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Abstract

We construct robust empirical Bayes confidence intervals (EBCIs) in a normal

means problem. The intervals are centered at the usual linear empirical Bayes estima-

tor, but use a critical value accounting for shrinkage. Parametric EBCIs that assume a

normal distribution for the means (Morris, 1983b) may substantially undercover when

this assumption is violated, and we derive a simple rule of thumb for gauging the

potential coverage distortion. In contrast, our EBCIs control coverage regardless of

the means distribution, while remaining close in length to the parametric EBCIs when

the means are indeed Gaussian. If the means are treated as fixed, our EBCIs have

an average coverage guarantee: the coverage probability is at least 1 − α on average

across the n EBCIs for each of the means. Our empirical applications consider effects

of U.S. neighborhoods on intergenerational mobility, and structural changes in a large

dynamic factor model for the Eurozone.
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1 Introduction

Empirical researchers in economics are often interested in estimating effects for a large

number of individuals or units, such as estimating teacher quality for teachers in a given

geographic area. In such problems, it has become common to shrink unbiased but noisy

preliminary estimates of these effects toward baseline values, say the average fixed effect

for teachers with the same experience. In addition to estimating teacher quality (Kane and

Staiger, 2008; Jacob and Lefgren, 2008; Chetty et al., 2014), shrinkage techniques have been

used recently in a wide range of applications including estimating school quality (Angrist

et al., 2017), hospital quality (Hull, 2020), the effects of neighborhoods on intergenerational

mobility (Chetty and Hendren, 2018), and patient risk scores across regional health care

markets (Finkelstein et al., 2017).

The shrinkage estimators used in these applications can be motivated by an empirical

Bayes (EB) approach. One imposes a working assumption that the individual effects are

drawn from a normal distribution (or, more generally, a known family of distributions). The

mean squared error (MSE) optimal point estimator then has the form of a Bayesian posterior

mean, treating this distribution as a prior distribution. Rather than specifying the unknown

parameters in the prior distribution ex ante, the EB estimator replaces them with consistent

estimates, just as in random effects models. This approach is attractive because one does not

need to assume that the effects are in fact normally distributed, or even take a “Bayesian” or

“random effects” view: the EB estimators have lower MSE (averaged across units) than the

unshrunk unbiased estimators, even when the individual effects are treated as nonrandom

(James and Stein, 1961).

In spite of the popularity of EB methods, it is currently not known how to provide uncer-

tainty assessments to accompany the point estimates without imposing strong parametric

assumptions on the effects distribution. Indeed, Hansen (2016, p. 116) describes inference

in shrinkage settings as an open problem in econometrics. The natural EB version of a confi-

dence interval (CI) takes the form of a Bayesian credible interval, again using the postulated

effects distribution as a prior (Morris, 1983b). If the distribution is correctly specified, this

parametric empirical Bayes confidence interval (EBCI) will cover 95%, say, of the true ef-

fect parameters, under repeated sampling of the observed data and of the effect parameters.

We refer to this notion of coverage as “EB coverage”, following the terminology in Morris

(1983b, Eq. 3.6). Unfortunately, we show that, in the context of a normal means model,

the parametric EBCI with nominal level 95% can have actual EB coverage as low as 74%

for certain non-normal distributions. On the other hand, if the degree of shrinkage is small,

the coverage distortion is limited, and we derive a simple “rule of thumb”, in the form of a
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universal cut-off value on the degree of shrinkage, ensuring that the coverage distortion of

the parametric EBCI is limited.

To allow easy uncertainty assessment in EB applications that is reliable irrespective

of the degree of shrinkage, we construct novel robust EBCIs that take a simple form and

control EB coverage regardless of the true effects distribution. Our baseline model is an

(approximate) normal means problem Yi ∼ N(θi, σ
2
i ), i = 1, . . . , n. In applications, Yi

represents a preliminary asymptotically unbiased estimate of the effect θi for unit i. Like the

parametric EBCI that assumes a normal distribution for θi, the robust EBCI we propose is

centered at the normality-based EB point estimate θ̂i, but it uses a larger critical value to

take into account the bias due to shrinkage. For convenient practical implementation, we

provide software implementing our methods. EB coverage is controlled in the class of all

distributions for θi that satisfy certain moment bounds, which we estimate consistently from

the data (similarly to the parametric EBCI, which uses the second moment). We show that

the baseline implementation of our robust EBCI is “adaptive” in the sense that its length is

close to that of the parametric EBCI when the θi’s are in fact normally distributed. Thus,

little efficiency is lost from using the robust EBCI in place of the non-robust parametric one.

In addition to controlling EB coverage, we show that the robust 1 − α EBCIs have a

frequentist average coverage property: If the mean parameters θ1, . . . , θn are treated as fixed,

the coverage probability—averaged across the n parameters θi—is at least 1−α. This average

coverage property weakens the usual notion of coverage, which would be imposed separately

for each θi.
1 We discuss the motivation for using the average coverage criterion in the present

context in Remark 2.1 below. Due to the weaker coverage requirement, our robust EBCIs

are shorter than the usual CI centered at the unshrunk estimate Yi, and often substantially

so. Intuitively, the average coverage criterion only requires us to guard against the average

coverage distortion induced by the biases of the individual estimators θ̂i, and the data is quite

informative about whether most of these biases are large, even though individual biases are

difficult to estimate.

We also show how the underlying ideas may be translated to other shrinkage settings,

not just the normal means model. Our CI construction generalizes naturally to settings in

which one has available approximately normal, but biased estimates of parameters θi, and

one can consistently estimate moments of the bias normalized by the standard error. This

includes classic nonparametric estimation problems, such as estimating the conditional mean

function using local polynomials or regression trees. Here θi corresponds to the conditional

mean given covariates of observation i, and the resulting CIs can be interpreted as an average

1This stands in contrast to the requirement of simultaneous coverage, which strengthens the usual notion
of (pointwise) coverage.
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coverage confidence band for the regression function.

We illustrate our results in two empirical applications. The first application considers

the effect of growing up in different U.S. neighborhoods (specifically commuting zones) on

intergenerational mobility. We follow Chetty and Hendren (2018), who apply EB shrinkage to

initial fixed effects estimates. Depending on the specification, we find that the robust EBCIs

are on average 12–25% as long as the unshrunk CIs. Our second application estimates the

extent of structural change in a dynamic factor model (DFM) of the Eurozone. Employing a

large panel of macroeconomic time series for the 19 Eurozone countries, we construct EBCIs

for the breaks in the factor loadings following the Great Recession. We shrink the loading

breaks towards zero to reduce the influence of estimation error due to the short sample. Our

robust EBCIs for the loading breaks are on average 77% as long as the unshrunk CIs.

The robust EBCI we develop can also be viewed as a (pure) Bayesian interval that is

robust to the choice of prior distribution in the unconditional gamma-minimax sense: the

coverage probability of this CI is at least 1 − α when averaged over the distribution of the

data and over the prior distribution for θi, for any prior distribution that satisfies the moment

bounds. In contrast, conditional gamma-minimax credible intervals, discussed recently by

Giacomini et al. (2019, p. 6), are too stringent in our setting. This notion requires that the

posterior credibility of the interval be at least 1− α regardless of the choice of prior, in any

data sample, and it would lead to reporting the entire parameter space (up to the moment

bounds).

The average coverage criterion was originally introduced in the literature on nonparamet-

ric regression (Wahba, 1983; Nychka, 1988; Wasserman, 2006, Chapter 5.8). Cai et al. (2014)

construct rate-optimal adaptive confidence bands that achieve average coverage. These pro-

cedures for nonparametric regression are challenging to implement in our EB setting and do

not have a clear finite-sample justification, unlike our procedure. Outside the nonparametric

regression context, Liu et al. (2019) construct forecast intervals that guarantee average cov-

erage in a Bayesian sense (for a fixed prior). Bonhomme and Weidner (2020) and Ignatiadis

and Wager (2019) consider robust estimation and inference on functionals of the effects θi,

rather than the effects themselves.

