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Abstract

We consider inference on a scalar regression coefficient under a constraint on the

magnitude of the control coefficients. A class of estimators based on a regularized

propensity score regression is shown to exactly solve a tradeoff between worst-case bias

and variance. We derive confidence intervals (CIs) based on these estimators that are

bias-aware: they account for the possible bias of the estimator. Under homoskedastic

Gaussian errors, these estimators and CIs are near-optimal in finite samples for mean

squared error and CI length. We also provide conditions for asymptotic validity of the

CIs with unknown and possibly heteroskedastic error distribution, and derive novel

optimal rates of convergence under high-dimensional asymptotics that allow the num-

ber of regressors to increase more quickly than the number of observations. Extensive

simulations and an empirical application illustrate the performance of our methods.
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1 Introduction

We are interested in estimation and inference on a scalar coefficient β in a linear regression

model

Yi = wiβ + z′iγ + εi, i = 1, . . . , n, (1)

when the k-vector zi of controls is large. In such settings, the classic ordinary least squares

(OLS) estimator is often uninformative, exhibiting variance that is too large; the estimator

is not even defined when k > n. This motivates modifying the OLS objective function to

penalize large values of γ, thereby lowering variance at the cost of introducing bias.

The most popular of these approaches is the lasso (Tibshirani, 1996) or other variants of

ℓ1 penalization (e.g. Candès and Tao, 2007; Belloni et al., 2011). There is a large literature

(see, e.g. Bühlmann and van de Geer, 2011, for a review) showing favorable mean squared

error (MSE) properties of these estimators when γ is sparse. For inference, several papers

have proposed CIs based on “double lasso” estimators (see, among others, Belloni et al.,

2014; Javanmard and Montanari, 2014; van de Geer et al., 2014; Zhang and Zhang, 2014),

with asymptotic justification relying on rate conditions for the sparsity of γ. However, in

many applications in economics, the sparsity assumption is not compelling and may be hard

to motivate. Furthermore, it is unclear what sparsity level this approach implicitly imposes

in a given finite sample.

We propose bounding the magnitude of the control coefficients, rather than their sparsity

level, by assuming that Pen(γ) ≤ C. The penalty function Pen(·) formalizes the notion of

magnitude, and it can incorporate any restrictions on γ that place it in a convex symmetric

set. Such restrictions arise naturally in a plethora of applications. For instance, the dimen-

sionality of the control vector is often large due to the inclusion of additional controls that

are collectively believed to only be weakly associated with the outcome, but are nonetheless

included to purge any possible confounding. One can then take the penalty to be an ℓp norm

for the additional controls. If z′iγ is a basis approximation to some smooth function, we

can define Pen(γ) to incorporate bounds on the derivatives of this function. The regularity

parameter C plays a role analogous to a sparsity bound.

We obtain sharp finite-sample results deriving near-optimal estimators and CIs under this

penalty constraint and the idealized assumption that the regression errors εi are Gaussian

with a known homoskedastic variance. We show that the class of estimators that exactly

resolves the trade-off between worst-case bias and variance can be obtained by (1) running

a penalized propensity score regression of wi on zi using Pen(·) as the penalty function; and

then (2) using the residuals from this regression as an instrument in the univariate regression

of Yi on wi. CIs based on these estimators can be constructed by using a critical value that
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incorporates the worst-case bias of the estimator, which we show obtains automatically as a

byproduct of the regularized regression in step (1). Because these CIs are bias-aware—they

account for the potential finite-sample bias of the estimator—they are valid in finite samples

in this idealized Gaussian setup. We show how to choose the weight on the penalty function

in step (1) to optimize the MSE of the resulting estimator, or the length of the resulting CI.

In the more realistic setting with heteroskedasticity and an unknown error distribution,

bias-aware CIs can be formed using heteroskedasticity-robust variance estimators, and we

give conditions for their asymptotic validity, allowing for high-dimensional asymptotics with

k ≫ n. Our setup can allow for the effect of wi on the outcome to be heterogeneous, either

by including interactions of the treatment and demeaned covariates among the controls,

or by reinterpreting β in eq. (1) as a weighted average treatment effect. We show that the

treatment weights solve a bias-variance tradeoff in a problem where we can pick the estimand

to make the estimation problem as easy as possible.

We also employ the high-dimensional asymptotics to study rates of convergence of the

bias-aware CIs when Pen(γ) is an ℓp norm. We show that if k ≫ n and C does not shrink

with n, the optimal CI shrinks more slowly than n−1/2, so that the bias term asymptotically

dominates; accounting for bias in CI construction thus cannot be avoided even in large

samples. Furthermore, we show that, in the ℓ1 case, this rate cannot be improved even if

one additionally imposes the same ℓ1 bound in the propensity score regression of wi on zi,

as well as a certain degree of sparsity in both regressions.

Explicit specification of the regularity parameter C that bounds the magnitude of γ is a

key input for our approach. Our efficiency bounds show that it is impossible to automate the

choice of C when forming CIs. We discuss how relating the magnitude of γ to other quantities,

such as the magnitude of the control coefficients in a short regression that only includes

baseline controls, can help guide its choice. We develop a rule of thumb specification for C

based on this idea that we use in our simulations and empirical application. Robustness of the

results can be assessed by computing a breakdown value of C, its largest value such that the

empirical finding of interest, such as rejecting a particular null hypothesis, holds. Selection

of C cannot be automated due to the impossibility of getting a sufficiently informative data-

driven upper bound for it. We show, however, that it is possible to obtain a lower CI for C,

which can be used as a specification check to ensure that the chosen value is not too low.

The requirement to explicitly choose C may seem like a limitation of our approach rel-

ative to sparsity-based approaches, where the analogous tuning parameter, the degree of

sparsity, does not need to be explicitly specified. However, good finite-sample performance

of such methods relies on bounding these tuning parameters implicitly, and such implicit

bounds are hard to calculate or evaluate in a given problem. We demonstrate this issue in
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a Monte Carlo analysis, where we show that double-lasso CIs suffer from moderate to se-

vere undercoverage even in designs that are apparently sparse. Indeed, we view the explicit

specification of C as an advantage of our approach, because our coverage guarantees and

efficiency bounds are based on transparent assumptions rather than “asymptotic promises”

about tuning parameters that are hard to evaluate in a particular sample.

Our results relate to several strands of literature. Our procedures and efficiency bounds

apply the general theory of estimation and inference on linear functionals in convex Gaussian

models developed in Ibragimov and Khas’minskii (1985), Donoho (1994), Low (1995) and

Armstrong and Kolesár (2018), and add to a growing literature applying this approach

to various settings, including Armstrong and Kolesár (2021a,b), Kolesár and Rothe (2018),

Imbens and Wager (2019), Rambachan and Roth (2023), Noack and Rothe (2021), and Kwon

and Kwon (2020). Muralidharan et al. (2023) apply the approach in the present paper to

experiments with factorial designs and bounds on interaction effects.

The idea of using propensity score residuals to estimate β goes back at least to the work

of Robinson (1988) on the partly linear model. We provide a novel finite-sample justification

for this idea, as well as an exact result giving the optimal penalization of this regression.

Our setup allows for a general form of Pen(·), and yields existing estimators in a few special

cases; the bias-aware CIs to accompany such estimators are novel. First, we recover the

optimal linear estimators in Heckman (1988), who considered the partly linear model with

a penalty function bounding the first or second derivative of a univariate nonparametric

regression function. Next, we reproduce the result in Li (1982) that the optimal estimator

uses ridge regression when the penalty corresponds to an ℓ2 norm. Finally, Li and Müller

(2021) consider the weighted ℓ2 norm Pen(γ) = (
∑n

i=1(z
′
iγ)

2)
1/2

. They develop bias-aware

CIs under this penalty based on a likelihood ratio statistic, which are numerically shown

to be close to optimal under homoskedasticity and a particular weighted average length

criterion. However, unlike our CI, the Li and Müller CI may end up being longer than the

long regression CI, as we illustrate in our empirical application in Section 7.

The next section presents our finite-sample results in the idealized model with Gaussian

errors. Section 3 discusses implementation in the more realistic setting with unknown error

distribution. Section 4 derives rates of convergence under high-dimensional asymptotics and

bounds on an ℓp norm. Section 5 compares our approach to CIs motivated by sparsity con-

straints. The performance of our methods is evaluated in a Monte Carlo study in Section 6,

while Section 7 illustrates them in an empirical application. Proofs and auxiliary results

appear in appendices.
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2 Finite-sample results

This section sets up an idealized version of our model with Gaussian homoskedastic errors.

We then show how to construct estimators and CIs in this model that are near-optimal in

finite samples.

2.1 Setup

We write the model in eq. (1) in vector form as

Y = wβ + Zγ + ε, (2)

where w = (w1, . . . , wn)
′ ∈ Rn is the variable of interest with coefficient β ∈ R and Z =

(z1, . . . , zn)
′ ∈ Rn×k is a matrix of control variables. The design matrix X = (w,Z) is treated

as fixed. To obtain finite-sample results, we further assume that the errors are normal and

homoskedastic ε ∼ N (0, σ2In), with σ
2 known. To ensure informative inference on β when

k is large relative to n (including the case k > n), the researcher needs to make a priori

restrictions on the control coefficients γ. We assume that these restrictions can be formalized

by restricting the parameter space for (β, γ′)′ to be R×Γ where, for some linear subspace G
of Rk and some seminorm Pen(·) on G,

Γ = Γ(Pen;C) = {γ ∈ G : Pen(γ) ≤ C}. (3)

The requirement that Pen(·) be a seminorm means that it satisfies the triangle inequality

(Pen(γ + γ̃) ≤ Pen(γ) + Pen(γ̃)), and homogeneity (Pen(cγ) = |c|Pen(γ) for any scalar c),

but, unlike a norm, it is not necessarily positive definite (Pen(γ) = 0 does not imply γ = 0).

This allows us to cover settings where only a subset of the control coefficients is restricted.

A common class of restrictions arises when Pen(γ) is a weighted ℓp norm on a subset of

the coefficients. To describe two examples in this class of restrictions, partition the controls

into a set of k1 ≥ 0 unrestricted baseline controls and a set of k2 = k−k1 additional controls,
Z = (Z1, Z2). Partition γ = (γ′1, γ

′
2)

′ accordingly. Let HA denote the projection matrix onto

the column space of a matrix A. Let ∥ · ∥p denote the ℓp norm.

Example 2.1 (ℓ2 penalty). We specify the penalty as

Pen(γ) = ∥Mγ∥2 =
√
γ′M ′Mγ, (4)

where the k2×k matrixM incorporates scaling the variables and picking out which variables

are to be constrained. If M = (0, Ik2), then Pen(γ) = ∥γ2∥2, with γ1 unconstrained. Setting
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M = (0, (Z ′
2(I −HZ1)Z2/n)

1/2) corresponds to the specification considered in Li and Müller

(2021), which restricts the average of the squared mean effects z′2iγ2 on Yi, after controlling

for the baseline controls z1i.

Example 2.2 (ℓ1 penalty). A weighted ℓ1 penalty replaces the norm in eq. (4) with an ℓ1

norm. We focus on the unweighted case for simplicity, setting Pen(γ) = ∥γ2∥1.

In addition to selecting the penalty, the specification of Γ also requires the researcher to

pick the regularity parameter C; here we take it as given, and defer a discussion of its choice

to Section 3.

Formulating the parameter space Γ in terms of a seminorm is not restrictive in the sense

that essentially any convex set Γ that is symmetric (γ ∈ Γ implies −γ ∈ Γ) can be defined

in this way (see Yosida, 1995, Proposition 5, p. 26). Although we rule out non-convex

constraints on Γ, such as sparsity, our results nonetheless have implications for such settings,

as we discuss in Section 5.

Our goal is to construct estimators and CIs for β. To evaluate estimators β̂ of β, we con-

sider their worst-case performance over the parameter space R×Γ under the MSE criterion,

RMSE(β̂; Γ) = sup
β∈R,γ∈Γ

Eβ,γ[(β̂ − β)2],

where Eβ,γ denotes expectation under (β, γ′)′. An interval {β̂ ± χ̂} with half-length χ̂ =

χ̂(Y,X) is a CI with level 1− α if it satisfies the coverage requirement

inf
β∈R,γ∈Γ

Pβ,γ

(
β ∈ {β̂ ± χ̂}

)
≥ 1− α,

where Pβ,γ denotes probability under (β, γ′)′. To compare two CIs under a particular pa-

rameter vector (β, γ′)′, we prefer the one with shorter expected length Eβ,γ[2χ̂]. Note that

optimizing expected length will not necessarily lead to CIs centered at an estimator β̂ that

is optimal under the MSE criterion.

2.2 Linear estimators and CIs

We start by considering estimators that are linear in the outcomes Y , β̂ = a′Y , and derive CIs

based on such estimators. The n-vector of weights a may depend on the design matrix X or

the known variance σ2. In Section 2.3 below, we show how to choose the weights a optimally,

and in Section 2.4 we show that when a is optimally chosen, the resulting estimators and

CIs are optimal or near-optimal among all procedures, not just linear ones.
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Under a given parameter vector (β, γ′)′, the bias of β̂ = a′Y is given by a′(wβ + Zγ) −
β. As (β, γ′)′ ranges over the parameter space R × Γ, the bias ranges over the interval

[− biasΓ(β̂), biasΓ(β̂)], where

biasΓ(β̂) = sup
β∈R,γ∈Γ

a′(wβ + Zγ)− β (5)

denotes the worst-case bias. The variance of β̂ does not depend on (β, γ′)′, and is given by

var(β̂) = σ2a′a.

To form a CI centered at β̂, note that the z-statistic (β̂ − β)/ var(β̂)1/2 follows a N (b, 1)

distribution with mean bounded by |b| ≤ biasΓ(β̂)/ var(β̂)
1/2. Thus, a two-sided CI can be

formed as

β̂ ± χ, where χ = var(β̂)1/2 · cvα
(
biasΓ(β̂)/ var(β̂)

1/2
)
, (6)

and cvα(B) denotes the 1− α quantile of the folded normal distribution, |N (B, 1)|.1

This CI is bias-aware in that the critical value cvα(·) reflects the potential finite-sample

bias of β̂. Following the terminology in Donoho (1994), we refer to the CI as a fixed-length

confidence interval (FLCI), since its length 2χ is fixed: it depends only on the non-random

design matrix X, and known variance σ2, but not on Y or the parameter vector (β, γ′)′.

2.3 Optimal weights

Both the MSE R(β̂; Γ) = biasΓ(β̂)
2 + var(β̂) and the FLCI length 2χ given in eq. (6) are

increasing in the variance of β̂ and in its worst-case bias biasΓ(β̂). Therefore, to find the

optimal weights, we first minimize variance subject to a bound B on worst-case bias,

min
a∈R

a′a s.t. sup
β∈R,γ∈Γ

a′(wβ + Zγ)− β ≤ B. (7)

We then vary the bound B to find the optimal bias-variance tradeoff for a given criterion

(MSE or FLCI length). Since this optimization does not depend on the outcome data Y ,

optimizing the weights does not affect the coverage properties of the resulting CI.

