] [−3.63, 3.65] [−3.67, 3.69] [−3.64, 3.68] [−4.03, 4.06] [−3.81, 3.82] [−4.13, 4.16]

years 3-4 0.170 0.237 0.172 0.146 0.123 0.091 0.096 0.078 0.080

[−2.18, 2.52] [−3.60, 4.07] [−4.29, 4.64] [−4.73, 5.03] [−4.80, 5.05] [−4.81, 4.99] [−5.32, 5.51] [−5.04, 5.19] [−5.48, 5.64]

years 5-6 0.105 0.182 0.170 0.137 0.114 0.103 0.081 0.077 0.092

[−2.98, 3.19] [−4.85, 5.22] [−5.69, 6.03] [−6.27, 6.55] [−6.36, 6.59] [−6.34, 6.54] [−7.05, 7.21] [−6.65, 6.80] [−7.21, 7.40]

years 7-8 0.089 0.164 0.210 0.171 0.161 0.105 0.094 0.077 0.088

[−3.87, 4.04] [−6.30, 6.63] [−7.33, 7.75] [−8.07, 8.42] [−8.16, 8.49] [−8.18, 8.39] [−9.06, 9.25] [−8.57, 8.72] [−9.30, 9.48]

years 9-10 0.009 0.075 0.157 0.120 0.106 0.074 0.071 0.038 0.082

[−4.96, 4.98] [−8.07, 8.22] [−9.33, 9.65] [−10.26, 10.50] [−10.37, 10.59] [−10.35, 10.50] [−11.46, 11.60] [−10.85, 10.93] [−11.75, 11.91]

years 11-12 0.005 0.054 0.204 0.173 0.149 0.116 0.119 0.087 0.107

[−6.10, 6.11] [−9.95, 10.06] [−11.44, 11.85] [−12.56, 12.91] [−12.71, 13.01] [−12.68, 12.92] [−14.04, 14.27] [−13.28, 13.45] [−14.42, 14.63]

years 13-14 −0.033 −0.006 0.210 0.144 0.114 0.088 0.091 0.075 0.082

[−7.35, 7.29] [−12.01, 12.00] [−13.77, 14.19] [−15.14, 15.43] [−15.33, 15.55] [−15.28, 15.45] [−16.90, 17.08] [−15.97, 16.12] [−17.36, 17.52]

years 15+ 0.112 0.079 0.327 0.262 0.228 0.212 0.228 0.226 0.160

[−8.40, 8.63] [−13.89, 14.04] [−15.93, 16.59] [−17.52, 18.04] [−17.73, 18.19] [−17.67, 18.09] [−19.55, 20.01] [−18.45, 18.91] [−20.14, 20.46]
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