While we are not aware of any previous literature on average coverage in the EB setting,

there is a substantial literature on confidence balls (confidence sets of the form {θ :
∑n

i=1(θi−
θ̂i)

2 ≤ ĉ}; see Casella and Hwang, 2012, for a review). While interesting from a theoretical

perspective, these sets can be difficult to visualize and report in practice. Confidence balls

can be translated into intervals satisfying the average coverage criterion using Chebyshev’s

inequality (see Wasserman, 2006, Chapter 5.8). However, the resulting intervals are very

conservative compared to the ones we construct.
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The rest of this paper is organized as follows. Section 2 illustrates our methods in the

context of a simple homoskedastic Gaussian model. Section 3 presents our recommended

baseline procedure and discusses practical implementation issues. Section 4 presents our

main results on the coverage and efficiency of the robust EBCI, and on the coverage distor-

tions of the parametric EBCI; we also verify the finite-sample coverage accuracy of the robust

EBCI through extensive simulations. Section 5 discusses extensions of the basic framework.

Section 6 contains two empirical applications: (i) inference on neighborhood effects and (ii)

inference on structural breaks in a DFM. Appendices A to C give details on finite-sample

corrections, computational details, and formal asymptotic coverage results. The Online Sup-

plement contains all proofs as well as further technical and empirical results. Applied readers

are encouraged to focus on Sections 2, 3 and 6.

2 Simple example

This section illustrates the construction of the robust EBCIs that we propose in a simplified

setting with homoskedastic errors. In the next section, we show how to generalize these

results when the variances of the Yi’s are heteroskedastic along with several other empirically

relevant extensions of the basic framework, and we discuss implementation issues.

We observe n independent, normally distributed estimates

Yi ∼ N(θi, σ
2), i = 1, . . . , n, (1)

of the parameter vector θ = (θ1, . . . , θn)′. In many applications, the Yi’s arise as preliminary

least squares estimates of the parameters θi. For instance, they may correspond to fixed

effect estimates of teacher or school value added, neighborhood effects, or firm and worker

effects. In such cases, the normality in Eq. (1) is only approximate, and justified by large-

sample arguments; for simplicity, we assume here that it is exact. We also assume that the

variance σ2 is known.

A popular approach to estimation that substantially improves upon the raw estimator

θ̂ = Y under the compound MSE
∑n

i=1E(θ̂i−θi)2 is based on empirical Bayes (EB) shrinkage.

In particular, suppose that the θi’s are themselves normally distributed,

θi ∼ N(0, µ2). (2)

Our discussion below applies if Eq. (2) is viewed as a subjective Bayesian prior distribution

for a single parameter θi, but for concreteness we will think of Eq. (2) as a “random effects”

sampling distribution for the n mean parameters θ1, . . . , θn. Under this normal sampling
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distribution, it is optimal to estimate θi using the posterior mean θ̂i = wEBYi, where wEB =

1 − σ2/(σ2 + µ2). To avoid having to specify the variance µ2 of the distribution of θi,

the EB approach treats it as an unknown parameter, and uses the data to estimate this

posterior, replacing the marginal precision of Yi, 1/(σ2 + µ2), with a method of moments

estimate n/
∑n

i=1 Y
2
i , or the unbiased estimate (n− 2)/

∑n
i=1 Y

2
i . The latter leads to ŵEB =

(1− σ2(n− 2)/
∑n

i=1 Y
2
i ), which is the classic estimator of James and Stein (1961).

One can also use Eq. (2) to construct CIs for the θi’s. In particular, since the marginal

distribution of wEBYi − θi is normal with mean zero and variance (1− wEB)2µ2 + w2
EBσ

2 =

wEBσ
2, this leads to the interval

wEBYi ± z1−α/2w1/2
EBσ, (3)

where zα is the α quantile of the standard normal distribution. Since the form of the interval

is motivated by the parametric assumption (2), we refer to it as a parametric EBCI. With µ2

unknown, one can replace wEB by ŵEB.2 This is asymptotically equivalent to (3) as n→∞.

The coverage of the parametric EBCI in (3) is 1− α under repeated sampling of (Yi, θi)

according to Eqs. (1) and (2). To distinguish this notion of coverage from the case with fixed

θ, we refer to coverage under repeated sampling of (Yi, θi) as “empirical Bayes coverage”.

This follows the definition of an empirical Bayes confidence interval (EBCI) in Morris (1983b,

Eq. 3.6) and Carlin and Louis (2000, Chapter 3.5). Unfortunately, this coverage property

relies heavily on the parametric assumption (2). We show in Section 4.3 that the actual EB

coverage of the nominal 95% parametric EBCI can be as low as 74% for certain non-normal

distributions of θi with variance µ2; more generally, for a nominal 1− α confidence level, it

can be as low as 1 − 1/max{z1−α/2, 1}. This contrasts with existing results on estimation:

Although the empirical Bayes estimator is motivated by the parametric assumption (2), it

performs well even if this assumption is dropped, with low MSE even if we treat θ as fixed.

In this paper, we construct an EBCI with a similar robustness property: the interval

will be close in length to the parametric EBCI when Eq. (2) holds, but its EB coverage

will remain 1− α without making any parametric assumptions on the distribution of θi. To

describe how we construct an EBCI with such a robustness property, suppose that all that

is known is that θi is sampled i.i.d. from a distribution with second moment given by µ2

(in practice, we can replace µ2 by the consistent estimate n−1
∑n

i=1 Y
2
i − σ2). Conditional

on θi, the estimator wEBYi has bias (wEB − 1)θi and variance w2
EBσ

2, so that the t-statistic

(wEBYi − θi)/wEBσ is normally distributed with mean bi = (1− 1/wEB)θi/σ and variance 1.

Therefore, if we use a critical value χ, the non-coverage of the CI wEBYi±χwEBσ conditional

2Alternatively, to account for estimation error in ŵEB , Morris (1983b) suggests adjusting the variance
estimate ŵEBσ

2 to ŵEBσ
2 + 2Y 2

i (1− ŵEB)2/(n− 2). The adjustment does not matter asymptotically.
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on θi will be given by the probability r(bi, χ) = P (|Z−bi| ≥ χ | θi) = Φ(−χ−bi)+Φ(−χ+bi),

where Z denotes a standard normal random variable, and Φ denotes the standard normal cdf.

Thus, by iterated expectations, under repeated sampling of θi, the non-coverage is bounded

by

ρ(σ2/µ2, χ) = sup
F
EF [r(b, χ)] s.t. EF [b2] =

(1− 1/wEB)2

σ2
µ2 =

σ2

µ2

, (4)

where EF denotes expectation under b ∼ F . Although this is an infinite-dimensional op-

timization problem over the space of distributions, it turns out that it admits a simple

closed-form solution.3 Moreover, because the optimization is a linear program, it can be

solved even in the more general settings of applied relevance that we consider in Section 3.

Set χ = cvaα(σ2/µ2), where cvaα(t) = ρ−1(t, α), and the inverse is with respect to the

second argument. Then the resulting interval

wEBYi ± cvaα(σ2/µ2)wEBσ (5)

will maintain coverage 1 − α among all distributions of θi with E[θ2i ] = µ2 (recall that we

estimate µ2 consistently from the data). For this reason, we refer to it as a robust EBCI.

Figure 1 in Section 3.1 gives a plot of the critical values for α = 0.05. We show in Section 4.2

below that by also imposing a constraint on the fourth moment of θi, in addition to the

second moment constraint, one can construct a robust EBCI that “adapts” to the Gaussian

case in the sense that its length will be close to that of the parametric EBCI in Eq. (3) if

these moment constraints are compatible with a normal distribution.