Our main computational result, in Theorem 2.1 below, shows that the estimator solving

the optimization problem in eq. (7) is given by a simple two-step procedure. In the first step,

we estimate a penalized regression of w on Z with penalty Pen(π), so that the coefficient

1The critical value cv1−α(B) can be computed as the square root of the 1 − α quantile of a non-central
χ2 distribution with 1 degree of freedom and non-centrality parameter B2.
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estimate on Z, πλ, solves

min
π

∥w − Zπ∥22 s.t. Pen(π) ≤ tλ, (8)

where tλ is a bound on the penalty term. We refer to eq. (8) as a (regularized) propensity

score regression, even though we don’t require wi to be binary. In the second step, we use the

residuals w̃λ := w−Zπλ from the propensity score regression as instruments in a univariate

regression of Y on w. The tuning parameter λ indexes the weight placed on the constraint

in eq. (8), and its selection depends on the criterion we are optimizing. It may correspond

to the Lagrange multiplier in a Lagrangian formulation of eq. (8), or, if we can solve eq. (8)

directly, we may take tλ = λ.

Theorem 2.1. Let w̃λ = w − Zπλ, where πλ solves eq. (8), and suppose that ∥w̃λ∥2 > 0.

Then aλ = w̃λ
w̃′
λw

solves eq. (7) with the bound given by B = C
tλ

· aλ′Zπλ. Consequently, the

worst-case bias and variance of the estimator

β̂λ = aλ
′Y =

w̃′
λY

w̃′
λw

(9)

are given by

biasΓ(β̂λ) = CBλ, and Vλ = σ2∥aλ∥22, where Bλ =
aλ

′Zπλ
Pen(πλ)

. (10)

The result follows by applying the general theory of Ibragimov and Khas’minskii (1985),

Donoho (1994), Low (1995), and Armstrong and Kolesár (2018) to our setting, which allows

us to rewrite eq. (7) as a convex optimization problem. Solving it then yields the result.

With the solution to eq. (7) in hand, for estimation and CI construction, we select

penalties λ∗MSE and λ∗FLCI that optimize the MSE and CI length, respectively. Specifically,

the penalties solve the univariate optimization problems

λ∗MSE = argmin
λ

Vλ + (CBλ)
2, λ∗FLCI = argmin

λ
cvα(CBλ/

√
Vλ)
√
Vλ, (11)

with Vλ and Bλ given in eq. (10). The optimal linear estimator is then given by β̂λ∗MSE
, and

the optimal FLCI takes the form β̂λ∗FLCI
± σ∥aλ∗FLCI

∥2 · cvα
(
C
σ

aλ∗
FLCI

′Zπλ∗
FLCI

Pen(πλ∗
FLCI

)∥aλ∗
FLCI

∥2

)
.

As tλ → 0, provided that Pen(·) is a norm on Z2, β̂λ converges to the short regression

estimate β̂short =
w′(I−HZ1

)Y

w′(I−HZ1
)w

that only includes the unrestricted controls Z1. This estimator

minimizes variance among all linear estimators with finite worst-case bias. In the other di-

rection, as tλ → ∞, β̂λ converges to the long regression estimate β̂long =
w′(I−HZ)Y
w′(I−HZ)w

, provided
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that w is not in the column space of Z (which ensures that the condition ∥w̃λ∥2 > 0 in Theo-

rem 2.1 holds for all λ). This estimator minimizes variance among all linear estimators that

are unbiased, so Theorem 2.1 reduces to the Gauss-Markov theorem in this case. In other

words, the short and long regressions are corner solutions of the bias-variance tradeoff, in

which weight is entirely placed on variance, or on bias.

Example 2.1 (ℓ2 penalty, continued). In this case, a convenient Lagrangian formulation

for (8) is

πλ = argmin
π

∥w − Zπ∥22 + λ∥Mπ∥22.

Suppose Z ′Z + λM ′M is invertible.2 Then the first order conditions immediately imply the

closed form solution

πλ = (Z ′Z + λM ′M)−1Z ′w,

which is a generalized ridge regression estimator of the propensity score.3 Plugging this

expression for πλ into eq. (9) yields

β̂λ = e′1

X ′X + λ

0 0

0 M ′M

−1

X ′Y,

where e1 = (1, 0, . . . , 0)′ is the first standard basis vector. Thus, the optimal estimate

can also be obtained from a generalized ridge regression of Y onto X. The optimality of

ridge regression in this setting was shown by Li (1982), and the above derivation gives

this result as a special case of Theorem 2.1. Under the Li and Müller (2021) specification

M = (0, (Z ′
2(I −HZ1)Z2/n)

1/2), the estimator further simplifies to a weighted average of the

short and long regression estimates,

β̂λ = ω(λ)β̂short + (1− ω(λ))β̂long, (12)

with weights

ω(λ) =
λ/n

λ/n+ ς2
, ς2 =

w′(I −HZ)w

w′(I −HZ1)w
=

var(β̂short)

var(β̂long)
.

The weight on the short regression increases with λ (as the relative weight on variance in

the bias-variance tradeoff increases), and decreases with ς2.

2Invertibility holds so long as no element π ̸= 0 satisfies Zπ = 0 and Mπ = 0 simultaneously. Intuitively,
if Z has rank less than k, then the data is not informative about certain directions π, and we require the
matrix M to place sufficient restrictions on π in these directions.

3We reserve the term “ridge regression” without the qualifier “generalized” for the case M ′M = Ik.
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Example 2.2 (ℓ1 penalty, continued). In this case, the solution to (8) is given by a variant

of the lasso estimate (Tibshirani, 1996) that only penalizes γ2.

The resulting estimator β̂λ is related to estimators proposed for constructing CIs using

the lasso (see, among others, Zhang and Zhang, 2014; Javanmard and Montanari, 2014;

van de Geer et al., 2014; Belloni et al., 2014). These papers propose estimators for β that

combine lasso estimates from the outcome regression of Y onto X with lasso estimates from

the propensity score regression, which yields an estimate that is non-linear in Y . In contrast,

our estimator only uses lasso estimates for the propensity score regression, and is linear in

Y . We give a detailed comparison between our estimator and this “double lasso” approach

in Section 5.

While under the ℓ2 constraints with M = (0, (Z ′
2(I −HZ1)Z2/n)

1/2), the class of optimal

estimators in eq. (12) depends on the data only through the short and long regression es-

timates, β̂λ under ℓ1 constraints (or under ℓ2 constraints with other choices of M) doesn’t

simply interpolate between these two extremes, and the optimal weights αλ display much

richer variation. This is analogous to the form of optimal weights in regression discontinu-

ity designs (e.g. Armstrong and Kolesár, 2018; Imbens and Wager, 2019), where one needs

to consider a range of bandwidths, rather than just interpolating between estimators that

consider the maximal and minimal possible bandwidths.

Example 2.3 (Partly linear model). To flexibly control for a low-dimensional set of covari-

ates z̃i, one may specify a semiparametric model

yi = wiβ + h(z̃i) + εi, P̃en(h) ≤ C̃,

where the penalty P̃en(h) is a seminorm on functions h(·) that penalizes the “roughness” of

h, such as the Hölder or Sobolev seminorm of order q. Minimax linear estimation in this

model for particular choices of P̃en(h) has been considered in Heckman (1988). This setting is

covered by our setup if we define Z = In, γi = h(z̃i), and Pen(γ) = minh : h(z̃i)=γi, i=1,...n P̃en(h)

(assuming the minimum is taken). Theorem 2.1 then implies that the optimal estimator takes

the form

β̂λ =

∑n
i=1(wi − gλ(z̃i))Yi∑n
i=1(wi − gλ(z̃i))wi

,

where gλ(·) is analogous to the regularized regression estimate πλ in (8): it solves

min
g

n∑
i=1

(wi − g(z̃i))
2 s.t. P̃en(g) ≤ tλ.

When P̃en is the Sobolev seminorm, this yields a spline estimate gλ (see, for example Wahba,
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1990). Interestingly, the estimator proposed in the seminal work by Robinson (1988) takes

a similar form to the estimator β̂λ, involving residuals from a nonparametric regression of w

on z̃i. While the analysis in Robinson (1988) is asymptotic, our results imply that a version

of this estimator has sharp finite-sample optimality properties.

2.4 Efficiency among non-linear procedures

So far, we have restricted attention to procedures that are linear in the outcomes Y . We

now show that the estimator β̂λ∗MSE
, and the CI based on the estimator β̂λ∗FLCI

are in fact

highly efficient among all procedures, not just linear ones. This is due to the convexity

and symmetry of the parameter space Γ, and follows from the general results in Donoho

(1994), Low (1995) and Armstrong and Kolesár (2018) for estimation of linear functionals in

Gaussian models with convex parameter spaces.

Corollary 2.1. Let λ∗MSE and λ∗FLCI be given in eq. (11), where the optimization is over all

λ with tλ > 0 such that ∥w − Zπλ∥2 > 0. Let β̂λ, Bλ and Vλ be given in eq. (10). Let β̃ and

β̃± χ̃ denote some other (possibly non-linear) estimator and some other (possibly non-linear,

variable-length) CI.

(i) For any λ, supβ∈R,γ∈Γ varβ,γ(β̃) ≤ Vλ implies biasΓ(β̃) ≥ CBλ, and biasΓ(β̃) ≤ CBλ

implies supβ∈R,γ∈Γ varβ,γ(β̃) ≥ Vλ.

(ii) The worst-case MSE improvement of β̃ over β̂λ∗MSE
is bounded by

RMSE(β̃)

RMSE(β̂λ∗MSE
)
≥ κ∗MSE(X, σ,Γ) ≥ 0.8,

where κ∗MSE(X, σ,Γ) is given in Appendix A.2.

(iii) The improvement of the expected length of the CI β̃ ± χ̃ over the optimal linear FLCI

β̂λ∗FLCI
± cvα(CBλ∗FLCI

/V
1/2
λ∗FLCI

)V
1/2
λ∗FLCI

at γ = 0 and any β is bounded by

Eβ,0[χ̃]

cvα(CBλ∗FLCI
/V

1/2
λ∗FLCI

)V
1/2
λ∗FLCI

≥ κ∗FLCI(X, σ,Γ),

where κ∗FLCI(X, σ,Γ) is given in Appendix A.2 and is at least 0.717 when α = 0.05.

By construction, the estimator β̂λ minimizes variance among all linear estimators with a

bound CBλ on the bias (or equivalently, it minimizes bias among all linear estimators with a

bound Vλ on the variance). Corollary 2.1(i) shows that this optimality property is retained if
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we enlarge the class of estimators to all estimators, including non-linear ones. As a result, the

minimax linear estimator β̂λ∗MSE
(i.e. the estimator attaining the lowest worst-case MSE in

the class of linear estimators) continues to perform well among all estimators, including non-

linear ones: by Corollary 2.1(ii), its worst-case MSE efficiency is at least 80%. The exact

efficiency bound κ∗MSE(X, σ,Γ) depends on the design matrix, noise level, and particular

choice of the parameter space, and can be computed explicitly in particular applications.

We have found that typically the efficiency is considerably higher than the 80% lower bound.

Finally, Corollary 2.1(iii) shows that it is not possible to substantively improve upon the

FLCI based on β̂λ∗FLCI
in terms of expected length when γ = 0, even if we consider variable

length CIs that “direct power” at γ = 0 (potentially at the expense of longer expected

length when γ ̸= 0). The construction of the FLCI may appear conservative: its length

depends on the worst-case bias over the parameter space for (β, γ′)′, which, as the proof of

Theorem 2.1 shows, attains at γ = Ct−1
λ∗FLCI

πλ∗FLCI
, with Pen(γ) = C. Therefore, one may

be concerned that when the magnitude of γ is much smaller than C, the FLCI is too long.

Corollary 2.1(iii) shows that this is not the case, and the efficiency of the FLCI is at least

71.7% relative to variable-length CIs that optimize their expected length when γ = 0. The

exact efficiency bound κ∗MSE(X, σ,Γ) can be computed explicitly in particular applications,

and we have found that it is typically considerably higher than 71.7%.

A consequence of Corollary 2.1(iii) is that it is impossible to form a CI that is adaptive

with respect to the regularity parameter C that bounds Pen(γ). In the present setting, an

adaptive CI would have length that automatically reflects the true regularity Pen(γ) while

maintaining coverage under a conservative a priori bound on Pen(γ). However, according to

Corollary 2.1(iii), any CI must have expected width that reflects the conservative a priori

bound C rather than the true regularity Pen(γ), even when Pen(γ) is much smaller than the

conservative a priori bound C. In particular, it is impossible to automate the choice of the

regularity parameter C when forming a CI. We therefore recommend varying C as a form

of sensitivity analysis, or using auxiliary information to choose C; see Remark 3.3.

2.5 Heterogeneous treatment effects

If wi is as good as randomly assigned conditional on zi, the coefficient β in eq. (1) can be

interpreted as the average treatment effect (ATE) of a one-unit increase in the variable w.

This interpretation requires that the individual treatment effects (TEs) are mean independent

of zi. To relax this assumption, we replace β in eq. (1) with a covariate-specific coefficient

β(z) that represents the conditional ATE for units i with zi = z, obtaining the model

Yi = wiβ(zi) + z′iγ + εi. (13)
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Suppose the parameter of interest takes the form
∫
β(z) dµ(w, z) where µ is a signed measure

defined on some set that includes the empirical support {(wi, zi)}ni=1. Allowing µ to be signed

allows for inference on non-convex averages of β(z). We allow µ to place nonzero mass outside

the empirical support {(wi, zi)}ni=1, thereby allowing for extrapolation. The general theory

of estimation and inference on linear functionals developed in Donoho (1994) and Armstrong

and Kolesár (2018) underlying Theorem 2.1 and Corollary 2.1 can be applied to inference

on this parameter under any convex and symmetric restriction on the function β(·) and the

parameter γ—only the worst-case bias calculation in eq. (5) changes. We now discuss two

particular specifications for µ and β(·).
For the first approach, let µ correspond to a weighted empirical measure with weights

ci that sum to one, so the parameter of interest is given by β̃ =
∑

i ciβ(zi). For example,

the unweighted case ci = 1/n gives the (conditional on the sample) ATE, while setting

ci = wi/
∑

j wj gives the ATE for the treated. Assume also that the function β(z) is linear,

β(z) = z′δ, and that the first element of zi is a constant. Consider a parameter space for

(δ′, γ′)′ given by {(δ′, γ′)′ ∈ B : Pen(δ, γ) ≤ C}, where B is a subspace of a Euclidean space

with a seminorm Pen. Allowing B to be a subspace allows us to restrict β(z) to only depend

on a subset of the controls. As noted by Imbens and Wooldridge (2009, Section 5.3) in

the unpenalized case, we can map this problem back into the model in eqs. (1) and (3) by

rewriting eq. (13) under these assumptions as

Yi = wiβ̃ + wi(zi,−1 −
∑
j

cjzj,−1)
′δ−1 + z′iγ + εi,

where zi,−1 is the vector of controls excluding a constant and δ−1 is the corresponding sub-

vector of δ. This is exactly our problem in eq. (1), with the control vector consisting of the

original controls zi as well as the interaction of the treatment with the demeaned controls,

wi(zi,−1 −
∑

i cizi,−1). We use this approach in our empirical application in Section 7.

For the second approach, we compute the same linear estimator and bias-aware CIs as

in the homogeneous TE model in eq. (1); we only change the interpretation of the estimand

as targeting a particular weighted average of TEs given in the next theorem. To set the

stage for the theorem, let us denote the worst-case bias of a linear estimator β̂ relative to an

estimand
∫
β(z)dµ(w, z) when the heterogeneity is completely unrestricted by b̃iasΓ(β̂;µ) =

supβ(·),γ
[∑n

i=1 aiwiβ(zi) + a′Zγ −
∫
β(z) dµ(w, z)

]
, where the supremum is over γ ∈ Γ and

all functions β(·). For an n-vector a, let µ∗
a,w(w, z) denote a weighted empirical measure

with (possibly negative) weights aiwi, so that the parameter of interest becomes β̃a,w =∑
i aiwiβ(zi).

Theorem 2.2. Let µ be a signed measure with
∫
dµ(w, z) = 1, and let β̂ = a′Y be an
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estimator with a′w = 1. If µ = µ∗
a,w, then b̃iasΓ(β̂;µ) = biasΓ(β̂), with biasΓ(β̂) given

in eq. (5). If µ ̸= µ∗
a, then b̃iasΓ(β̂;µ) = ∞. Furthermore, the estimator β̂λ given in eq. (9)

solves

min
β̂=a′Y,a∈Rn

var(β̂) s.t. min
µ

b̃iasΓ(β̂) ≤ CBλ, (14)

where the second minimization is over all signed measures such that
∫
dµ(w, z) = 1.

The theorem gives three results for inference when β(·) is unrestricted. First, given a

linear estimator a′Y , the only estimand for which the bias is finite is β̃a,w. Second, for this

estimand, the bias is the same as in the homogeneous TE model with β(z) = β. Thus,

assuming homogeneous TEs leads to valid inference for β̃a,w when TEs are in fact hetero-

geneous. In particular, the bias-aware CI based on the estimator β̂λ provides inference on

the weighted average β̃aλ,w =
∑

i w̃λ,iwiβ(zi)/
∑

i w̃λ,iwi. Observe that, when the treatment

wi is binary, the weights are non-negative if and only if the residual in the propensity score

regression w̃λ,i is positive whenever wi = 1—this can be easily verified in a given application.

Equivalently, the weights are positive if the fitted values z′iπλ are smaller than one: the

fitted values in the propensity score regression must respect the population constraint that

treatment probabilities must be smaller than one. This finding is a finite-sample analog of

the identification result in Goldsmith-Pinkham et al. (2022), who show that the estimand in

the partly linear model has an analogous weighted ATE interpretation under heterogeneous

TEs. An analogous identification result in a random design setting dates to at least Angrist

(1998), who gave a weighted ATE interpretation to the OLS estimand.

Third, the estimator β̂λ remains optimal in the heterogeneous TE model in that it solves

a bias-variance tradeoff in a problem where we can pick the estimand to make the estimation

problem as easy as possible. The problem (14) is a finite-sample version of the “moving the

goalposts” problem considered by Crump et al. (2006, Section 5.4).4 Crump et al. (2006)

derived the measure µ that minimizes the asymptotic variance of a particular class of inverse

propensity score weighted estimators of weighted ATEs in a random design setup. Goldsmith-

Pinkham et al. (2022) show this measure in fact minimizes the variance among all regular

estimators; the measure coincides with the weighting of the treatment effects given in Angrist

(1998) under homoskedasticity, giving an optimality property to the OLS estimator.

4The optimization problem (14) was also used by Imbens and Wager (2019) in the context of a regression
discontinuity design with multiple cutoffs, although they did not explicitly note the optimality properties of
the resulting estimator.
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3 Implementation with non-Gaussian and heteroske-

dastic errors

We now discuss practical implementation issues, allowing ε to be non-Gaussian and het-

eroskedastic. As a baseline, we propose the following implementation:

Algorithm 3.1 (Baseline implementation).

Input Data (Y,X), penalty Pen(·), regularity parameter C, and initial estimates of residuals

ε̂init,1, . . . , ε̂init,n.

Output Estimator and CI for β.

1. Compute an initial variance estimator, σ̂2 = 1
n

∑n
i=1 ε̂

2
init,i, assuming homoskedasticity.

2. Compute the solution path {πλ}λ>0 for the regularized propensity score regression in

eq. (8), indexed by the penalty weight λ. For each λ, compute β̂λ as in eq. (9), and

Bλ, and Vλ as in eq. (10), with σ̂2 in place of σ2 in the formula for Vλ.

3. Compute λ∗MSE and λ∗FLCI as in eq. (11), and compute the robust variance estimate

V̂λ,rob =
∑n

i=1 aλ,i
2ε̂2init,i, where aλ =

w−Zπλ
(w−Zπλ)′w

.

Return the estimator β̂λ∗MSE
and the CI β̂λ∗FLCI

± cvα

(
CBλ∗FLCI

/V̂
1/2
λ∗FLCI,rob

)
· V̂ 1/2

λ∗FLCI,rob
.

The following remarks discuss the implementation choices, and the optimality and validity

of the baseline procedure.

Remark 3.1 (Validity). As the initial residual estimates ε̂init,i, we can take residuals from a

regularized outcome regression of Y on X (see eq. (20) in Appendix B.1). We give conditions

for asymptotic validity of the resulting CIs in Appendix B.2. The key requirement is that

the maximal Lindeberg weight Lind(aλ) = max1≤i≤n aλ,i
2/
∑n

j=1 aλ,j
2 associated with the es-

timator β̂λ shrink quickly enough relative to error in the estimator used to form the residuals.

Ensuring that Lind(aλ) is small prevents the estimator from putting too much weight on a

particular observation, so that the Lindeberg condition for the central limit theorem holds.

Whether these conditions hold for the optimal estimator will in general depend on the

form of Pen(γ) and on the magnitude of C relative to n. To ensure that Lind(aλ) is small

enough in a particular sample for a normal approximation to work well, one may impose a

bound on this term by only minimizing eq. (11) over λ such that Lind(aλ) is small enough

when computing λ∗FLCI. This is similar to proposals by Noack and Rothe (2021), and Javan-

mard and Montanari (2014) in other settings. As discussed further in Appendix B.2, under
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mild regularity conditions, imposing such a bound doesn’t affect the convergence rate of the

resulting CI.

Remark 3.2 (Efficiency). The weights aλ∗FLCI
and aλ∗MSE

are not optimal under heteroskedas-

ticity. One could in principle generalize the feasible generalized least squares (FGLS) ap-

proach used for unconstrained estimation by deriving optimal weights under the assump-

tion ε ∼ N (0,Σ) (which simply follows the above analysis after pre-multiplying by Σ−1/2),

and derive conditions under which the estimator and CI that plug in an estimate of Σ

are optimal asymptotically when the assumption of known variance and Gaussian errors is

dropped. Instead of pursuing this generalization, our baseline implementation computes the

weights aλ under the assumption of homoskedasticity, but we use robust standard errors

when computing the CI. Thus, analogous to the ubiquitous practice of reporting OLS with

Eicker-Huber-White (EHW) standard errors in the unconstrained setting, our baseline im-

plementation leverages homoskedasticity for efficiency, but the CIs remain valid when the

homoskedasticity assumption is violated.

Remark 3.3 (Choice of C). By Corollary 2.1(iii), one cannot use a data-driven rule to

automate the choice of C when forming a CI. Therefore, plausible magnitudes of Pen(γ)

need to be assessed using prior knowledge.

Such assessments can be aided by relating the magnitude of Pen(γ) to other quantities.

Let us now describe an approach to calibrating C that we use in our numerical and empirical

work in Sections 6 and 7. Let zi1 = (1, z̃′i1)
′ denote a vector of baseline controls, believed

to be important confounders, and let zi2 be a possibly high-dimensional vector of additional

controls, believed to be less important. Suppose that Pen(γ) = ∥γ2∥ corresponds to some

norm on the additional controls as in Examples 2.1 and 2.2. To formalize the belief that the

baseline controls are more important, we use the norm of the population coefficient γ̃short on

z̃i1 in the short regression of Yi on a constant, wi and z̃i1 as a bound on ∥γ2∥. Since γ̃short

is unknown, we set Crot = ∥γ̂short∥ as a rule of thumb, where γ̂short is an OLS estimate of

γ̃short.
5

Calibrations of the regularity parameter C should be complemented by varying C as a

form of sensitivity analysis. Robustness of the results can also be assessed by computing

two additional values of the regularity parameter. The first is a “breakdown value” C∗,

the largest value of C such the empirical finding of interest holds. Second, by way of a

specification check, one can form a lower CI [Ĉ,∞) for C to assess the plausibility of a given

5Formally, one should account for sampling uncertainty in ̂̃γshort to ensure validity of the CI under the
assumption ∥γ2∥ ≤ ∥γ̃short∥, such as by combining a first stage CI for γ̃short with a Bonferroni correction. In
our Monte Carlos in Section 6, however, we find that the Crot leads to valid coverage when this assumption
holds even without additional corrections for sampling uncertainty.
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bound on Pen(γ). We present such a CI in Appendix B.3 for the case where Pen(γ) takes

the form of an ℓp constraint.

Remark 3.4 (Computational issues). Step 2 involves computing the solution path of a

regularized regression estimator. Efficient algorithms exist for computing these paths under

ℓ1 penalties and its variants (Efron et al., 2004; Rosset and Zhu, 2007). Under ℓ2 penalty, the

regularized regression has a closed form, so that our algorithm can again be implemented

in a computationally efficient manner. For other types of penalties, the convexity of the

optimization problem in eq. (8) can be exploited to yield efficient implementation. We also

note that since the solution path πλ does not depend on C, it only needs to be computed

once, even when multiple choices of C are considered in a sensitivity analysis.

4 Rates of convergence

We now derive the rates of convergence for the optimal linear FLCIs as n→ ∞. For ease of

notation, we assume all coefficients are constrained, and focus on the case Pen(γ) = ∥γ∥p for
some p ≥ 1, and the case Pen(γ) = ∥Zγ/

√
n∥2 (see Example 2.1). We allow the regularity

parameter C = Cn go to 0 or ∞ with the sample size, and consider high dimensional

asymptotics where k = kn ≫ n. We consider a standard “high dimensional” setting, placing

conditions on the design matrix X that hold with high probability when wi, zi are drawn

i.i.d. over i, with the eigenvalues of var((wi, z
′
i)
′) bounded away from zero and infinity.

Let q ∈ [0,∞] denote the Hölder conjugate of p, satisfying 1/p+ 1/q = 1. We will show

that when Pen(γ) = ∥γ∥p, the optimal linear FLCI shrinks at the rate

n−1/2 + Crq(k, n) where rq(k, n) =

k1/q/
√
n if q <∞,

√
log k/

√
n if q = ∞.

. (15)

Furthermore, for p = 1 and p = 2, we will show that no other CI can shrink at a faster rate.

For p = 1, we will in fact prove a stronger result showing that imposing sparsity bounds on

the outcome and propensity score regressions, in addition to the bound on Pen(γ), does not

help achieve a faster rate, unless one assumes sparsity of order greater than Cn
√
n/ log(k)

(termed the “ultra sparse” case in Cai and Guo (2017)). For the case Pen(γ) = ∥Zγ/
√
n∥2,

we will show that the optimal rate is given by n−1/2 + C when k ≫ n.

If k ≫ n and C = Cn does not decrease to zero with n, these rates require p < 2 (so

that q > 2) for consistency. When p = 1, we can then allow k to grow exponentially with n,

whereas setting 1 < p < 2 allows for k to grow at a polynomial rate in n that depends on p.

Since taking Cn → 0 rules out even a single coefficient being bounded away from zero, these
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bounds imply that taking p < 2 in “high dimensional” settings is necessary for consistency,

with p = 1 offering the best rate conditions. It also follows from these rate results that if

Cn = C does not decrease to zero with n, the bias term can dominate asymptotically, making

it necessary to explicitly account for bias in CI construction even in large samples.

4.1 Upper bounds

To state the result, given η > 0, let En(η) denote the set of design matrices X for which

there exists δ ∈ Rk such that

1

n
∥w − Zδ∥22 ≤

1

η
,

1

n
w′(w − Zδ) ≥ η,

1

n
∥Z ′(w − Zδ)∥q ≤

rq(k, n)

η
.

Let R∗
FLCI(X,C) = 2 cvα(CBλ∗FLCI

/V
1/2
λ∗FLCI

) · V 1/2
λ∗FLCI

denote the length of the optimal linear

FLCI.

Theorem 4.1. (i) Suppose Pen(γ) = ∥γ∥p. There exists a finite constant Kη depending

only on η such that R∗
FLCI(X,C) ≤ Kηn

−1/2(1 + Ck1/q) for p > 1, and R∗
FLCI(X,C) ≤

Kηn
−1/2(1 + C

√
log k) for p = 1 for any X ∈ En(η). (ii) Suppose Pen(γ) = ∥Zγ/

√
n∥2.

There exists a finite constant Kη depending only on η such that R∗
FLCI(X,C) ≤ Kη(n

−1/2+C)

for any X such that η ≤ w′w/n.

The second part of the theorem follows since the short regression without any controls

achieves a bias that is of the order C. The first part shows that the upper bounds on the

rate of convergence match those in eq. (15) if the high-level condition X ∈ En(η) holds. The
next lemma shows that this high-level condition holds with high probability when wi, Zi are

drawn i.i.d. from a distribution satisfying mild conditions on moments and covariances.

Lemma 4.1. Suppose wi, zi are drawn i.i.d. over i, and let δ = argminbE[(wi − z′ib)
2] so

that z′iδ is the population best linear predictor error of wi. Suppose that the linear prediction

error E[(wi−z′iδ)2] is bounded away from zero as k → ∞, E[w2
i ] <∞, and that supj E[|(wi−

z′iδ)zij|max{2,q}] < ∞ when p > 1, and, for some c > 0, P (|(wi − z′iδ)zij| ≥ t) ≤ 2 exp(−ct2)
for all j when p = 1. Then, for any η̃ > 0, there exists η such that X ∈ En(η) with probability

at least 1− η̃ for large enough n.

4.2 Lower bounds

We now show that the rates in eq. (15) are sharp when p = 2, or p = 1.

18



4.2.1 p = 2

As with the upper bound in Section 4.1, we derive a bound that holds when the design

matrix X is in some set, and then show that this set has high probability when wi, zi are

drawn i.i.d. from a sequence of distributions satisfying certain conditions. We focus on the

case k ≥ n. Let Ẽn(η) denote the set of design matrices X such that

η ≤ 1

n
w′w ≤ η−1, min eig(ZZ ′/k) ≥ η,

where eig(A) denotes the set of eigenvalues of a square matrix A.

Theorem 4.2. Let β̂ ± χ̂ be a CI with coverage at least 1 − α under Pen(γ) ≤ C. (i) If

Pen(γ) = ∥γ∥2, there exists a constant cη > 0 depending only on η such that the expected

length under β = 0, γ = 0 satisfies E0,0[χ̂] ≥ cηn
−1/2(1 + Ck1/2) for any X ∈ Ẽn(η). (ii)

If Pen(γ) = ∥Zγ/
√
n∥2, there exists a constant cη > 0 depending only on η such that the

expected length under β = 0, γ = 0 satisfies E0,0[χ̂] ≥ cη(n
−1/2 + C) for any X ∈ Ẽn(η).