Instead of considering EB coverage, one may alternatively wish to assess uncertainty

associated with the estimates wEBYi when θ is treated as fixed. In this case, the EBCI in

Eq. (5) has an average coverage guarantee that

1

n

n∑
i=1

P
(
θi ∈ [wEBYi ± cvaα(σ2/µ2)wEBσ]

∣∣ θ) ≥ 1− α, (6)

provided that the moment constraint can be interpreted as a constraint on the empirical

second moment on the θi’s, n
−1∑n

i=1 θ
2
i = µ2. In other words, if we condition on θ, then the

coverage is at least 1−α on average across the n EBCIs for θ1, . . . , θn. To see this, note that

the average non-coverage of the intervals is bounded by (4), except that the supremum is only

3Specifically, Proposition B.1 in Appendix B shows that

ρ(t, χ) =

{
r(0, χ) + t

t0
(r(t

1/2
0 , χ)− r(0, χ)) if t < t0,

r(t1/2, χ) otherwise.

Here t0 solves r(t1/2, χ)− t ∂
∂tr0(t1/2, χ) = r(0, χ). The solution is unique if χ ≥

√
3; if χ <

√
3, put t0 = 0.
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taken over possible empirical distributions for θ1, . . . , θn satisfying the moment constraint.

Since this supremum is necessarily smaller than ρ(σ2/µ2, χ), it follows that the average

coverage is at least 1− α.4

The usual CIs Yi±z1−α/2σ also of course achieve average coverage 1−α. The robust EBCI

in Eq. (5) will however be shorter, especially when µ2 is small relative to σ2—see Figure 4

below: by weakening the requirement that each CI covers the true parameter 1− α percent

of the time to the requirement that the coverage is 1− α on average across the CIs, we can

substantially shorten the CI length. It may seem surprising at first that we can achieve this

by centering the CI at the shrinkage estimates wEBYi. The intuition for this is that the

shrinkage reduces the variability of the estimates. This comes at the expense of introducing

bias in the estimates. However, we can on average control the resulting coverage loss by

using the larger critical value cvaα(σ2/µ2). Because under the average coverage criterion we

only need to control the bias on average across i, rather than for each individual θi, this

increase in the critical value is smaller than the reduction in the standard error.

Remark 2.1 (Interpretation of average coverage). While the average coverage criterion is

weaker than the classical requirement of guaranteed coverage for each parameter, we believe

it is useful, particularly in the EB context, for three reasons. First, the EB point estimator

achieves lower MSE on average across units at the expense of potentially worse performance

for some individual units (see, for example, Efron, 2012, Chapter 1). Thus, researchers who

use EB estimators instead of the unshrunk Yi’s prioritize favorable group performance over

protecting individual performance. It is natural to resolve the trade-off in the same way when

it comes to uncertainty assessments. Our average coverage intervals do exactly this: they

guarantee coverage and achieve short length on average across units at the expense of giving

up on a coverage guarantee for every individual unit. From a decision theoretic standpoint,

these trade-offs can be formalized using statements about risk improvement under compound

loss (see Remark 4.2 below).

Second, one motivation for the usual notion of coverage is that if one constructs many CIs,

and there is not too much dependence between the data used to construct each interval, then

by the law of large numbers, at least a 1−α fraction of them will contain the corresponding

parameter. As we discuss further in Remark 4.1, average coverage intervals also have this

interpretation.

Finally, under the classical requirement of guaranteed coverage for each θi, it is not

possible to substantively improve upon the usual CI centered at the unshrunk estimate Yi,

4This link between average risk of separable decision rules (here coverage of CIs, each of which depends
only on Yi) when the parameters θ1, . . . , θn are treated as fixed and the risk of a single decision rule when
these parameters are i.i.d. is a special case of what Jiang and Zhang (2009) call the fundamental theorem of
compound decisions, which goes back to Robbins (1951).
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regardless of how one forms the CI.5 It is only by relaxing the coverage requirement that

we can circumvent these impossibility results and obtain intervals that reflect the efficiency

improvement from empirical Bayes.

3 Practical implementation

We now describe how to compute a robust EBCI that allows for heteroskedasticity, shrinks

towards more general regression estimates rather than towards zero, and exploits higher

moments of the bias to yield a narrower interval. In Section 3.1, we describe the empiri-

cal Bayes model that motivates our baseline approach. Section 3.2 describes the practical

implementation of our baseline approach.

3.1 Model and robust EBCI

In applied settings, the standard errors for the unshrunk estimates Yi will typically be het-

eroskedastic. Furthermore, rather than shrinking towards zero, it is common to shrink toward

an estimate of θi based on some covariates Xi, such as a regression estimate X ′i δ̂. We now

describe how to adapt the ideas in Section 2 to such settings.

Consider the model

Yi | θi, Xi, σi ∼ N(θi, σ
2
i ). (7)

The covariate vector Xi may contain just the intercept, and it may also contain (functions of)

σi. Yi will typically be some preliminary unrestricted estimate of θi that is only approximately

normal in large samples by the central limit theorem (CLT), a feature that we will explicitly

take into account in the theory in Appendix C. To construct an EB estimator of θi, consider

the working assumption that the sampling distribution of the θi’s is conditionally normal:

θi | Xi, σi ∼ N(µ1,i, µ2), where µ1,i = X ′iδ. (8)

The hierarchical model (7)–(8) leads to the Bayes estimate θ̂i = µ1,i+wEB,i(Yi−µ1,i), where

wEB,i = µ2
µ2+σ2

i
. This estimate shrinks the unrestricted estimate Yi of θi toward µ1,i = X ′iδ.

Although convenient, the normality assumption (8) typically cannot be justified simply by

appealing to the CLT, and the linearity of the conditional mean µ1,i = X ′iδ may also be

suspect. Our robust EBCI will therefore be constructed so that it achieves valid EB coverage

5In particular, it follows from the results in Pratt (1961) that for CIs with nominal coverage 95%, one
cannot achieve expected length improvements greater than 15% relative to the usual unshrunk CIs, even if
one happens to optimize length for the true parameter vector (θ1, . . . , θn). See, for example, Corollary 3.3
in Armstrong and Kolesár (2018) and the discussion following it.
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even if assumption (8) fails. To obtain a narrow robust EBCI, we augment the second

moment restriction used to compute the critical value in Eq. (4) with restrictions on higher

moments of the bias of θ̂i. In our baseline specification, we add a restriction on the fourth

moment.

In particular, we replace assumption (8) with the much weaker requirement that the

conditional second moment and kurtosis of εi = θi −X ′iδ do not depend on (Xi, σi):

E[(θi −X ′iδ)2 | Xi, σi] = µ2, E[(θi −X ′iδ)4 | Xi, σi]/µ
2
2 = κ, (9)

where δ is defined as the probability limit of the regression estimate δ̂.6 We discuss this

requirement further in Remark 3.2 below, and we relax it in Remarks 3.7 and 3.8 below.

We now apply analysis analogous to that in Section 2. Let us suppose for simplicity that

δ, µ2, and κ are known; we discuss practical implementation in Section 3.2 below. Denote

the conditional bias of θ̂i normalized by the standard error by bi = (1−wEB,i)εi/(wEB,iσi) =

(1/wEB,i − 1)εi/σi. Under repeated sampling of θi, the non-coverage of the CI θ̂i ± χwEB,iσ,

conditional on (Xi, σi), depends on the distribution of the normalized bias bi, as in Section 2.

Given the known moments µ2 and κ, the maximal non-coverage is given by

ρ(m2,i, κ, χ) = sup
F
EF [r(b, χ)] s.t. EF [b2] = m2,i, EF [b4] = κm2

2,i, (10)

where b is distributed according to the distribution F . Here m2,i = E[b2i | Xi, σi] =

(1 − 1/wEB,i)
2µ2/σ

2
i = σ2

i /µ2. Observe that the kurtosis of bi matches that of εi. Ap-

pendix B shows that the infinite-dimensional linear program (10) can be reduced to two

nested univariate optimizations. We also show that the least favorable distribution—the

distribution F maximizing (10)—is a discrete distribution with up to 4 support points (see

Remark B.1).

Define the critical value cvaα(m2,i, κ) = ρ−1(m2,i, κ, α), where the inverse is in the last

argument. Figure 1 plots this function for α = 0.05 and selected values of κ. This leads to

the robust EBCI

θ̂i ± cvaα(m2,i, κ)wEB,iσi. (11)

By construction, this CI has coverage at least 1 − α under repeated sampling of (Yi, θi),

conditional on (Xi, σi), so long as Eq. (9) holds; it is not required that the conditional

distribution of θi be normal with a linear conditional mean.

6Our framework can be modified to let (Xi, σi) be fixed, in which case δ depends on n. See the discussion
following Theorem 4.1 below.
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Figure 1: Function cvaα(m2, κ) for α = 0.05 and selected values of κ. The function cvaα(m2),
defined in Section 2, that only imposes a constraint on the second moment, corresponds to
cvaα(m2,∞). The function cvaP,α(m2) = z1−α/2

√
1 +m2 corresponds to the critical value

under the assumption that θi is normally distributed.

3.2 Baseline implementation

Our baseline implementation of the robust EBCI plugs in consistent estimates of the unknown

quantities in Eq. (11):

1. Let Yi be an estimate of θi with standard error σ̂i, and let Xi be covariates that are

thought to help predict θi.

2. Regress Yi onXi to obtain the fitted valuesX ′i δ̂, with δ̂ = (
∑n

i=1 ωiXiX
′
i)
−1∑n

i=1 ωiXiYi

denoting the weighted least squares (WLS) estimate with precision weights ωi (we use

ωi = σ̂−2i , or the ordinary least squares (OLS) weights ωi = 1/n in our empirical

applications; see Appendix A.2 for further discussion). Denote the residuals from

this regression by ε̂i = Yi − X ′i δ̂. Let µ̂2 = max
{∑n

i=1 ωi(ε̂
2
i−σ̂2

i )∑n
i=1 ωi

,
2
∑n
i=1 ω

2
i σ̂

4
i∑n

i=1 ωi·
∑n
i=1 ωiσ̂

2
i

}
, and

κ̂ = max
{∑n

i=1 ωi(ε̂
4
i−6σ̂2

i ε̂
2
i+3σ̂4

i )

µ̂22
∑n
i=1 ωi

, 1 +
32

∑n
i=1 ω

2
i σ̂

8
i

µ̂22
∑n
i=1 ωi·

∑n
i=1 ωiσ̂

4
i

}
.

11



3. Form the EB estimate

θ̂i = X ′i δ̂ + ŵEB,i(Yi −X ′i δ̂), where ŵEB,i =
µ̂2

µ̂2 + σ̂2
i

.

4. Compute the critical value cvaα(σ̂2
i /µ̂2, κ̂) defined in (10).

5. Report the robust EBCI

θ̂i ± cvaα(σ̂2
i /µ̂2, κ̂)ŵEB,iσ̂i. (12)

We provide a fast and stable software package that automates all these steps.7 We discuss

the assumptions needed for validity of the robust EBCI in Remarks 3.2, 3.4 and 3.7 below.

Remark 3.1 (Rule of thumb for when to use parametric EBCI). If we take the normality

assumption (8) seriously, we may use the parametric EBCI

θ̂i ± z1−α/2ŵ1/2
EB,iσ̂i, (13)

which is an EB version of a Bayesian credible interval that treats (8) as a prior. We show

in Section 4.3 that for significance levels α = 0.05 or 0.10, if we drop the normality as-

sumption (8), then the parametric EBCI has a maximum coverage distortion of at most 5

percentage points, provided that the shrinkage factor satisfies ŵEB,i ≥ 0.3. Hence, if moder-

ate coverage distortions can be tolerated, a simple rule of thumb is that one may report the

parametric EBCI unless ŵEB,i falls below this threshold. Importantly, however, Section 4.2

below will show that the robust EBCI (11) is almost as narrow as the parametric EBCI if

the normality assumption (8) in fact holds, so little is lost by always reporting the robust

EBCI.

Remark 3.2 (Conditional EB coverage and moment independence). A potential concern

about the EB coverage criterion in a heteroskedastic setting is that in order to reduce the

length of the CI on average, one could overcover parameters θi with small σi and give up

entirely on covering parameters θi for which the standard error σi is large. Our robust

EBCI avoids these issues by requiring EB coverage to hold conditional on (Xi, σi). This also

prevents similar conditional coverage issues arising depending on the value of Xi.

The key to ensuring this property is assumption (9) that the conditional second moment

and kurtosis of εi = θi−X ′iδ doesn’t depend on (Xi, σi). Conditional moment independence

assumptions of this form are common in the literature. For instance, it is imposed in the

analysis of neighborhood effects in Chetty and Hendren (2018) (their approach requires

7Matlab and R packages are available at https://github.com/kolesarm/ebci
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independence of the second moment), which is the basis for our empirical application in

Section 6.1. Nonetheless, such conditions may be strong in some settings, as argued by Xie

et al. (2012) in the context of EB point estimation. As discussed in Remark 3.7 below, the

condition (9) can be avoided entirely by replacing µ̂2 and κ̂ with nonparametric estimates of

these conditional moments, or relaxed using a flexible parametric specification.

Remark 3.3 (Average coverage and non-independent sampling). We show in Section 4 that

the robust EBCI satisfies an average coverage criterion of the form (6) when the parameters

θ = (θ1, . . . , θn) are considered fixed, in addition to achieving valid EB coverage when the

θi’s are viewed as random draws from some underlying distribution. To guarantee average

coverage, we do not need to assume that the Yi’s and θi’s are drawn independently across i.

This is because the average coverage criterion (6) only depends on the marginal distribution of

(Yi, θi), not the joint distribution. We only require that the estimates µ̂2, κ̂, δ̂, σ̂i are consistent

for µ2, κ, δ, σi, which is the case under many forms of weak dependence or clustering. Notice

that our baseline implementation above does not require the researcher to take an explicit

stand on the dependence of the data; for example, in the case of clustering, the researcher

doesn’t need to take an explicit stand on how the clusters are defined.

Remark 3.4 (Estimating moments of the distribution of θi). The estimators µ̂2 and κ̂ in

step 2 of our baseline implementation above are based on the moment conditions E[(Yi −
X ′iδ)

2 − σ2
i | Xi, σi] = µ2 and E[(Yi −X ′iδ)4 + 3σ4

i − 6σ2
i (Yi −X ′iδ)2 | Xi, σi] = κµ2

2, replacing

population expectations by sample averages, with weights ωi. In addition, to avoid small-

sample coverage issues when µ2 and κ are near their theoretical lower bounds of 0 and 1,

respectively, these estimates incorporate truncation on µ̂2 and κ̂, motivated by an approxi-

mation to a Bayesian estimate with flat prior on µ2 and κ as in Morris (1983a,b). We verify

the small-sample coverage accuracy of the resulting EBCIs through extensive simulations in

Section 4.4. Appendix A discusses the choice of the moment estimates, as well as other ways

of performing truncation.