If zi is i.i.d. over i, then EZZ
′/k is equal to the n × n identity matrix times the scalar

1
k

∑k
j=1E[z

2
ij]. Thus, the condition on the minimum eigenvalue of ZZ ′/k will hold under

concentration conditions on the matrix Z ′Z so long as the second moments of the covariates

are bounded from below. Here, we state a result for a special case where the zij’s are i.i.d.

normal, which is immediate from Donoho (2006, Lemma 3.4).

Lemma 4.2. Suppose that wi are i.i.d. over i and that zij are i.i.d. normal over i and j.

Then, for any η̃ > 0, there exists η > 0 such that X ∈ Ẽn(η) with probability at least 1 − η̃

once n and k/n are large enough.

4.2.2 p = 1

We now consider the case where p = 1, as in Example 2.2. Rather than imposing condi-

tions on X in a fixed design setting that hold with high probability (as in Section 4.1 and

Section 4.2.1), we directly consider a random design setting, and we do not condition on X

when requiring coverage of CIs. This allows us to strengthen the conclusion of our theorem

by showing that the rate in Theorem 4.1 is sharp even if one imposes a linear model for wi

given zi along with sparsity and ℓ1 bounds on the coefficients in this model.

We introduce some additional notation to cover the random design setting, which we use

only in this section. We consider a random design model

Y = wβ + Zγ + ε, ε | Z,w ∼ N (0, σ2In),
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w = Zδ + v, v | Z ∼ N (0, σ2
vIn),

zij ∼ N (0, 1) i.i.d. over i, j.

We use Pϑ and Eϑ for probability and expectation when Y,X follow this model with parame-

ters ϑ = (β, γ′, δ′, σ2, σ2
v)

′. Let σ2
0 > 0 and σ2

v,0 > 0 be given and let Θ(C, s, η) denote the set

of parameters ϑ = (β, γ′, δ′, σ2, σ2
v) where |σ2 −σ2

0| ≤ η, |σ2
v −σ2

v,0| ≤ η, ∥γ∥1 ≤ C, ∥δ∥1 ≤ C,

∥γ∥0 ≤ s and ∥δ∥0 ≤ s.

Theorem 4.3. Let β̂± χ̂ be a CI satisfying Pϑ(β ∈ {β̂± χ̂}) ≥ 1−α for all ϑ in Θ(Cn, Cn ·
K
√
n/ log k, ηn) where α < 1/2. Suppose k → ∞, Cn

√
log k/n → 0 and Cn ≤

√
k/n · k−η̃

for some η̃ > 0. Then, there exists c such that, if K is large enough and ηn → 0 slowly

enough, the expected length of this CI under the parameter vector ϑ∗ given by β = 0, γ = 0,

δ = 0, σ2 = σ2
0, σ

2
v = σ2

v,0 satisfies Eϑ∗ [χ̂] ≥ c · n−1/2(1 + Cn
√
log k) once n is large enough.

Theorem 4.3 follows from similar arguments to Cai and Guo (2017) and Javanmard and

Montanari (2018), who provide similar bounds for the case where only a sparsity bound

is imposed. According to Theorem 4.3, imposing sparsity does not allow one to improve

upon the CIs that uses only the ℓ1 bound ∥γ∥1 ≤ Cn (thereby attaining the rate in Theo-

rem 4.1), unless one imposes sparsity of order greater than Cn
√
n/ log k. We provide further

comparison with CIs that impose sparsity in the next section.

5 Comparison with sparsity constraints

Several authors have considered CIs for β using “double lasso” estimators (see, among others,

Belloni et al., 2014; Javanmard and Montanari, 2014; van de Geer et al., 2014; Zhang and

Zhang, 2014). These CIs are valid under the parameter space

Γ̃(s) = {γ : ∥γ∥0 ≤ s}, (16)

where ∥γ∥0 = #{j : γj ̸= 0} is the ℓ0 “norm,” which indexes the sparsity of γ, and with s

increasing slowly enough relative to n and k. Since ∥γ∥0 is not a true norm or seminorm

(it is non-convex), this parameter space is not covered by our setup. Nonetheless, as we

show in Section 5.1, if the sparsity assumption is used to bound the ℓ1 loss of a preliminary

lasso estimator, arguments from Section 2 lead to estimators and CIs that are analogous to

those proposed in the double lasso literature. In Section 5.2, we provide a comparison of our

approach to these double lasso CIs.
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5.1 Connection between double lasso and optimal estimator under

ℓ1 constraints

When Pen(γ) = ∥γ∥1 (example 2.2), the solution πλ to eq. (8) is the lasso estimate in

the propensity score regression of w on Z, and our estimator (9) uses residuals from this

lasso regression. This is related to “double lasso” estimators used to form CIs for β under

sparsity constraints on γ (see, among others, Belloni et al., 2014; Javanmard and Montanari,

2014; van de Geer et al., 2014; Zhang and Zhang, 2014). For concreteness, we focus on the

estimator in Zhang and Zhang (2014), which is given by

β̂ZZ = β̂lasso +
w̃′
λ(Y − wβ̂lasso − Zγ̂lasso)

w̃′
λw

,

where β̂lasso, γ̂lasso are the lasso estimates from regressing Y on X:

β̂lasso, γ̂lasso = argmin
β,γ

∥Y − wβ − Zγ∥22 + λ̃(|β|+ ∥γ∥1)

for some penalty parameter λ̃ > 0.

Remark 5.1. Note that β̂ZZ is non-linear in Y , due to nonlinearity of the lasso esti-

mates β̂lasso, γ̂lasso, which is consistent with the goal of efficiency in the non-convex param-

eter space (16). In contrast, Corollary 2.1 shows that under the convex parameter space

Γ = {γ : ∥γ∥1 ≤ C}, the estimator β̂λ in (9) which only uses lasso in the propensity score

regression of w on Z, is already highly efficient among all estimators, so that there is no

further role for substantive efficiency gains from the lasso regression of Y on X, or from the

use of other non-linear estimators.

To further understand the connection between these estimators, we note that Zhang and

Zhang (2014) motivate their approach by bounds of the form

∥γ̂lasso − γ∥1 ≤ C̃ where C̃ = const. · s
√
log k/

√
n, (17)

which hold with high probability with the constant depending on certain “compatibility

constants” that describe the regularity of the design matrix X (see Bühlmann and van

de Geer, 2011, Theorem 6.1, and references in the surrounding discussion). This suggests

correcting the initial estimate β̂lasso by estimating β̃ = β − β̂lasso in the regression

Ỹ = w(β − β̂lasso) + Z(γ − γ̂lasso) + ε = wβ̃ + Zγ̃ + ε,
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where Ỹ = Y − β̂lasso − Zγ̂lasso. Heuristically, we can treat the bound in eq. (17) as a

constraint ∥γ̃∥1 ≤ C̃ on the unknown parameter γ̃ = γ − γ̂lasso and search for an optimal

estimator of β̃ = β − β̂lasso under this constraint. Applying the optimal estimator derived

in Theorem 2.1 then suggests estimating β − β̂lasso with
w̃′
λỸ

w̃′
λw

. Adding this estimate to β̂lasso

gives the estimate β̂ZZ proposed by Zhang and Zhang (2014). Whereas Zhang and Zhang

(2014) motivate their approach as one possible way of correcting the initial estimate β̂lasso

using the bound in eq. (17), the above analysis shows that their correction is in fact identical

to an approach in which one optimizes this correction numerically.6

Under the bound in eq. (17) it follows that β̂ZZ − β = b̃ + aλ
′ε where aλ = w̃λ

w̃′
λw

are

the optimal weights under the ℓ1 constraint ∥γ̃∥1 ≤ C̃, given in Theorem 2.1. Furthermore,

|b̃| ≤ C̃Bλ, with Bλ given in Theorem 2.1 and C̃ given in eq. (17), and the variance of the

random term aλ
′ε is given by Vλ in Theorem 2.1. Using arguments similar to those used to

prove Theorem 4.1, it follows that C̃Bλ/
√
Vλ is bounded by a constant times s(log k)/

√
n,

so that one can ignore bias in large samples as long as this term converges to zero. This

leads to the CI proposed by Zhang and Zhang (2014), which takes the form

{β̂ZZ ± z1−α/2V̂
1/2
λ }, (18)

where V̂λ is an estimate of the variance Vλ. We use the term “double lasso CI” to refer to

this CI, and to related CIs such as those proposed in Belloni et al. (2014); Javanmard and

Montanari (2014); van de Geer et al. (2014).

Remark 5.2. To avoid the assumption that s(log k)/
√
n → 0 one could, in principle, ex-

tend our approach and the above analysis to form valid bias-aware CIs as {β̂ZZ ± [C̃Bλ +

z1−α/2V̂
1/2
λ ]}.7 Unfortunately, finding a computable constant C̃ in (17) that is sharp enough

to yield useful bounds in practice appears to be difficult, although it is an interesting area

for future research.

6The estimator proposed by Javanmard and Montanari (2014) performs a numerical optimization of

this form, but with the constraint (17) replaced by a constraint on |β̂lasso − β| + ∥γ̂lasso − γ∥1. Thus,
Theorem 2.1 shows that a modification of the constraint used in Javanmard and Montanari (2014) yields
the same estimator as Zhang and Zhang (2014).

7We use the slightly more conservative approach of adding and subtracting the bound C̃Bλ rather than

using the critical value cvα(C̃Bλ/V̂
1/2
λ ) as in eq. (6), since the “bias” term for β̂ZZ is correlated with ε

through the first step estimates β̂lasso, γ̂lasso.
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5.2 Comparison of our approach with CIs based on double lasso

estimators

When should one use a double lasso CI, and when should one use the approach in the

present paper? In principle, this depends on the a priori assumptions one is willing to make,

and whether they are best captured by a sparsity bound or a bound on convex penalty

function, such as the ℓ1 or ℓ2 norm. In many settings, it may be difficult to motivate the

assumption that a regression function has a sparse approximation, whereas upper bounds

on the magnitude of the coefficients may be more plausible.

A key advantage of the CIs and estimators we propose is that they have sharp finite-

sample optimality properties and coverage guarantees in the fixed design Gaussian model

with known error variance. While this is an idealized setting, the worst-case bias calcula-

tions do not depend on the error distribution, and remain the same under non-Gaussian,

heteroskedastic errors. Our approach directly accounts for the potential finite-sample bias

of the estimator, rather than relying on “asymptotic promises” about rates at which certain

constants involved in bias terms converge to zero.

On the flip side, our CIs require an explicit choice of the regularity parameter C in order

to form a “bias-aware” CI. In contrast, CIs based on double lasso estimators do not require

explicitly choosing the regularity (in this case, the sparsity s), since they ignore bias. This

is justified under asymptotics in which s increases more slowly than
√
n/ log k, which lead

to the bias of β̂ZZ decreasing more quickly than its standard deviation. Thus, the CI in

eq. (18) is “asymptotically valid” without the need to explicitly specify the sparsity index

s: one need only make an “asymptotic promise” that s increases slowly enough. However,

such asymptotic promises are difficult to evaluate in a given finite-sample setting. Indeed, as

shown by Wüthrich and Zhu (2021) and confirmed in our Monte Carlos in Section 6 below,

the double lasso CI leads to undercoverage in finite samples even in relatively sparse settings.

To ensure good finite-sample coverage of the CI in eq. (18), one needs to ensure that the

actual finite-sample bias is negligible relative to the standard deviation of the estimator. But

since any bias bound depends on the sparsity index s (as in the bound in eq. (17)), this gets

us back to having to explicitly specify s.

Thus, CIs that ignore bias such as conventional CIs based on double lasso estimators

do not avoid the problem of specifying s or C: they merely make such choices implicit

in their asymptotic promises. These issues show up formally in the asymptotic analysis

of such CIs. In particular, double lasso CIs require the “ultra sparse” asymptotic regime

s = o(
√
n/ log k), and they undercover asymptotically in the “moderately sparse” regime

where s increases more slowly than n with s ≫
√
n/ log k. Indeed, Theorem 4.3 above, as
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well as the results of Cai and Guo (2017) and Javanmard and Montanari (2018) show that it

is impossible to avoid explicitly specifying s if one allows for the moderately sparse regime.

On the other end of the spectrum, in the “low dimensional” regime where k ≪ n, the

double lasso CI is asymptotically equivalent to the usual CI based on the long regression.

Thus, the double lasso CI cannot be used when the goal is to use a priori information on

γ to improve upon the CI based on the long regression (as in, for example, Muralidharan

et al., 2023). In contrast, our approach optimally incorporates the bound C regardless of

the asymptotic regime.

6 Simulation results

We now illustrate the performance of our methods when the penalty takes the form of an ℓ1

norm on a subset of k2 controls, as in Example 2.2. We consider a design taken from Belloni

et al. (2014), with data generated from a random regressor model that supplements eq. (2)

with a propensity score regression

w = Zπ + σw̃w̃,

with w̃i and εi independent standard Gaussian, and independent of zi, which are distributed

i.i.d. N (0,Σ) with Σij = 2−|i−j|. Similar to Wüthrich and Zhu (2021), we tweak the Belloni

et al. (2014) design by considering regression coefficients that are of similar magnitude rather

than decaying. This allows us to separately vary the degree of sparsity and the signal-to-noise

ratio. Specifically, we set

γj = πj =


c1 if j ≤ k1,

c2 if k1 < j ≤ k1 + s,

0 otherwise.

.

We consider three methods for constructing CIs for β with nominal level 95%. The first

two methods implement Algorithm 3.1, with the penalty given by the ℓ1 norm of γ2, the last

k2 regression coefficients. The first method, which we refer to as “oracle,” sets the penalty

parameter C to the actual value of ∥γ2∥1, and uses knowledge of the variance of the error

term εi. The second CI, termed “AKK,” uses initial residual estimates based on the lasso

estimator (that only penalizes γ2), with the penalty chosen via 10-fold cross-validation. The

CI uses the rule of thumb calibration Crot = ∥γ̂short∥1 from Remark 3.3, where γ̂short are

OLS estimates from a short regression that only includes the first k1 controls (the “baseline”
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controls). The final method, termed “BCH”, implements the double lasso procedure by

Belloni et al. (2014), using the R package hdm, without penalizing the k1 baseline controls

and including an intercept.

The data generating process (DGP) in our random regressor model depends on 8 pa-

rameters: n, k1, k2, s, β, σw̃, c1 and c2. We consider n ∈ {500, 1000}, k1 ∈ {5, 10},
k2 ∈ {100, 200, 500, 1000}, s ∈ {10, 20, 100}, β ∈ {0, 2}, and σw̃ ∈ {0.5, 1}. We calibrate

c1 and c2 by fixing the population R2 from the regression of Y on Z, and fixing the ratio

νrot = ∥γ2∥1/∥γ̃short∥1. This allows us to directly control the signal-to-noise ratio, and the va-

lidity of the rule-of-thumb calibration: if νrot ≤ 1, then the population restriction underlying

our rule of thumb is valid. We consider 4 values for the population R2, {0.01, 0.1, 0.25, 0.5},
and 12 values for νrot, {0.2, 0.4, . . . , 2.4}. This gives a total of 9,216 DGPs.