Remark 3.5 (Using higher moments and non-linear shrinkage). In addition to using the

second and fourth moment of bias, one may augment (10) with restrictions on higher mo-

ments of the bias in order to further tighten the critical value. In Section 4.2, we show

that using other moments in addition to the second and fourth moment does not substan-

tially decrease the critical value in the case where θi is normally distributed. Thus, the CI

in our baseline implementation is robust to failure of the normality assumption (8), while

being near-optimal when this assumption does hold. This property is analogous to that of

Eicker-Huber-White CIs for OLS estimators in linear regression: these CIs are optimal under

normal homoskedastic regression errors, but remain valid when this assumption is dropped.
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To achieve greater efficiency when the distribution of θi is non-normal, one could add

other moment restrictions to the optimization problem (10). However, to obtain fully efficient

EBCIs when the distribution of θi is not normal, one needs to consider estimators θ̂i that

are nonlinear functions of Yi. Since the distribution of θi under (3.1) is non-parametrically

identified, such a construction is in principle possible. To keep the paper focused on the less

ambitious objective of providing uncertainty assessments associated with linear shrinkage

estimators, we leave this idea to future research.

Remark 3.6 (Length-optimal shrinkage). The shrinkage coefficient wEB,i = µ2/(µ2 + σ2
i ) is

designed to optimize MSE of the point estimator θ̂i. If an EBCI is directly of interest rather

than a point estimate, it may be desirable to optimize shrinkage to minimize the length of

the robust EBCI. The length of the EBCI based on the estimator µ1,i + wi(Yi − µ1,i) is

cvaα((1− 1/wi)
2µ2/σ

2
i , κi)wiσi. This expression can be numerically minimized as a function

of wi to find the EBCI length-optimal shrinkage wopt,i = wopt(µ2/σ
2
i , κ, α) given µ2/σ

2
i and

κ. We show theoretically in Section 4.2 and empirically in Section 6 that the efficiency gains

from using length-optimal shrinkage relative to MSE-optimal shrinkage are only substantial

if the distribution of θi is not close to the normal distribution.

Remark 3.7 (Nonparametric moment estimates). If conditional EB coverage is desired, but

the moment independence assumption (9) is implausible, it is straightforward in principle

to allow the conditional moments of εi to depend nonparametrically on (Xi, σi), and use

kernel or series estimators µ̂2i and κ̂i of µ2(Xi, σi) = E[(Yi −X ′iδ)2 | Xi, σi] and κ(Xi, σi) =

E[(Yi − X ′iδ)4 | Xi, σi]/µ2(Xi, σi)
2. If these estimates are consistent, and one replaces the

critical value in Eq. (12) with cvaα((1/ŵEB,i − 1)2µ̂2i/σ̂
2
i , κ̂i), the resulting CI achieves valid

EB coverage with assumption (9) dropped. Similarly, one can replace X ′iδ in the definition of

wEB,i and εi with a non-parametric estimate of the conditional mean E[Yi | Xi, σi] = E[θi |
Xi, σi].

Remark 3.8 (t-statistic shrinkage). Another way to avoid the moment independence condi-

tion (9) is to base shrinkage on the t-statistics Yi/σi. Since these have constant variance equal

to 1 by construction, we can apply the baseline implementation above with Yi/σ̂i in place of

Yi and 1 in place of σ̂i. Then the homoskedastic analysis in Section 2 applies, leading to valid

EBCIs without any assumptions about independence of the moments. We discuss this ap-

proach further in Supplemental Appendix D.1, and illustrate it in the empirical applications

in Section 6. A disadvantage of this approach is that, while the resulting intervals satisfy the

EB coverage property unconditionally, they do not satisfy the conditional coverage property

discussed in Remark 3.2.
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4 Main results

This section provides formal statements of the coverage properties of the CIs presented in

Sections 2 and 3. Furthermore, we show that the CIs presented in Sections 2 and 3 are highly

efficient when the mean parameters are in fact normally distributed. Next, we calculate the

maximal coverage distortion of the parametric EBCI. Finally, we present a comprehensive

simulation study of the finite-sample performance of the robust EBCI. Applied readers

interested primarily in implementation issues may skip ahead to the empirical applications

in Section 6.

4.1 Coverage under baseline implementation

In order to state the formal result, let us first carefully define the notions of coverage that

we consider. Consider intervals CI1, . . . , CIn for elements of the parameter vector θ =

(θ1, . . . , θn)′. We use the probability measure P to denote the joint distribution of θ and

CI1, . . . , CIn. Following Morris (1983b, Eq. 3.6) and Carlin and Louis (2000, Chapter 3.5),

we say that the interval CIi is an (asymptotic) 1 − α empirical Bayes confidence interval

(EBCI) if

lim inf
n→∞

P (θi ∈ CIi) ≥ 1− α. (14)

We say that the intervals CIi are (asymptotic) 1−α average coverage intervals (ACIs) under

the parameter sequence θ1, . . . , θn if

lim inf
n→∞

1

n

n∑
i=1

P (θi ∈ CIi | θ) ≥ 1− α. (15)

Note that the average coverage property (15) is a property of the distribution of the data

conditional on the parameter θ and therefore does not require that we view the θi’s as random

(as in a Bayesian or “random effects” analysis). We nonetheless maintain the conditioning

notation P (· | θ) when stating results on average coverage, in order to maintain consistent

notation.

Under an exchangeability condition, the ACI property (15) implies the EBCI prop-

erty (14). Suppose that the average coverage property (15) holds almost surely and that

the marginal distribution of {θi, CIi}ni=1 is exchangeable in the sense that

P (θi ∈ CIi) = P (θj ∈ CIj) for all i, j.
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Then, the EBCI property (14) holds since, for all j,

P (θj ∈ CIj) =
1

n

n∑
i=1

P (θi ∈ CIi) ≥ 1− α + o(1).

We now provide coverage results for the baseline implementation described in Section 3.2.

To keep the statements in the main text as simple as possible, we (i) maintain the assump-

tion that the unshrunk estimates Yi follow an exact normal distribution conditional on the

parameter θi, (ii) state the results only for the homoskedastic case where the variance σi of

the unshrunk estimate Yi does not vary across i, and (iii) we consider only unconditional

coverage statements of the form (14) and (15). In Theorem C.2 in Appendix C, we allow

the estimates Yi to be only approximately normally distributed and allow σi to vary, and

we formalize the statements about conditional coverage made in Remark 3.2. The following

theorem is a special case of this result.

Theorem 4.1. Suppose Yi | θ ∼ N(θi, σ
2). Let µj,n = 1

n

∑n
i=1(θi − X ′iδ)

j and let κn =

µ4,n/µ
2
2,n. Let θ1, . . . , θn be a sequence such that µ2,n → µ2 and µ4,n/µ

2
2,n → κ for some µ2

and κ such that (µ2, κµ
2
2)
′ is in the interior of the set of values of EF [(x2, x4)′] with F ranging

over all probability distributions. Suppose that, conditional on θ, (δ̂, σ̂, µ̂2, κ̂) converges in

probability to (δ, σ, µ2, κ). Then the CIs in Eq. (12) with σ̂i = σ̂ satisfy the ACI property (15).

Furthermore, if these conditions hold for θ in a probability one set, θ1, . . . , θn follow an

exchangeable distribution and the estimators δ̂, σ̂, µ̂2 and κ̂ are exchangeable functions of

the data (X ′1, Y1)
′, . . . , (X ′n, Yn)′, then these CIs satisfy the EB coverage property (14).

The requirement that the moments (µ2, κµ
2
2)
′ be in the interior of the set of feasible

moments is needed to avoid degenerate cases such as when µ2 = 0, in which case the EBCI

shrinks each estimate all the way to X ′i δ̂. Note also that the theorem doesn’t require that

δ̂ be the OLS estimate in a regression of Yi onto Xi, and that δ be the population analog;

one can define δ in other ways, the theorem only requires that δ̂ be a consistent estimate

of it. The definition of δ does, however, affect the plausibility of the moment independence

assumption in Eq. (9) needed for conditional coverage results stated in Appendix C.

Remark 4.1. As shown in Appendix C, if CIs satisfy the average coverage condition (15)

given θ1, . . . , θn, they will typically also satisfy the stronger condition

1

n

n∑
i=1

I{θi ∈ CIi} ≥ 1− α + oP (·|θ)(1), (16)

where oP (·|θ)(1) denotes a sequence that converges in probability to zero conditional on θ

(Eq. (16) implies Eq. (15) since the left-hand side is uniformly bounded). That is, at least

16



a fraction 1− α of the n CIs contain their respective true parameters, asymptotically. This

is analogous to the result that for estimation, the difference between the squared error
1
n

∑n
i=1(θ̂i − θi)2 and the MSE 1

n

∑n
i=1E[(θ̂i − θi)2 | θ] typically converges to zero.

Remark 4.2. In the homoskedastic setting in Section 2, the CI asymptotically takes the

form {θ̂i ± ζ} where θ̂i = wEBYi and ζ = χwEBσ. Thus, Eq. (15) can be written as a bound

on 1
n

∑n
i=1 P (|θ̂i − θi| > ζ | θ). This can be interpreted as the risk of the estimator θ̂ with

compound loss defined using the 0-1 loss function `(θi, θ̂i) = I{|θ̂i − θi| > ζ}. The average

coverage criterion states that the risk of the estimator θ̂ is bounded by α under this loss

function. In the heteroskedastic setting in Section 3, a similar statement holds, but with ζi

varying over i so that the loss function varies with i.

4.2 Relative efficiency

The robust EBCI in Eq. (11) is inefficient relative to the parametric EBCI θ̂i±z1−α/2σi√wEB,i
when in fact the normality assumption (8) holds. We now quantify this inefficiency and show,

in particular, that the amount of inefficiency is small unless the signal-to-noise ratio µ2/σ
2
i

is very small.

There are two reasons for the inefficiency relative to this normal benchmark. First, the

robust EBCI only makes use of the second and fourth moment of the conditional distribution

of θi−X ′iδ, rather than its full distribution. Second, if we only have knowledge of these two

moments, it is no longer optimal to center the EBCI at the estimator θ̂i: one may need to

consider other, perhaps non-linear, shrinkage estimators.

We decompose the sources of inefficiency by studying the relative length of the robust

EBCI relative to the EBCI that picks the amount of shrinkage optimally. For the latter,

as discussed in Remark 3.6, we maintain assumption (9), and consider a more general class

of estimators θ̃(wi) = µ1,i + wi(Yi − µ1,i): we impose the requirement that the shrinkage is

linear for tractability, but allow the amount of shrinkage wi to be optimally determined. The

normalized bias is then given by bi = (1/wi − 1)εi/σi, which leads to the EBCI

µ1,i + wi(Yi − µ1,i)± cvaα((1− 1/wi)
2µ2/σ

2
i , κ)wiσi.

The optimal amount of shrinkage wi minimizes the half-length cvaα((1−1/wi)
2µ2/σ

2
i , κ)wiσi

of this EBCI. Denote the minimizer by wopt(µ2/σ
2
i , κ, α). Like wEB,i, the optimal shrinkage

depends on µ2 and σ2
i only through the signal-to-noise ratio µ2/σ

2
i . The resulting EBCI is

optimal among all EBCIs based on linear estimators under (9), and we refer to it as the

optimal robust EBCI.
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Figure 2: Optimal linear shrinkage wopt(µ2/σ
2, κ, α), and EB shrinkage wEB = µ2/(µ2 + σ2)

plotted as a function of the signal-to-noise ratio µ2/σ
2 and κ ∈ {3,∞}. α = 0.05.

Figure 2 plots the optimal shrinkage for κ =∞ (which corresponds to not imposing any

constraints on the fourth moment of εi), and κ = 3 (which is the case under the normal

benchmark). It is clear from the figure that relative to the normal benchmark, it is optimal

to employ less shrinkage.

Figure 3 plots the ratio of lengths of the optimal robust EBCI and robust EBCI relative to

the parametric EBCI. The figure shows that for efficiency relative to the normal benchmark,

for significance levels α = 0.1 and α = 0.05, it is relatively more important to impose the

fourth moment constraint than to use the optimal amount of shrinkage (and only impose

the second moment constraint). It also shows that the efficiency loss of the robust EBCI is

modest unless the signal-to-noise ratio is very small: if µ2/σ
2
i ≥ 0.1, the efficiency loss is at

most 12.3% for α = 0.05, and 13.6% for α = 0.1; up to half of the efficiency loss is due to

not using the optimal shrinkage.

When the signal-to-noise ratio is very small, µ2/σ
2
i < 0.1, the efficiency loss of the robust

EBCI is higher (up to 39% for these significance levels). Using the optimal robust EBCI

ensures that the efficiency loss is below 20%, irrespective of the signal-to-noise ratio. On

the other hand, when the signal-to-noise ratio is small, any of these CIs will be significantly

tighter than the unshrunk CI Yi ± z1−α/2σi. To illustrate this point, Figure 4 plots the

efficiency of the robust EBCI that imposes the second moment constraint only relative to

this unshrunk CI. It can be seen from the figure that shrinkage methods allow us to tighten

the CI by 44% or more when µ2/σ
2
i ≤ 0.1.
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Figure 3: Relative efficiency of robust EBCI (Rob) and optimal robust EBCI (Opt) rela-
tive to the normal benchmark. The figures plot ratios of the length of the robust EBCI,
2 cvaα(σ2/µ2, κ) · σµ2/(µ2 + σ2), and the length of the optimal robust EBCI 2 cvaα((1 −
1/wopt(µ2/σ

2, κ, α))2µ2/σ
2, κ) · σwopt(µ2/σ

2, κ, α), relative to the parametric EBCI length

2z1−α/2
√
µ2/(µ2 + σ2)σ as a function of the signal-to-noise ratio µ2/σ

2.
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Figure 4: Relative efficiency of robust EBCI θ̂i± cvaα(σ2/µ2, κ =∞) ·σµ2/(µ2 + σ2) relative
to the unshrunk CI Yi± z1−α/2σ. The figure plots the ratio of the length of the robust EBCI
relative to the unshrunk CI as a function of the signal-to-noise ratio µ2/σ

2.

4.3 Undercoverage of parametric EBCI

The maximal non-coverage probability of the parametric EBCI (13), given knowledge of only

the second moment µ2 of εi = Yi −X ′iδ, is given by

ρ(σ2
i /µ2, z1−α/2/

√
wEB,i),

where wEB,i = µ2/(µ2 + σ2
i ). Here ρ is the non-coverage function defined in Eq. (4), and for

simplicity we pretend that µ2 and σi are known.

Figure 5 plots the maximal non-coverage probability as a function of wEB = (1+σ2
i /µ2)

−1,

for significance levels α = 0.05 and α = 0.10. If wEB ≥ 0.3, the maximal coverage distortion

is less than 5 percentage points for these α. This justifies the “rule of thumb” proposed in

Remark 3.1. The following lemma confirms that the maximal non-coverage is decreasing in

wEB, as suggested by the figure. Moreover, the lemma gives an expression for the maximal

non-coverage across all values of wEB (which is achieved in the limit wEB → 0).

Lemma 4.1. Define, for any z > 0, the function ρ̃ : (0, 1]→ [0, 1] given by

ρ̃(w) = ρ(1/w − 1, z/
√
w), 0 < w ≤ 1.

This function is weakly decreasing, and supw∈(0,1] ρ̃(w) = 1/max{z2, 1}.
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Figure 5: Maximal non-coverage probability of parametric EBCI, α ∈ {0.05, 0.10}. The
vertical line marks the “rule of thumb” value wEB = 0.3, above which the maximal coverage
distortion is less than 5 percentage points for these two values of α.