Table 1 reports the simulation results for n = 500. The results for n = 1000 are reported

in Table 2. In line with the theory, the coverage of the oracle CI is close to nominal across

all designs.8 When νrot ≤ 1, coverage of the AKK CI is likewise close to nominal. Under

mild violations of the population constraint, the CIs display moderate undercoverage: when

νrot ≤ 1.5, coverage remains over 86.6% across all designs, and over 90.7% when k2 ≤ 200.

Only when νrot > 1.5 and k2 ≥ 500, the undercoverage becomes more severe. In contrast,

the BCH method displays moderate undercoverage even in sparse designs with s = 10, with

coverage at about 85% when k2 = 1000 and n = 500. The undercoverage gets more severe,

with coverage dipping below 60% once s = 20, and the CIs almost entirely miss the true

parameter in dense designs with s = 100. These results illustrate the concern discussed

in Section 5.2 that asymptotic sparsity requirements may be difficult to evaluate in finite

samples.

The favorable coverage of the AKK CIs relies heavily on using the bias-aware critical

value. Unreported simulations show that the coverage of CIs constructed using the same

estimators as the AKK CIs but with standard critical values (i.e., 1.96 for 95% coverage),

rather than our bias-aware critical values, can be as low as 74.8% for DGPs with νrot ≤ 1.

The AKK CIs display a mild increase in average length relative to the oracle, with the

length penalty ranging between 0 and 16%. The length penalty relative to the BCH method

is also in this range for designs where both methods achieve good coverage. This is a bargain

price to pay for the much more reliable and transparent coverage performance.

8The slight undercoverage reported in the tables is due to Monte Carlo error: with 1000 simulation draws,
the expected worst-case coverage over 160 DGPs is 93% if the true coverage for each DGP is 95%.
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k2 = 100 k2 = 200 k2 = 500 k2 = 1000

νrot AKK BCH Or AKK BCH Or AKK BCH Or AKK BCH Or

Panel A: Coverage Probability, minimum across DGPs

s = 10

[0, 1] 92.6 91.3 93.1 92.4 88.8 93.2 93.4 88.4 93.6 93.3 85.4 93.8

(1, 1.5] 91.3 89.2 93.7 91.1 86.6 93.8 89.2 86.9 93.7 87.4 84.9 93.9

(1.5, 2.5] 85.8 90.2 93.1 83.3 88.9 93.3 78.2 86.2 93.5 68.0 83.0 93.7

s = 20

[0, 1] 92.1 80.1 93.2 92.9 75.5 93.7 93.3 68.1 93.5 93.7 62.2 93.9

(1, 1.5] 92.2 80.9 94.1 90.7 74.0 94.1 90.1 67.9 93.4 86.6 58.7 94.6

(1.5, 2.5] 85.6 79.2 93.2 82.9 72.4 92.9 74.4 68.3 93.8 65.5 59.1 93.4

s = 100

[0, 1] 92.9 40.6 93.8 93.1 35.7 93.3 94.5 33.7 93.6 94.5 32.5 93.4

(1, 1.5] 92.8 17.1 93.9 93.9 14.2 93.9 93.6 9.8 93.8 92.6 8.1 94.7

(1.5, 2.5] 90.8 2.5 93.9 88.6 1.6 94.3 80.5 0.7 95.0 70.7 0.3 94.3

Panel B: Relative length, average across DGPs

s = 10

[0, 1] 1.01 0.96 1.04 0.94 1.10 0.91 1.16 0.89

(1, 1.5] 0.98 0.95 0.99 0.92 0.99 0.86 1.00 0.82

(1.5, 2.5] 0.97 0.95 0.96 0.91 0.95 0.85 0.94 0.80

s = 20

[0, 1] 1.01 0.96 1.04 0.94 1.10 0.90 1.16 0.87

(1, 1.5] 0.98 0.94 0.98 0.90 0.98 0.84 0.98 0.79

(1.5, 2.5] 0.96 0.94 0.95 0.90 0.92 0.82 0.91 0.76

s = 100

[0, 1] 1.01 0.95 1.04 0.92 1.10 0.88 1.16 0.85

(1, 1.5] 0.98 0.92 0.98 0.87 0.97 0.79 0.96 0.73

(1.5, 2.5] 0.96 0.91 0.95 0.85 0.90 0.74 0.86 0.67

Notes: For each method, panel A reports the worst-case coverage probability of nominal 95% level
CIs over 160 DGPs for νrot ∈ [0, 1] and νrot ∈ (1.5, 2.5], and 64 DGPs for νrot ∈ (1, 1.5], where each
DGP averages across 1000 Monte Carlo draws. Panel B reports the average relative length across the
DGPs. Relative length is defined as the average length of the AKK and BCH CIs, averaged over the
Monte Carlo draws, divided by the average length of the oracle CI.

Table 1: Simulation results for n = 500.
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k2 = 100 k2 = 200 k2 = 500 k2 = 1000

νrot AKK BCH Or AKK BCH Or AKK BCH Or AKK BCH Or

Panel A: Coverage Probability, minimum across DGPs

s = 10

[0, 1] 92.8 91.6 93.3 93.1 91.1 93.2 92.3 90.6 93.1 92.8 90.1 92.6

(1, 1.5] 92.9 92.9 92.9 92.7 92.9 93.5 91.9 92.7 93.5 89.7 91.8 93.7

(1.5, 2.5] 90.0 91.7 93.0 88.6 92.2 92.9 84.0 91.5 92.6 79.1 91.4 93.5

s = 20

[0, 1] 92.8 86.1 93.0 93.0 84.3 92.8 93.6 79.2 93.4 93.6 74.9 93.6

(1, 1.5] 92.6 86.4 93.1 92.4 83.5 93.3 89.8 78.6 93.0 87.9 75.6 94.0

(1.5, 2.5] 89.4 86.0 92.9 89.0 82.4 93.5 85.0 78.2 93.2 76.9 70.1 92.9

s = 100

[0, 1] 92.9 27.1 93.2 93.2 18.6 93.8 94.1 13.3 93.7 94.2 10.3 93.7

(1, 1.5] 92.4 9.5 93.7 93.2 6.8 93.6 94.0 4.2 94.3 93.1 3.6 95.0

(1.5, 2.5] 92.0 2.9 93.0 91.1 0.8 92.7 85.8 0.1 94.2 75.4 0.0 94.7

Panel B: Relative length, average across DGPs

s = 10

[0, 1] 1.00 0.98 1.02 0.96 1.05 0.94 1.09 0.91

(1, 1.5] 0.99 0.97 0.99 0.95 0.98 0.91 0.98 0.86

(1.5, 2.5] 0.98 0.97 0.97 0.95 0.95 0.90 0.93 0.84

s = 20

[0, 1] 1.00 0.98 1.01 0.96 1.05 0.93 1.09 0.90

(1, 1.5] 0.99 0.97 0.98 0.94 0.98 0.89 0.97 0.84

(1.5, 2.5] 0.98 0.97 0.97 0.94 0.94 0.88 0.91 0.82

s = 100

[0, 1] 1.00 0.97 1.01 0.95 1.05 0.92 1.09 0.88

(1, 1.5] 0.99 0.95 0.99 0.92 0.98 0.86 0.96 0.79

(1.5, 2.5] 0.98 0.95 0.97 0.91 0.94 0.83 0.89 0.74

Notes: See Table 1.

Table 2: Simulation results for n = 1000
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7 Empirical application

This section shows the performance of our methods using survey data on n = 496 winners of

major and minor prizes in the Massachusetts lottery in 1984–88 from Imbens et al. (2001) to

estimate the marginal propensity to earn (MPE) out of unearned income, a key structural

parameter in labor and public economics. While unearned income is typically endogenous,

Imbens et al. (2001) argue that in this sample, observable individual characteristics proxy

well enough for the frequency of lottery ticket purchases that the magnitude of winnings is

as good as random. The lottery winnings are paid out over 20 years, so that in a regression

of the average social security earnings in the 6 years after the lottery, Yi, onto yearly lottery

payments, Xi, and individual controls, the coefficient on Xi may be interpreted as the MPE.

We focus on a specification taken from Li and Müller (2021), who augment a baseline set

of k1 = 7 individual controls Z1 consisting of the intercept, two continuous controls (years

of education and age), and 4 binary controls (indicators for male, college, age over 55, and

age over 65) with k2 = 25 additional controls Z2 that are constructed by taking demeaned

cross-products of 4 the baseline binary controls and their interactions with Xi and dropping

collinear terms. Both Z1 and Z2 are standardized. Following the discussion in Section 2.5,

the coefficient on Xi in this specification can be interpreted as the average MPE, allowing

for heterogeneity in the MPE with respect to the binary controls. In contrast, the short

regression estimand in a regression that only includes Z1 is biased for the average MPE in

presence of such heterogeneity.

The MPE estimate in the long regression equals −0.049, close to the short regression

estimate −0.052 that only includes the baseline controls Z1 and corresponds to the specifi-

cation in Table 4, column II row 1 in Imbens et al. (2001). However, the long regression

estimate is very noisy: the 95% confidence interval (−0.115, 0.016) includes positive values

for the average MPE which economic theory rules out, and it is over 3 times longer than

the short regression CI (−0.073,−0.032). To increase precision of inference, Li and Müller

(2021) restrict the average squared mean effects z′2iγ2 using an ℓ2 penalty given in Exam-

ple 2.1. Calibrating C to the rule of thumb value from Remark 3.3, Crot = 7.2, yields the CI

(−0.116, 0.018) using the Li and Müller (2021) method, which is even longer than the long re-

gression CI.9 The CI constructed using our method, (−0.114, 0.015), improves slightly upon

the long CI, but it is still too wide to be informative.10 The Li and Müller (2021) penalty

9Li and Müller (2021) show that their method is close to optimal in terms of weighted average length
under a homoskedastic benchmark. This may no longer be the case under heteroskedasticity. Their CI is
variable length, and may be longer than the long regression CI in some samples even in the homoskedastic
case. In contrast, our construction guarantees length improvements over the long regression in all samples
under homoskedasticity.

10To make the methods more comparable and not conflate the comparison with differences in standard
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Figure 1: 95% CIs for the marginal propensity to earn out of unearned income under ℓ1
penalty.

Notes: Orange solid vertical lines at the left and right endpoints of the x-axis mark CIs based on the short
and long regression, respectively. Black solid vertical line at the left endpoint of the x-axis marks BCH CI.
The blue shaded area depicts the bias-aware CIs, while the dotted black line shows the point estimates as
a function of the regularity parameter C. The rule of thumb value of the regularity parameter, Crot, its
breakdown value C∗, and the endpoint Ĉ of a lower CI for C, discussed in Remark 3.3, are all marked on
the x-axis (log scale).

affords only marginal precision gains because the penalty limits the average influence of the

additional regressors—but these regressors only marginally increase the regression R2 in the

long regression: the adjusted R2 increases from 0.233 in the short regression to 0.236 in the

long regression.

In contrast, limiting the total influence of the additional controls by imposing a bound on

∥γ2∥1 as in Example 2.2 yields much more substantive precision gains. Figure 1 depicts the

CIs constructed using the implementation in Algorithm 3.1 for a wide range of the penalty

parameter. The rule of thumb calibration from Remark 3.3 yields Crot = 11.8. At this

calibration the point estimate is −0.059, with a CI given by (−0.090,−0.028), about half as

long as the long regression CI (depicted by an orange vertical line in the figure). In line with

the simulation results in Section 6, the CI is also close to the double lasso CI of Belloni et al.

error construction, variance estimates underlying CIs for all methods use residual estimates based on a lasso
estimator that penalizes only γ2, with penalty chosen by 10-fold cross-validation.
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(2014), given by (−0.080,−0.031), (depicted in the figure by a black vertical line). Doubling

the rule-of-thumb value of C changes the CI little, yielding (−0.092,−0.026).

Appendix A Proofs

This appendix gives proofs for all results in the main text.

A.1 Proof of Theorem 2.1

To prove Theorem 2.1, we first explain how our results fall into the general setup used in

Donoho (1994), Low (1995) and Armstrong and Kolesár (2018). In the notation of Armstrong

and Kolesár (2018), (β, γ′)′ plays the role of the parameter f , the functional of interest is given

by L(β, γ′)′ = β and K(β, γ′)′ = wβ + Zγ. The parameter space R× Γ is centrosymmetric,

so that the modulus of continuity (eq. (25) in Armstrong and Kolesár, 2018) is given by

ω(δ) = sup
β,γ

2β s.t. ∥wβ + Zγ∥2 ≤ δ/2, Pen(γ) ≤ C.

Using the substitution π = −γ/β, we can write this as

ω(δ) = sup
β,π

2β s.t. β∥w − Zπ∥2 ≤ δ/2, β Pen(π) ≤ C. (19)

Let βmod
δ , γmod

δ and πmod
δ = −γmod

δ /βmod
δ denote a solution to this problem when it exists. In

the notation of Armstrong and Kolesár (2018), (βmod
δ , γmod

δ
′
)′ plays the role of g∗δ , and the

solution (f ∗
δ , g

∗
δ ) satisfies f

∗
δ = −g∗δ = −(βmod

δ , γmod
δ

′
)′ by centrosymmetry.

This optimization problem is clearly related to the problem in eq. (8): we want to make

∥w − Zπ∥2 and Pen(π) small so that large values of β satisfy the constraint in (19). The

following lemma formalizes the connection.

Lemma A.1. If there exists π ∈ G such that w = Zπ and Pen(π) = 0, then ω(δ) = ∞ for all

δ ≥ 0. Otherwise, (i) for any δ > 0, the modulus problem in eq. (19) has a solution βmod
δ , πmod

δ

with βmod
δ > 0. For tλ = C/βmod

δ = 2C/ω(δ), this solution πmod
δ is also a solution to the

penalized regression (8) with optimized objective ∥w − Zπmod
δ ∥2 = δ/(2βmod

δ ) = δ/ω(δ) > 0;

and (ii) for any tλ > 0, the penalized regression problem (8) has a solution πλ. Setting

βλ = C/tλ and δλ = 2βλ∥w−Zπλ∥2 = (2C/tλ)∥w−Zπλ∥2, the pair βλ, πλ solves the modulus

problem (19) at δ = δλ, with optimized objective ω(δλ) = 2C/tλ, so long as ∥w− Zπλ∥2 > 0.

Proof. If there exists π ∈ G such that w = Zπ and Pen(π) = 0, then the result is immediate.

Suppose there does not exist such a π.
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First, we show that the problem in eq. (8) has a solution. Let G(0) denote the linear

subspace of vectors π ∈ G such that Zπ = 0 and Pen(π) = 0, and let G(1) be a subspace

such that G = G(0) ⊕ G(1), so that we can write π ∈ G uniquely as π = π(0) + π(1) where

π(0) ∈ G(0) and π(1) ∈ G(1). Note that Zπ = Zπ(1) and, applying the triangle inequality

twice, Pen(π(1)) = Pen(π(1)) − Pen(−π(0)) ≤ Pen(π) ≤ Pen(π(0)) + Pen(π(1)) = Pen(π(1))

so that Pen(π) = Pen(π(1)). Thus, the problem (8) can be written in terms of π(1) ∈ G(1)

only. The level sets of this optimization problem are bounded and are closed by continuity

of the seminorm Pen(·) (Goldberg, 2017), and so it has a solution, which is also a solution

in the original problem. Similarly, to show that the problem (19) has a solution, note

that feasible values of β are bounded by a constant times the inverse of the minimum of

max{∥w − Zπ∥2,Pen(π)} over π, which is strictly positive by continuity of Pen(π) and the

fact that there does not exist π with max{∥w − Zπ∥2,Pen(π)} = 0. Thus, we can restrict

β, π̃(1) to a compact set without changing the optimization problem.

To show the first statement in the lemma, note that βmod
δ > 0, since it is feasible to set

π = 0 and β = δ/(2∥w∥2), and that ∥w−Zπmod
δ ∥2 > 0, since otherwise a strictly larger value

of β could be achieved by multiplying πmod
δ by 1−η for η > 0 small enough. Now, if the first

statement did not hold, there would exist a π̃ with Pen(π̃) ≤ C/βmod
δ such that ∥w−Zπ̃∥2 ≤

∥w − Zπmod
δ ∥2 − ν for small enough ν > 0. Then, letting π̃η = (1 − η)π̃, we would have

∥w−Zπ̃η∥2 ≤ ∥w−Zπ̃∥2+η∥Zπ̃∥2 ≤ ∥w−Zπmod
δ ∥2−ν+η∥Zπ̃∥2 ≤ δ/(2βmod

δ )−ν+η∥Zπ̃∥2.
Thus, for small enough η, ∥w − Zπ̃η∥2 will be strictly less than δ/(2βmod

δ ) for small enough

η and Pen(π̃η) ≤ (1 − η)C/βmod
δ < C/βmod

δ . This is a contradiction, since it would allow a

strictly larger value of β by setting π = π̃η.

The second statement follows immediately, since any pair β̃, π̃ satisfying the constraints

in the modulus (19) for δ = δλ with β̃ > βλ would have to have ∥w − Zπ̃∥2 < ∥w − Zπλ∥2
while maintaining the constraint Pen(πλ) ≤ tλ.

We now prove Theorem 2.1. The class of bias-variance optimizing estimators, L̂δ in

the notation of Armstrong and Kolesár (2018), is given by
(wβmod

δ +Zγmod
δ )′Y

(wβmod
δ +Zγmod

δ )′w
, where we use

eq. (26) in Armstrong and Kolesár (2018) to compute the form of this estimator under

centrosymmetry, and Lemma D.1 in Armstrong and Kolesár (2018) to calculate the derivative

ω′(δ), since the problem is translation invariant with ι given by the parameter β = 1, γ = 0.

Given λ with ∥w − Zπλ∥2 > 0, it follows from Lemma A.1 that, for δλ given in the lemma,

this estimator L̂δλ is equal to β̂λ = aλ
′Y where aλ = w−Zπδ

(w−Zπδ)′w
, as defined in Theorem 2.1.

The worst-case bias formula in Theorem 2.1 then follows from the fact that the maximum

bias is attained at γ = −γmod
δλ

= Ct−1
λ πλ by Lemma A.1 in Armstrong and Kolesár (2018)

(or Lemma 4 in Donoho, 1994).
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A.2 Proof of Corollary 2.1

Part (i) of Corollary 2.1 follows from Low (1995). In particular, consider the one-dimensional

submodel β ∈ [−C/tλ, C/tλ], γ = −πλβ. Let bλ = (w − Zπλ)/∥w − Zπλ∥22, and let B ∈
R(n−1)×n be an orthogonal matrix that’s orthogonal to bλ. Note that in this submodel,

B′Y = B′(w − Zπλ)β + B′ε = B′ε, which does not depend on the unknown parameter β,

and is independent of b′λY . Therefore, b′λY ∼ N (β, ∥bλ∥22σ2) is a sufficient statistic in this

submodel. By Theorem 1 in Low (1995), in this submodel, the estimator β̂λ = aλ
′Y = κb′λY ,

where κ = ∥w−Zπλ∥22/(w−Zπλ)′w minimizes supβ var(δ(Y )) among all estimators δ(Y ) with

supβ|Eβ[δ(Y )] − β| ≤ (1 − κ)C/tλ = CBλ, and, likewise, it minimizes supβ|Eβ[δ(Y )] − β|
among all estimators with supβ var(δ(Y )) ≤ κ2σ2∥bλ∥22 = Vλ. Since the worst-case bias

biasΓ(β̂λ) ≤ CBλ and variance (β̂λ) = Vλ are the same in the full model by Theorem 2.1, the

result follows.

Part (ii) of Corollary 2.1 is immediate from Donoho (1994). In particular, it holds with

κ∗MSE(X, σ,Γ) =
supδ>0(ω(δ)/δ)

2ρN(δ/2, σ)

supδ>0(ω(δ)/δ)
2ρA(δ/2, σ)

≥ 0.8,

where ω(δ) is defined in eq. (19), and ρA and ρN are the minimax risk among affine estimators,

and among all estimators, respectively, in the bounded normal means problem Y ∼ N (θ, σ2),

|θ| ≤ τ , defined in Donoho (1994), and the last inequality follows from eq. (4) in Donoho

(1994).

Finally, Part (iii) of Corollary 2.1 follows from Corollary 3.3 in Armstrong and Kolesár

(2018), with

κ∗FLCI(X, σ,Γ) =
(1− α)E [ω(2(z1−α − Z)) | Z ≤ z1−α]

2minδ cvα

(
ω(δ)
2ω′(δ)

− δ
2

)
ω′(δ)

,

where Z ∼ N (0, 1), ω(δ) is given in eq. (19), and by Lemma D.1 in Armstrong and Kolesár,

since the problem is translation invariant with ι given by the parameter β = 1, γ = 0,

ω′(δ) = δ/[w′(w − Zπmod
δ ) · ω(δ)]. The universal lower bound 0.717 when α = 0.05 follows

from Theorem 4.1 in Armstrong and Kolesár (2021b).

A.3 Proof of Theorem 2.2

Note that b̃iasΓ(β̂;µ
∗
a,w) = supγ∈Γ a

′Zγ. If a′w = 1, then it follows from eq. (5) that

biasΓ(β̂) = supγ∈Γ a
′Zγ. This proves the first part of the theorem.

To prove the second part of the theorem, note that, if µ is any signed measure not equal

to µ∗
a,w, then we must have (i) µ ({wj, zj}) ̸=

∑
i:zi=zj

aiwi for some j or (ii) µ must place

positive mass on some subset Z that does not intersect with {(wi, zi)}ni=1. If (i) holds, then
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the bias
∑n

i=1 aiwiβ(zi) + a′Zγ −
∫
β(z) dµ(w, z) can be made arbitrarily large by making

β(zj) large and setting β(z) = 0 for z ̸= zj. If (ii) holds, then the bias
∑n

i=1 aiwiβ(zi) +

a′Zγ−
∫
β(z) dµ(w, z) can be made arbitrarily large by setting β(z) to be constant on z ∈ Z

and equal to a number that is set to be arbitrarily large, and setting β(z) = 0 elsewhere.

Thus, b̃iasΓ(β̂;µ
∗
a,w) = ∞ if µ ̸= µ∗

a,w.

To prove the final assertion, the weights aλ that minimize the variance of the linear estima-

tor β̂ subject to the bound CBλ on worst-case bias biasΓ(β̂) for β in the constant treatment

effects model in eq. (1). It follows from the fist assertion that biasΓ(β̂) = minµ b̃iasΓ(β̂;µ) =

b̃iasΓ(β̂;µ
∗
a), where the minimization is over all signed measures µ that integrate to one.

Thus, under the heterogeneous TE model (13), the weights a∗λ solve eq. (14).

A.4 Proof of Theorem 4.1

To prove that the claimed upper bound holds forX ∈ En(η), we first note that, since the FLCI
based on β̂λ∗FLCI

is shorter than the FLCI based on any linear estimator a′Y , it suffices to show

that there exists a sequence of weight vectors a such that the worst-case bias and standard

deviation are bounded by constants times n−1/2(1+Ck1/q) when p > 1 or n−1/2(1+C
√
log k)

when p = 1. We consider the weights ãi =
vi∑n

j=1 vjwj
, where vi = wi− z′iδ, with δ given in the

definition of E(η). The variance of the estimator ã′Y is
∑n
i=1 v

2
i

(
∑n
i=1 viwi)

2 ≤ η−3/n. The worst-case

bias is

sup
γ : ∥γ∥p≤C

ã′Zγ = C∥Z ′ã∥q = n−1/2C
n−1/2∥Z ′(w − Zδ)∥q
n−1|w′(w − Zδ)|

≤ C
rq(k, n)

η2
,

where the first equality follows by Hölder’s inequality, and the last quality follows by def-

inition of En(η). This yields the convergence rate n−1/2 + Crq(k, n), as claimed. For

part (ii), by analogous reasoning, it suffices to consider the short regression estimator

β̂0 = w′Y/w′w. The variance of this estimator is σ2/w′w ≤ η−1σ2/n. The bias of the

estimator is w′Zγ/w′w. By the Cauchy-Schwarz inequality, this quantity is bounded in ab-

solute value by ∥w/w′w∥2∥Zγ∥2 = ∥Zγ/
√
n∥2/

√
w′w/n ≤ η−1/2C. This yields the desired

convergence rate.

A.5 Proof of Lemma 4.1

By the orthogonality condition for the best linear predictor, we have E[wivi] = E[v2i ], where

vi = wi − z′iδ, which is bounded from below uniformly over k by assumption. Since E[wivi]

is bounded from above by Ew2
i < ∞, it follows from the law of large numbers for triangu-

lar arrays that 1
n

∑n
i=1wivi ≥ η with probability approaching one once η is small enough.

Similarly, 1
n

∑n
i=1 v

2
i ≤ 1/η for large enough η by the law of large numbers for triangular
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arrays.

For the last inequality in the definition of En(η), first consider the case p > 1 so that

q < ∞. We then have E∥ 1√
n

∑n
i=1 zivi∥qq = E

∑k
j=1|
∑n

i=1 vizij/
√
n|q ≤ k · K by von Bahr

(1965), whereK is a constant that depends only on an upper bound for maxj E[|vizij|max{q,2}].

Applying Markov’s inequality gives the required bound. When p = 1, then q = ∞ so that

P

∥∥∥∥∥ 1√
n

n∑
i=1

zivi

∥∥∥∥∥
q

≥ η−1
√

log k

 ≤
k∑
j=1

P

(∣∣∣∣∣ 1√
n

n∑
i=1

vizij

∣∣∣∣∣ > η−1
√

log k

)
,

which is bounded by 2k exp (−K · η−2 log k) = 2k1−Kη
−2

for some constant K by Hoeffding’s

inequality for sub-Gaussian random variables (Vershynin, 2018, Theorem 2.6.3). This can

be made arbitrarily small uniformly in k by making η small, as required.

A.6 Proof of Theorem 4.2

By Corollary 2.1(iii), it suffices to show the bound for R∗
FLCI(X,C). We first note that any

estimator a′Y that does not have infinite worst-case bias must satisfy a′w = 1, which implies

1 ≤ ∥a∥2 · ∥w∥2 by the Cauchy-Schwarz inequality, so that the variance σ2a′a is bounded by

σ2/∥w∥22 ≤ σ2η−1/n. It therefore suffices to show that the worst-case bias is bounded by a

constant times C
√
k/n (for (i)), or a constant times C (for (ii)).

For part (i), let γ̃ = −Cη
√
k/nZ ′(ZZ ′)−1w. Observe

Pen(γ) = Cη
√
k/n

√
w′(ZZ ′)−1w ≤ Cη∥w/

√
n∥2max eig((ZZ ′/k)−1)1/2 ≤ C.

Let β̃ = Cη
√
k/n. Then wβ̃ + Zγ̃ = 0. Thus, β̃, γ̃ is observationally equivalent to the

parameter vector β = 0, γ = 0, which implies that the length of any CI must be at least

Cη
√
k/n.

Part (ii), follows by an analogous argument, with γ̃ = −Cη1/2Z ′(ZZ ′)−1w and β̃ = Cη1/2.

A.7 Proof of Theorem 4.3

Since the lower bound c·n−1/2 follows from standard efficiency bounds with finite dimensional

parameters (e.g. taking the submodel where δ = γ = 0), we show the lower bound Eϑ∗χ̂ ≥
Cn · c ·

√
log k/

√
n. To show this, we follow essentially the same arguments as Cai and Guo

(2017, Theorem 3) and Javanmard and Montanari (2018, Proposition 4.2), noting that the

required bounds on ∥δ∥ and ∥γ∥ hold for the distributions used in the lower bound. Under a

given parameter vector ϑ = (β, γ′, δ′, σ2, σ2
v), the data (Yi, wi, zi)

′ are i.i.d. normal with mean
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zero and variance matrix

Σϑ =


σ2 + β2(σ2

v + ∥δ∥22) + 2βδ′γ + ∥γ∥22 β(σ2
v + ∥δ∥22) + γ′δ βδ′ + γ′

β(σ2
v + ∥δ∥22) + γ′δ σ2

v + ∥δ∥22 δ′

βδ + γ δ Ik

 .

Let fπ denote the distribution of the data {Yi, wi, zi}ni=1 when the parameters follow a prior

distribution π, and let χ2(fπ0 , fπ1) denote the chi-square distance between these distributions

for prior distributions π0 and π1. By Lemma 1 in Cai and Guo (2017), it suffices to find a

prior distribution π1 over the parameter space Θ(Cn, Cn ·K
√
n/ log k, ηn) such that π1 places

probability one on β = β1,n for some sequence with |β1,n| bounded from below by a constant

times Cn
√
log k/

√
n and such that χ2(fπ0 , fπ1) → 0, where π0 is the distribution that places

probability one on ϑ∗ given in the statement of the theorem.

To this end, we first note that we can assume σ2
0 = σ2

v,0 = 1 without loss of generality,

since dividing Yi and wi by σ0 and σv,0 leads to the same model with parameters multiplied

by constants that depend only on σ0 and σv,0.

Let π1 be defined by a uniform prior for δ over the set with ∥δ∥0 = s and each element

δj ∈ {0, ν}, where s and ν will be determined below. We then set the remaining parameters

as deterministic functions of δ: β = −∥δ∥22/(1 − ∥δ∥22), γ = (1 − β)δ, σ2
v = 1 − ∥δ∥22 and

σ2 = (1− 2∥δ∥22)/(1− ∥δ∥22). We note that ∥δ∥2 is constant under this prior, so that β is a

unit point mass as required. This leads to the variance matrix

Σϑ =


1 0 δ′

0 1 δ′

δ δ Ik


for ϑ in the support of π1, and Σϑ∗ = Ik+2 under the point mass π0. It now follows from

eqs. (118) and (119) in Javanmard and Montanari (2018) (which are applications of Lemmas

2 and 3 in Cai and Guo (2017)) that

χ2(fπ0 , fπ1) ≤ e
s2

k−s

(
1 +

s

k
(e4nν

2 − 1)
)s

− 1.