Thus, for any significance level α ≤ 2Φ(−1) ≈ 0.317, the maximal non-coverage probabil-

ity of the parametric EBCI across all possible distributions of εi (with any second moment)

is 1/z21−α/2. This number equals 0.260 for α = 0.05 and 0.370 for α = 0.10. For α > 2Φ(−1),

the maximal non-coverage probability across all distributions is 1.

If we additionally impose knowledge of the kurtosis of εi, the maximal non-coverage of

the parametric EBCI can be similarly computed using the function (10), as illustrated in the

applications in Section 6.

4.4 Monte Carlo simulations

Here we show through simulations that the robust EBCI achieves accurate average coverage

in finite samples.

We first consider homoskedastic designs Yi
indep∼ N(θi, 1) with six different random effects

distributions for θi (see Supplemental Appendix E.1 for detailed definitions): (i) normal

(kurtosis κ = 3); (ii) scaled chi-squared with 1 degree of freedom (κ = 15); (iii) two-point

distribution (κ ≈ 8.11); (iv) three-point distribution (κ = 2); (v) the least favorable dis-

tribution for the robust EBCI that exploits only second moments (κ depends on µ2, see

Appendix B); and (vi) the least favorable distribution for the parametric EBCI. We cali-

brate each design to match one of four signal-to-noise ratios µ2 ∈ {0.1, 0.5, 1, 2}. Thus, there
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Table 1: Monte Carlo simulation results.

Robust, µ2 only Robust, µ2 & κ Parametric

n Oracle Baseline Oracle Baseline Oracle Baseline

Panel A: Average coverage (%), minimum across 24 DGPs

100 95.0 93.8 94.6 93.4 86.9 78.8

200 95.0 92.8 94.8 92.8 86.2 81.2

500 95.0 94.7 94.9 94.4 85.6 85.5

1000 95.0 95.0 95.0 94.4 85.3 87.3

Panel B: Relative average length, average across 24 DGPs

100 1.16 1.11 1.00 1.02 0.86 0.83

200 1.16 1.12 1.00 1.01 0.86 0.84

500 1.16 1.13 1.00 1.01 0.86 0.84

1000 1.16 1.14 1.00 1.01 0.86 0.85

Notes: Nominal average confidence level 1 − α = 95%. Top row: type of EBCI
procedure. “Oracle”: true µ2 and κ (but not δ) known. “Baseline”: µ̂2 and κ̂
estimates as in Section 3.2. For each DGP, “average coverage” and “average length”
refer to averages across observations i = 1, . . . , n and across 5,000 Monte Carlo
repetitions. Average CI length is measured relative to the oracle robust EBCI that
exploits µ2 and κ.

are a total of 6 × 4 = 24 data generating processes (DGPs). We shrink towards the grand

mean (Xi = 1 for all i).

Table 1 shows the lowest of the average coverage rates and the average of the (relative)

average lengths across the 24 DGPs. The results are broken down by sample size n ∈
{100, 200, 500, 1000}. The nominal confidence level is 1 − α = 95%. Average length is

measured relative to the “oracle” robust EBCI that assumes knowledge of the true moments

µ2 and κ. Regardless of whether we exploit only second moments or also fourth moments, the

maximal coverage distortion of the baseline robust EBCI is below 2.2 percentage points for all

n considered here, and below 0.6 percentage points when n ≥ 500. Having to estimate µ2 and

κ does not substantially affect coverage or length.8 In contrast to the reliable coverage of the

baseline robust EBCI, the performance of the parametric EBCI is sensitive to the moment

estimates when n is small, and, in line with the theoretical predictions in Section 4.3, the

oracle version can undercover by approximately 10 percentage points even when n = 1000.

8Since the grand mean δ = E[θi] is estimated, the oracle robust EBCI is not guaranteed to yield correct
average coverage in finite samples. In unreported results, we find that it is important when n is small to
truncate the µ̂2 and κ̂ estimates from below as in our baseline implementation in Section 3.2, see Remark 3.4.
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In Supplemental Appendix E.2 we show that the robust EBCI also has good coverage in

a heteroskedastic design calibrated to the empirical application in Section 6.1 below.

5 Extensions: general shrinkage estimators

The ideas in Sections 2 and 3 go through for any shrinkage estimators θ̂i that follow an

approximate normal distribution conditional on θi. For simplicity, we consider in the main

text the case where this holds exactly:

θ̂i − θi
sei

∣∣∣∣ θ ∼ N(bi, 1), (17)

where sei is the standard error of the shrinkage estimator θ̂i and bi is the normalized bias.

We relax the normality assumption in Appendix C. In our baseline implementation for the

EB setting, we used estimates of the second and fourth moments of the bias. More generally,

letting g : R → Rp be some vector of moment functions, we can use estimates m̂ of the

empirical moments mn = 1
n

∑n
i=1 g(bi) of the normalized bias. This leads to the critical

value cvaα,g(m) = inf{χ : ρg(m,χ) ≤ α} where

ρg(m,χ) = sup
F
EF [r(b, χ)] s.t. EF [g(b)] = m. (18)

This leads to the interval θ̂i±cvaα,g(m̂)sei. The program (18) is an infinite-dimensional linear

programming problem. Even with several constraints, its solution can be computed to high

degree of precision by discretizing the support of b and applying efficient finite-dimensional

linear programming solution algorithms. See Appendix B for details.

More generally, we can condition the entire analysis on covariates (which could include sei)

when estimating the moments, as discussed in Remark 3.2, and we allow for this possibility

in our general results in Appendix C. The following theorem is a special case of Theorem C.1

in Appendix C.

Theorem 5.1. Suppose that (17) holds and that mn → m and m̂ converges in probability

to m conditional on θ, where m is in the interior of the set of values of EF [g(b)] with F

ranging over all probability distributions. Suppose also that, for some j, limb→∞ gj(b) =

limb→−∞ gj(b) = ∞ and gj(b) ≥ 0. Then the average coverage property (15) holds for the

CIs θ̂i ± cvaα,g(m̂)sei conditional on θ.

The assumption that limb→∞ gj(b) = limb→−∞ gj(b) = ∞ and gj(b) ≥ 0 for some j is

made so that the conditions on the empirical moments of the bias 1
n

∑n
i=1 g(bi) place a
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strong enough bound on the bias so that the critical value is finite.

The normality assumption (17) will hold exactly if θ̂i is a linear function of jointly normal

observations W1, . . . ,WN :

θ̂i =
N∑
j=1

kijWj for some deterministic weights kij. (19)

This holds for the shrinkage estimator θ̂i = wEBYi when Yi | θi ∼ N(θi, σ
2) as in Section 2.

Series, kernel, or local polynomial estimators in a nonparametric regression with fixed co-

variates and normal errors also take this form.

If (19) holds but W1, . . . ,WN does not follow a normal distribution, then the normality

condition (17) will not hold exactly but will hold approximately so long as the weights kij

satisfy a Lindeberg condition. A further complication is that the weights may depend on the

data W1, . . . ,Wn through a preliminary estimate of a tuning parameter, as with the James

and Stein (1961) estimate ŵEB = (1− (n− 2)/
∑n

i=1 Y
2
i ) of the mean squared error optimal

weight wEB described in Section 2. In Appendix C, we provide high level conditions that

allow for such complications, and we verify them for the EB setting in Section 3.

More generally, our approach could be applied to other estimators that use shrinkage or

regularization, so long as they can be expressed in the linear form (19) and so long as one

can deal with the dependence of kij on any data-driven tuning parameters. For example,

regression trees take the linear form (19) with kij depending on the choice of “leaves,” which

are typically chosen using data-driven methods such as cross-validation. In the regression

trees setting and other more complicated settings, it may be difficult to characterize how the

linear weights kij depend on the data, and methods such as sample splitting may provide a

promising approach.