We set ν = (
√
cν/2) ·

√
log k/

√
n for some cν > 0 so that e4nν

2
= kcν . We then set s to

be the greatest integer less than Cn/ν = (2Cn/
√
cν) · (

√
n/

√
log k). The condition that

Cn ≤
√
k/n · k−η̃ for some η̃ > 0 then guarantees that s ≤ kψ for some ψ < 1/2, so that the
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above display is bounded by

ek
2ψ−1(1−kψ−1)−1

(
1 +

1

s
k2ψ−1(kcν − 1)

)s
− 1.

This converges to zero as required if cν is chosen small enough so that 2ψ + cν < 1.

Finally, we note that, under π1, ∥δ∥22 = (1 + o(1))sν2 = (1 + o(1))Cnν = (1 + o(1)) ·
Cn(

√
cν/2) ·

√
log k/

√
n and |β| = ∥δ∥22(1 + o(1)) = (1 + o(1))Cn(

√
cν/2) ·

√
log k/

√
n. Thus,

we obtain a lower bound of Cn · c ·
√
log k/

√
n as required.

Appendix B Additional results

This appendix presents additional results that are useful for implementing Algorithm 3.1,

and for assessing the plausibility of the assumption Pen(γ) ≤ C. Appendix B.1 derives the

properties of a regularized estimator of the regression function wiβ+z
′
iγ. Appendix B.2 gives

conditions under which this estimator can be used to construct initial estimates of residuals

in Algorithm 3.1. Appendix B.3 presents a lower CI for C that can be used to assess the

plausibility of the assumption Pen(γ) ≤ C.

In this appendix, we focus primarily on the ℓp penalty Pen(γ) = ∥γ2∥p, with k2 → ∞
and k1/n → 0. To state the results concisely, we use the notation θ = (β, γ′)′ and let

Θ = R × Γ denote its parameter space. Let X = (X1, X2), where X1 = (w,Z1), and

X2 = Z2. We partition θ accordingly, with θ1 = (β, γ′1)
′, and θ2 = γ2. Let HX1 = X1X

+
1

and MX1 = I − HX1 denote projections onto the column space of X1 and its orthogonal

complement, where X+
1 denotes the pseudo-inverse (so that X+

1 = (X ′
1X1)

−1X ′
1 if X1 is full

rank).

We allow the distribution Q of ε to be unknown and possibly non-Gaussian, and only

maintain the assumption that εi is independent across i. The class of possible distributions

for Q is denoted by Qn. We use Pθ,Q and Eθ,Q to denote probability and expectation when Y

is drawn according to Q ∈ Qn and θ ∈ Θ, and we use the notation PQ and EQ for expressions

that depend on Q only and not on θ.

We use the following assumption repeatedly throughout this appendix.

Assumption B.1. There exists η > 0 such that, for all i and n and all Q ∈ Qn,

PQ(|εi| > t) ≤ 2 exp(−ηt) when p = 1EQ[|εi|max{2+η,q}] < 1/η when p > 1

and 1/η < EQε
2
i . In addition, the elements of MX1X2 are bounded by some constant KX

uniformly over n.
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B.1 Estimating the regression function globally

Consider the regularized regression estimator of θ, given by

θ̂ = argmin
ϑ

∥Y −Xϑ∥22/n+ λ∥ϑ2∥p. (20)

In order to derive the rate of convergence θ̂ in Theorem B.1 below, we first give an elementary

property of this estimator, following standard arguments (see Bühlmann and van de Geer

(2011, Section 6.2) and van de Geer (2000, Chapter 10.1)).

Lemma B.1. If ∥2X ′
2MX1ε∥q/n ≤ λ0, then ∥MX1X2(θ̂2 − θ2)∥22/n + (λ − λ0)∥θ̂2∥p ≤ (λ +

λ0)∥θ2∥p.

Proof. Write the objective function as

∥HX1(Y −X2ϑ2)−X1ϑ1∥22/n+ ∥MX1Y −MX1X2ϑ2∥22/n+ λ∥ϑ2∥p.

The first summand can be set to zero for any ϑ2 by taking ϑ1 = X+
1 (Y −X2ϑ2). Therefore,

θ̂2 = argmin
ϑ

∥MX1Y −MX1X2ϑ2∥22/n+ λ∥ϑ2∥p,

with θ̂1 = X+
1 (Y −X2θ̂2). This implies HX1ε = HX1Y −HX1X

′θ = HX1X
′(θ̂ − θ), so that

∥X(θ̂ − θ)∥22/n = ∥HX1ε∥22/n+ ∥MX1X2(θ̂2 − θ2)∥22/n, (21)

Using the fact that θ̂2 attains a lower value of the objective than the true parameter value

θ2, we obtain an ℓp version of what in the ℓ1 case Bühlmann and van de Geer (2011, Lemma

6.1) term “the Basic Inequality”,

∥MX1X2(θ̂2 − θ2)∥22/n+ λ∥θ̂2∥p ≤ 2ε′MX1X2(θ̂2 − θ2)/n+ λ∥θ2∥p.

By Hölder’s inequality, 2ε′MX1X2(θ̂2 − θ2) ≤ ∥2X ′
2MX1ε∥q∥θ̂2 − θ2∥p so that, on the event

∥2X ′
2MX1ε∥q/n ≤ λ0, we have

∥MX1X2(θ̂2 − θ2)∥22/n+ λ∥θ̂2∥p ≤ λ0∥θ̂2 − θ2∥p + λ∥θ2∥p ≤ λ0∥θ̂2∥p + (λ+ λ0)∥θ2∥p,

which implies the result.

We now use Lemma B.1 to derive rates of convergence for the regularized regression

estimator in eq. (20) for estimating the regression function in ℓ2 loss. For simplicity, we
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use a fixed sequence for the penalty parameter λ satisfying certain rate conditions. This

yields simple sufficient conditions that allow θ̂ to be used for auxiliary purposes such as

standard error construction. In practice, data-driven methods such as cross-validation may

be appealing. We discuss another possible choice based on moderate deviations bounds in

Remark B.1 in Appendix B.3 below. We leave the analysis of θ̂ under such choices of λ for

future research.

Theorem B.1. Suppose that Assumption B.1 holds. Let θ̂ be the penalized regression esti-

mator defined in eq. (20) with λ = Knrq(k2, n), where Kn → ∞ and rq(k, n) given in eq. (15).

Then

sup
θ∈Rk+1

sup
Q∈Qn

Pθ,Q

(
∥X(θ̂ − θ)∥22/n > Kn((k1 + 1)/n+ 2∥θ2∥prq(k2, n))

)
→ 0,

Proof. By Lemma B.2 below, if we set λ0 = λ = Knrq(k2, n), the condition of Lemma B.1,

and hence the conclusion that ∥MX1X2(θ̂ − θ)∥22/n ≤ 2Kn∥θ2∥prq(k2, n), holds with prob-

ability approaching one uniformly over θ ∈ Rk+1 and Q ∈ Qn. In addition, since HX1 is

idempotent with rank at most k1+1 and EQεε
′ is diagonal with elements bounded uniformly

over Q ∈ Qn, we have EQ∥HX1ε∥22/n ≤ K̃(k1+1)/n for some constant K̃. The result follows

by Markov’s inequality and eq. (21).

Lemma B.2. Under Assumption B.1, infQ∈Qn PQ(∥2X ′
2MX1ε∥q/n ≤ Knrq(k2, n)) → 1.

Proof. Let x̃ij = (2MX1X2)ij. For q <∞, we have

EQ∥2X ′
2MX1ε∥qq = EQ

k2∑
j=1

(
n∑
i=1

x̃ijεi

)q

≤ k2 ·K · nq/2

for some constant K that depends only on η, q and KX , by von Bahr (1965). The result

then follows by Markov’s inequality. For q = ∞, we have

PQ

(
∥2X ′

2MX1ε∥q/n > Kn

√
log k2/

√
n
)
= PQ

(
max
j

∣∣∣∣∣
n∑
i=1

x̃ijεi

∣∣∣∣∣ /n > Kn

√
log k2/

√
n

)
,

which, for some K̃ > 0, is bounded by 2k2 exp(−K̃ ·K2
n log k2) = 2k

1−K̃·K2
n

2 → 0 by Hoeffding’s

inequality for sub-Gaussian random variables (Vershynin, 2018, Thm. 2.6.3).

B.2 Feasible CIs with unknown error distribution

This appendix presents formal results for feasible CIs when the error distribution is unknown.

Appendix B.2.1 presents general results for feasible CIs for linear estimators in our setting.
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Appendix B.2.2 specializes these results to the feasible CIs in Section 3, with some technical

modifications.

B.2.1 General results

We consider standard errors for linear estimators β̂a = a′Y , deviating slightly from the

notation in the main text by making the dependence on the weights explicit with the subscript

a. As in the main text, the weights a are nonrandom: they can depend on X but not on Y .

We consider asymptotics where the weights a are allowed to depend on n so that a1, . . . , an

is a triangular array rather than a sequence, but we leave this implicit in the notation.

Let θ̂ be an estimate of θ, and let ε̂ = Y −Xθ̂. Consider the estimator V̂a =
∑n

i=1 a
2
i ε̂

2
i

of VQ = varQ(β̂a) =
∑n

i=1 a
2
iEQε

2
i . We consider coverage of the feasible bias-aware CI

β̂a ± cvα(biasΓ(β̂a)/V̂
1/2
a ) · V̂ 1/2

a , (22)

where biasΓ(β̂a) is the worst-case bias, given in eq. (5). Under non-Gaussian errors, valid

coverage will require conditions on the quantity

Lind(a) = max
1≤i≤n

a2i∑n
j=1 a

2
j

in order to invoke a Lindeberg central limit theorem. This quantity, which we refer to as the

(maximal) Lindeberg weight, turns out to also be relevant for controlling the contribution

of estimation error in θ̂ in the variance estimate V̂a. In particular, in the following theorem,

there is a tradeoff between the rate at which Lind(a) → 0 and the ℓ2 rate of convergence of

the estimator Xθ̂ of the regression function.

Theorem B.2. Suppose that, for some η > 0, η ≤ EQε
2
i and EQ|εi|2+η ≤ 1/η for all i and

all Q ∈ Qn. Suppose also that, for some sequence cn with cn = O(
√
n), we have

(i) max {
√
ncn, 1} · Lind(a) → 0; and

(ii) infθ∈Θ,Q∈Qn Pθ,Q(∥X(θ̂ − θ)∥2 ≤ cn) → 1.

Then, for any δ > 0, infθ∈Θ,Q∈Qn PQ

(
|(V̂a − VQ)/VQ| < δ

)
→ 1. Furthermore,

lim inf
n

inf
θ∈Θ,Q∈Qn

PQ

(
β ∈

{
β̂a ± cvα(biasΓ(β̂a)/

√
V̂a) ·

√
V̂a

})
≥ 1− α. (23)
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Proof. We have

V̂a − VQ
VQ

=

∑n
i=1 a

2
i (ε̂

2
i − ε2i )

VQ
+

∑n
i=1 a

2
i (ε

2
i − EQε

2
i )

VQ
. (24)

Let b̃i = a2i /
∑n

j=1 a
2
j so that max1≤i≤n b̃i = Lind(a). The second term in eq. (24) is bounded

by |
∑n

i=1 b̃i(ε
2
i − EQε

2
i )|/η. The absolute 1 + η moment of this quantity is bounded by

a constant times
∑n

i=1 b̃
1+η
i · 1/η1+η by von Bahr and Esseen (1965). This is bounded by

max1≤i≤n b̃
η
i ·
∑n

i=1 b̃i/η
1+η = max1≤i≤n b̃

η
i /η

1+η = Lind(a)/η1+η → 0. The first term in

eq. (24) is bounded by Lind(a)/η times

n∑
i=1

|ε̂2i − ε2i | =
n∑
i=1

|ε̂i + εi| · |ε̂i − εi| ≤ ∥ε̂+ ε∥2∥ε̂− ε∥2 ≤ (∥ε̂− ε∥2 + 2∥ε∥2) ∥ε̂− ε∥2.

For some constant K that depends only on η, we have 2∥ε∥2 ≤ K
√
n with probability

approaching one uniformly over Q ∈ Qn. Since ∥ε̂ − ε∥2 = ∥X(θ̂ − θ)∥2 ≤ cn it follows

that, with probability approaching one uniformly over θ ∈ Θ and Q ∈ Qn, the first term

in eq. (24) is bounded by Lind(a) · (K
√
n + cn) · cn → 0. It follows that for any δ > 0,

infθ∈Θ,Q∈Qn PQ

(∣∣∣(V̂a − VQ)/VQ

∣∣∣ < δ
)
→ 1. Coverage of the CI then follows from Theorem

F.1 in Armstrong and Kolesár (2018), with the central limit theorem condition following by

using the weights and moment bounds to verify the Lindeberg condition (see Lemma F.1 in

Armstrong and Kolesár (2018)).

For the setting in Theorem B.1, condition (ii) in Theorem B.2 will hold with cn =√
Knn((k1 + 1)/n+ Cnrq(k2, n)) for a slowly increasing constant Kn. Condition (i) in Theo-

rem B.2 will then hold so long as
√
Kn((k1 + 1)/n+ Cnrq(k2, n)) ·nLind(a) → 0. This gives

the following result.

Corollary B.1. Suppose that Assumption B.1 holds. Let ε̂ be the residuals from the regu-

larized regression in eq. (20), with λ given in Theorem B.1 for some Kn → ∞. Then, if√
Kn((k1 + 1)/n+ Cnrq(k2, n)) · nLind(a) → 0, the coverage result in eq. (23) holds with

Θ = Rk1+1 × {γ2 : ∥γ2∥p ≤ Cn}.

B.2.2 Optimized weights

We now apply the results in Appendix B.2.1 to the feasible CIs based on optimized weights

in Algorithm 3.1. We make two modifications relative to the baseline algorithm. First, we

impose a bound on the Lindeberg weight Lind(a), as described in Remark 3.1. Second, we
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compute the weights using some nonrandom initial guess σ̃2 in Step 1 of the algorithm.11

In the homoskedastic model with error variance σ̃2, a FLCI centered at the linear esti-

mator β̂a = a′Y has length

2σ̃∥a∥2 · cvα(biasΓ(β̂a)/(σ̃∥a∥2))

where biasΓ(β̂a) is the worst-case bias of the linear estimator β̂a = a′Y . Let the weights a∗b
minimize the above display subject to the constraint Lind(a) ≤ b.

It follows immediately from Corollary B.1 that a feasible CI centered at β̂a∗b will have

asymptotic coverage so long as the constraint on b is chosen appropriately.

Theorem B.3. Suppose that Assumption B.1 holds. Let ε̂ be the residuals from the reg-

ularized regression in eq. (20), with λ given in Theorem B.1 for some Kn → ∞. Let

Γ = Rk1 × {γ2 : ∥γ2∥p ≤ Cn} so that Θ = R × Rk1 × {γ2 : ∥γ2∥p ≤ Cn}. Consider a se-

quence bn such that
√
Kn((k1 + 1)/n+ Cnrq(k2, n)) ·n · bn → 0. Then the CI in eq. (22) with

a = a∗bn satisfies

lim inf
n

inf
θ∈Θ,Q∈Qn

PQ

(
β ∈ {β̂a ± cvα(biasΓ(β̂a)/V̂

1/2
a ) · V̂ 1/2

a }
)
≥ 1− α.

Imposing a condition on the Lindeberg weight can in general affect the performance

of the CI. The following theorem shows that the optimal rate of convergence derived in

Theorem 4.1 will still be obtained if the constraint bn on the Lindeberg weight is chosen

appropriately.

Theorem B.4. Suppose the conditions of Theorem B.3 hold, with k1 = 0 so that Γ = {γ :

∥γ∥p ≤ Cn}. Suppose also that, for some η > 0, the design matrix X is in the set En(η)
defined in Section 4.1 for large enough n, and that for some sequence bn, max1≤i≤n(wi −
z′iδ)

2/n = o(bn) and 1
n

∑n
i=1(wi − z′iδ)

2 is bounded away from zero where δ is given in the

definition of En(η) in Section 4.1. Then there exists a constant K such that the CI in eq. (22)

with a = a∗bn satisfies

lim
n→∞

sup
θ∈Θ,Q∈Qn

PQ

(
2 cvα(biasΓ(β̂a)/V̂

1/2
a ) · V̂ 1/2

a ≥ K(n−1/2 + Cnrq(k, n))
)
= 0.

Proof. Let vi = wi − z′iδ and ãi = vi/
∑n

j=1 viwj where δ is given in the definition of En(η).
Note that Lind(ã) = max1≤i≤n(wi − z′iδ)

2/
∑n

j=1(wj − z′jδ)
2. Under the assumptions of the

theorem, this is bounded by a constant times max1≤i≤n(wi − z′iδ)
2/n = o(bn). Thus, the

11Alternatively, one could use sample-splitting or cross-fitting. In our Monte Carlos, we find that the
feasible CIs have good coverage without imposing these technical modifications.
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weights ã are feasible for the constrained optimization problem that defines a∗bn . It follows

that

2σ̃∥a∗bn∥2 · cvα(biasΓ(β̂a∗bn )/(σ̃∥a
∗
bn∥2)) ≤ 2σ̃∥ã∥2 · cvα(biasΓ(β̂ã)/(σ̃∥ã∥2)).

It follows from the proof of Theorem 4.1 that the right-hand side of the above display is

bounded by a constant times n−1/2+Cnrq(k, n). Furthermore, by the uniform consistency of

V̂ (which follows from Theorem B.2) and the fact that the variance of β̂a∗bn is bounded from

above uniformly over Qn, the width 2 · cvα(biasΓ(β̂a)/
√
V̂ ) ·

√
V̂ is bounded by a constant

times the left-hand side of the above display with probability approaching one uniformly

over θ ∈ Θ and Q ∈ Qn. The result follows.

While Theorem B.3 imposes an upper bound bn = o(n−1(Kn((k1+1)/n+Cnrq(k2, n)))
−1/2)

on bn, Theorem B.4 imposes a lower bound on bn (it must decrease more slowly than

max1≤i≤n(wi − z′iδ)
2/n). To interpret the latter condition, note that wi − z′iδ plays the

role of the residual in a best linear predictor regression of wi on zi in a random design set-

ting. Thus, the condition max1≤i≤n(wi−z′iδ)2/n = o(bn) is a tail condition on this best linear

predictor error.

Depending on how quickly max1≤i≤n(wi− z′iδ)
2 increases, there will be a range of choices

of bn that satisfy the conditions of both Theorem B.3 and Theorem B.4. For example, if

max1≤i≤n(wi−z′iδ)2 is bounded, then the conditions of Theorem B.4 will hold with bn = Kn/n

for a slowly increasing sequence Kn. Taking the same sequence Kn in the choice of λ in

Theorem B.1 for simplicity, the condition in Theorem B.3 becomes√
Kn((k1 + 1)/n+ Cnrq(k2, n)) · n · bn =

√
Kn((k1 + 1)/n+ Cnrq(k2, n)) ·Kn → 0.

Since Cnrq(k2, n) is the rate at which the optimal CI shrinks, this condition is essentially the

same as requiring that the optimal CI shrinks towards zero as n→ ∞.

B.3 Lower CIs for C

We present a lower CI for the regularity parameter C, which can be used to assess the

plausibility of the assumption Pen(γ2) ≤ C. Let θ̂2(λ) denote the regularized regression

estimator of γ2, given in eq. (20), with penalty λ. Let λ∗α denote an upper bound for the

1− α quantile of ∥2X ′
2MX1ε∥q/n. Let

Ĉ = sup
λ>λ∗α

λ− λ∗α
λ+ λ∗α

∥θ̂2(λ)∥p. (25)
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In the idealized finite sample setting with ε ∼ N (0, σ2In) with σ
2 known, λ∗α can be computed

exactly, so that Ĉ is feasible.

Theorem B.5. Consider Ĉ in eq. (25) with λ∗α given by the 1−α quantile of ∥2X ′
2MX1ε∥q/n.

Then, for any β, γ1, γ2 with ∥γ2∥p ≤ C, we have Pβ,γ1,γ2(C ∈ [Ĉ,∞)) ≥ 1− α.

Proof. It follows from Lemma B.1 that, on the event ∥2X ′
2MX1ε∥q/n ≤ λ∗α (which holds with

probability at least 1−α by assumption), we have λ−λ∗α
λ+λ∗α

∥θ̂2(λ)∥p ≤ ∥γ2∥p ≤ C for all λ > λ∗α.

Thus, the supremum of this quantity over λ in this set is also no greater than C on this

event.

We now present a feasible version of this CI when the error distribution is unknown and

possibly heteroskedastic in the case where p = 1. Let x̃ij = (M ′
X1
X2)ij. Since q = ∞ in this

case, we need to choose λ̂∗α such that

2∥X2M
′
X1
ε∥∞/n = max

1≤j≤k2

∣∣∣∣∣
n∑
i=1

2x̃ijεi/n

∣∣∣∣∣ ≤ λ̂∗α

with probability at least 1 − α asymptotically. Let V̂j =
∑n

i=1(2x̃ij/n)
2ε̂2i , where ε̂i is the

residual from an initial regularized regression with λ chosen as in Theorem B.1 for some

slowly increasing Kn. This leads to the moderate deviations critical value λ̂∗α, which sets

α =

k2∑
j=1

2Φ(−λ̂∗α/V̂
1/2
j ). (26)

Remark B.1. The analysis in Theorem B.1 of the regularized regression estimator in eq. (20)

relies on choosing a penalty parameter greater than 2∥X2M
′
X1
ε∥∞/n with high probability,

which is precisely the goal of the critical value λ̂∗α given in eq. (26). This suggests an iterative

procedure in which one uses λ̂∗α (perhaps with some sequence αn converging slowly to zero) as

a data-driven penalty parameter in the regression in eq. (20) after using some initial penalty

choice satisfying the conditions of Theorem B.1 to form the residuals used to compute λ̂∗α.

The penalty choice λ̂∗α is related to data-driven choices of the lasso penalty in the case

with unknown error distribution. Belloni et al. (2012) use similar ideas to choose the penalty

parameter in this setting under ℓ0 constraints, although our implementation is somewhat dif-

ferent, since our parameter space constrains the penalty loadings we place on each parameter.

While λ̂∗α does not take into account correlations between the moments, one could take into

account these correlations using a bootstrap implementation, as suggested by Chernozhukov

et al. (2013).
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Theorem B.6. Suppose Assumption B.1 holds with p = 1 and that and 1
n

∑n
i=1 x̃

2
ij ≥ η

for j = 1, . . . , k for all n, where x̃ij = (MX1X2)ij. Let λ̂∗α be given in eq. (25) with V̂j

formed using residuals ε̂ from the regularized regression in eq. (20) with penalty λ chosen as

in Theorem B.1 for some Kn → ∞ with Kn(k1/n + (Cn + 1)
√
log k2/

√
n) · (log k2)2 → 0.

Then

lim sup
n

sup
β,γ : ∥γ2∥1≤Cn

sup
Q∈Qn

Pθ,Q

(
max

1≤j≤k2
|
n∑
i=1

2x̃ijεi/n| > λ̂∗α

)
≤ α.

In particular, letting Ĉ be given in eq. (25) with λ∗α given by λ̂∗α, we have

lim inf
n

inf
β,γ : ∥γ2∥1≤Cn

inf
Q∈Qn

Pθ,Q

(
Cn ∈ [Ĉ,∞)

)
≥ 1− α.

Proof. Let Ṽj =
∑n

i=1(2x̃ij/n)
2ε2i and let VQ,j =

∑n
i=1(2x̃ij/n)

2EQε
2
i . Note that

|V̂j − Ṽj| =

∣∣∣∣∣
n∑
i=1

(2x̃ij/n)
2(ε̂2i − ε2i )

∣∣∣∣∣ =
∣∣∣∣∣
n∑
i=1

(2x̃ij/n)
2(ε̂i + εi)(ε̂i − εi)

∣∣∣∣∣
≤ (2KX/n)

2∥ε̂+ ε∥2∥ε̂− ε∥2 ≤ (2KX/n)
2(2∥ε∥2 + ∥ε̂− ε∥2)∥ε̂− ε∥2.

On the event that 2∥ε∥2 ≤
√
nK̃ and

∥ε̂− ε∥2 = ∥X(θ̂ − θ)∥2 ≤
√
nKn · (k1/n+ 2Cn

√
log n/

√
n)1/2,

which holds with probability approaching one uniformly overQ ∈ Qn when K̃ is large enough,

this is bounded by (2KX/n)
2(K̃

√
n +

√
nKn(k1/n + 2Cn

√
log k2/

√
n)1/2) ·

√
nKn(k1/n +

2Cn
√
log k2/

√
n)1/2. Since VQ,j ≥ η̃/n uniformly over j and over n for some η̃ > 0, this

implies that, on this event, max1≤j≤k2

∣∣∣V̂j − Ṽj

∣∣∣ /VQ,j is bounded by

4η̃−1(K2
X/n)(K̃

√
n+
√
nKn(k1/n+2Cn

√
log k2/

√
n)1/2)·

√
nKn(k1/n+2Cn

√
log k2/

√
n)1/2,

which in turn is bounded by a constant times K
1/2
n (k1/n + 2Cn

√
log k2/

√
n)1/2 so long as

this quantity converges to zero.

In addition, note that (Ṽj−VQ,j)/VQ,j =
∑n

i=1 ãij(εi−EQεi)/n, where ãij = x̃2ij/(nVj,Q) ≤
K2
X η̃

−1 and η̃ is a lower bound for nVQ,j. Using this bound on ãij and the tail bound on εi,

it follows from Bernstein’s inequality for sub-exponential random variables that, for δ < 1,

PQ(|Ṽj − VQ,j|/VQ,j ≥ δ) is bounded from above by 2 exp(−cnδ2) for some constant c that

depends only on KX , η̃ and η. Thus, for any sequence δn, we have PQ(max1≤j≤k2 |Ṽj −
VQ,j|/VQ,j ≥ δ) ≤ 2k2 exp(−cnδ2n), which converges to zero so long as δn is bounded from
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below by a large enough constant times
√
log k2/

√
n.

This gives the rate of convergence for V̂j/VQ,j to one which, by continuous differentiability

of t 7→
√
t at t = 1, gives the same rates for

√
V̂j/
√
VQ,j. In particular, letting cn be

given by a large enough constant times K
1/2
n (k1/n + (Cn + 1)

√
log k2/

√
n)1/2, the event

max1≤j≤k2

∣∣∣∣√V̂j/
√
VQ,j − 1

∣∣∣∣ ≤ cn holds with probability approaching one uniformly over

Q ∈ Qn and β, γ with ∥γ2∥ ≤ Cn. On this event, we have

α =

k2∑
j=1

2Φ(−λ̂∗α/
√
V̂j) ≥

k2∑
j=1

2Φ(−λ̂∗α/(
√
VQn,j(1− cn))).

Thus, letting λα,n solve α =
∑k2

j=1 2Φ(−λα,n/(
√
VQn,j)), we have λ̂

∗
α/(1− cn) = λα̃,n for some

α̃ ≤ α, so that λ̂∗α/(1 − cn) ≥ λα,n. It follows that the non-coverage probability under any

sequence of parameters with ∥γ2∥p ≤ Cn and any sequence Qn ∈ Qn is bounded by a term

that converges to zero plus

PQn

(
max

1≤j≤k2

∣∣∣∣∣
n∑
i=1

2x̃ijεi

∣∣∣∣∣ > (1− cn)λα,n

)
≤

k2∑
j=1

Fn,j(−(1− cn)λα,n/
√
VQn,j)

=

k2∑
j=1

2Φ(−λα,n/
√
VQn,j) · An,j ·Bn,j,

where Fn,j(t) = PQn
(∣∣∑n

i=1 2x̃ijεi/
√
VQn,j

∣∣ > t
)
, An,j =

Φ(−(1−cn)λα,n/
√
VQn,j)

Φ(−λα,n/
√
VQn,j)

and Bn,j =

Fn,j(−(1−cn)λα,n/
√
VQn,j)

2Φ(−(1−cn)λα,n/
√
VQn,j)

. Since
∑k2

j=1 2Φ(−λα,n/
√
VQn,j) = α by definition, it suffices to show

that lim supn→∞max1≤j≤k2 max{An,j, Bn,j} ≤ 1.

For An,j, we use the bound Φ(−s)/Φ(−t) ≤ [s−1/(t−1− t−3)] exp((t2−s2)/2) (this follows
from the bound (t−1−t−3) exp(−t2/2)/

√
2π ≤ Φ(−t) ≤ t−1 exp(−t2/2)/

√
2π given in Lemma

2, Section 7.1 in Feller (1968)), which gives

An,j ≤
(1− cn)

−1

1− (λα,n/
√
VQn,j)

−2
exp

(
[1− (1− cn)

2]λ2α,n/(2VQn,j)
)
.

Using standard calculations and the fact that nVQn,j is uniformly bounded from above and

below, we have (log k2)/K ≤ λ2α,n/VQn,j ≤ K log k2 for some constant K. Thus, the right-

hand side of the above display converges to 1 uniformly over n and 1 ≤ j ≤ k so long as

cn log k2 → 0, which is guaranteed by the assumptions of the theorem.

For Bn,j, we use a moderate deviations bound as in Feller (1971, Chapter 16.7). In
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particular, the bound |Fn,j(t)/(2Φ(t)) − 1| ≤ K̃t3/
√
n holds for all 1 ≤ t < tn, where tn is

any sequence with tn/n
1/6 → 0, and K̃ depends only on tn and the moment conditions and

tail bounds on εi (Armstrong and Chan, 2016, Lemma B.5). Using the fact that λα,n/
√
VQn,j

is bounded by a constant times
√
log k2, it follows that lim supn→∞ max1≤j≤k2 Bn,j ≤ 1 so

long as (log k2)
3/2/

√
n→ 0, which is guaranteed by the conditions of the theorem.
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