A substantive restriction of the normality condition (17) (or versions of this condition that

require only approximate normality) is that it rules out estimators where non-linearity plays

an essential form in shrinkage, rather than just through tuning parameters. For example,

our approach rules out nonlinear estimators in the EB setting of the form θ̂i = h(Yi) for a

nonlinear function h(·), such as the hard thresholding estimator θ̂i = Yi I{|Yi| > %} for some

threshold %.

6 Empirical applications

We illustrate our methods through two empirical applications: estimating (i) the effects of

neighborhoods on intergenerational mobility, and (ii) the extent of structural changes in a
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large dynamic factor model (DFM) of the Eurozone economies.

6.1 Neighborhood effects

Our first application is based on the data and model in Chetty and Hendren (2018), who

are interested in the effect of neighborhoods on intergenerational mobility. We adopt their

main specification, which focuses on two definitions of a “neighborhood effect” θi. The first

defines it as the effect of spending one additional year of childhood in commuting zone (CZ) i

on children’s rank in the income distribution at age 26, for children with parents at the 25th

percentile of the national income distribution. The second definition is analogous, but for

children with parents at the 75th percentile. Using de-identified tax returns for all children

born between 1980 and 1986 who move across CZs exactly once as children, Chetty and

Hendren (2018) exploit variation in the age at which children move between CZs to obtain

preliminary fixed effect estimates Yi of θi.

Since these preliminary estimates are measured with noise, to predict θi, Chetty and

Hendren (2018) shrink Yi towards average outcomes of permanent residents of CZ i (children

with parents at the same percentile of the income distribution who spent all of their childhood

in the CZ). To give a sense of the accuracy of these forecasts, Chetty and Hendren (2018)

report estimates of their unconditional MSE (i.e. treating θi as random), under the implicit

assumption that the moment independence assumption in Eq. (9) holds. Here we complement

their analysis by constructing robust EBCIs associated with these forecasts.

6.1.1 Framework

Our sample consists of 595 U.S. CZs, with population over 25,000 in the 2000 census, which is

the set of CZs for which Chetty and Hendren (2018) report baseline fixed effect estimates Yi

of the effects θi. These baseline estimates are normalized so that their population-weighted

mean is zero. Thus, we may interpret the effects θi as being relative to an “average” CZ.

We follow the baseline implementation from Section 3.2 with standard errors σ̂i reported by

Chetty and Hendren (2018), and covariates Xi corresponding to a constant and the average

outcomes for permanent residents. In line with the original analysis, we use precision weights

1/σ̂2
i when constructing the estimates δ̂, µ̂2 and κ̂ (see Remark 3.4). For comparison, we also

report results based on shrinking the t-statistic (without weights), following Remark 3.8.

6.1.2 Results

Table 2 summarizes the main estimation and efficiency results. The shrinkage magnitude

and relative efficiency results are similar for children with parents at the 25th and 75th
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percentiles of the income distribution. In all four specifications reported in Table 2, the

estimate of the kurtosis κ is large enough so that it doesn’t affect the critical values or the

form of the optimal shrinkage: specifications that only impose constraints on the second

moment yield identical results.9 In line with this finding, Supplemental Appendix E.3 gives

a plot of the t-statistics, showing that they exhibit a fat lower tail.

The baseline robust 90% EBCIs are 75.2–87.7% shorter than the usual unshrunk CIs

Yi ± z1−α/2σ̂i. To interpret these gains in dollar terms, for children with parents at the 25th

percentile of the income distribution, a percentile gain corresponds to an annual income

gain of $818 (Chetty and Hendren, 2018, p. 1183). Thus, the average half-length of the

baseline robust EBCIs in column (1) implies CIs of the form ±$160 on average, while the

unshrunk CIs are of the form ±$643 on average. These large gains are a consequence of a

low ratio of signal-to-noise µ2/σ
2
i in this application. Consequently, in the specifications in

columns (1) and (2), the shrinkage coefficient wEB,i falls below the threshold of 0.3 in our

“rule of thumb” in Remark 3.1 for over 90% of the CIs. Because the shrinkage magnitude is

so large on average, the tail behavior of the bias matters, and since the kurtosis estimates

suggests these tails are fat, it is important to use the robust critical value: the parametric

EBCI exhibits average potential size distortions of 12.7–17.8 percentage points. Table 2 also

displays results for EBCIs that use t-statistic shrinkage and/or length-optimal shrinkage, but

we do not comment on those results for brevity.

Figure 6 plots the unshrunk 90% CIs based on the preliminary estimates, as well as robust

EBCIs based on EB estimates for New York for children with parents at the 25th percentile

to illustrate this result. While the EBCIs for large CZs like New York City or Buffalo are

similar to the unshrunk CIs, they are considerably tighter for smaller CZs like Plattsburgh

or Watertown, with point estimates that shrink the preliminary estimates Yi considerably

toward the regression line X ′i δ̂. See Supplemental Appendix E.3 for an analogous plot for

the 75th percentile.

In summary, using shrinkage allows us considerably tighten the CIs based on the prelim-

inary estimates. This is true in spite of the fact that the CIs only effectively use second

moment constraints—imposing constraints on the kurtosis does not affect the critical values.

6.2 Structural change in the Eurozone

Our second application constructs robust EBCIs for structural breaks in the factor loadings

of a DFM. Specifically, we estimate a DFM on a large data set of several economic variables

9The truncation in the κ̂ formula in our baseline algorithm in Section 3.2 binds in columns (1) and
(2), although the non-truncated estimates 345.3 and 5024.9 are similarly large; using these non-truncated
estimates yields identical results.
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Table 2: Statistics for 90% EBCIs for neighborhood effects.

Baseline t-stat shrinkage

(1) (2) (3) (4)

Percentile 25th 75th 25th 75th

Panel A: Summary statistics

√
µ2 0.079 0.044 0.377 0.395

κ 778.5 5948.6 27.2 71.4

E[µ2/σ
2
i ] 0.142 0.040

δintercept −1.441 −2.162 −4.060 −4.584

δperm. resident 0.032 0.038 0.092 0.079

E[wEB,i] 0.093 0.033 0.124 0.135

E[wopt,i] 0.191 0.100 0.259 0.269

E[non-cov of parametric EBCIi] 0.227 0.278 0.186 0.181

Panel B: E[half-lengthi]

Robust EBCI 0.195 0.122 0.398 0.517

Optimal robust EBCI 0.149 0.090 0.313 0.410

Parametric EBCI 0.123 0.070 0.277 0.365

Unshrunk CI 0.786 0.993 0.786 0.993

Panel C: Efficiency relative to robust EBCI

Optimal robust EBCI 1.312 1.352 1.271 1.261

Parametric EBCI 1.582 1.731 1.437 1.417

Unshrunk CI 0.248 0.123 0.507 0.521

Notes: Columns (1) and (2) correspond to shrinking Yi as in the baseline imple-
mentation. Columns (3) and (4) shrink the t-statistic Yi/σ̂i, as in Remark 3.8.
“E[non-cov of parametric EBCIi]”: average of maximal non-coverage probability of
parametric EBCI, given the estimated moments. In the “baseline” case, δ̂ is com-
puted by regressing Yi onto a constant and outcomes for permanent residents, while
in the “t-stat” case, the outcome in this regression is given by Yi/σ. µ2 and κ refer
to moments of θi −X ′iδ (“baseline”) or of θi/σi −X ′iδ (“t-stat”).
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Figure 6: Neighborhood effects for New York and 90% robust EBCIs for children with parents
at the p = 25 percentile of national income distribution, plotted against mean outcomes of
permanent residents. Gray lines correspond to CIs based on unshrunk estimates represented
by circles, and black lines correspond to robust EBCIs based on EB estimates represented by
squares that shrink towards a dotted regression line based on permanent residents’ outcomes.
Baseline implementation as in Section 3.2.

pertaining to each of the 19 current Eurozone countries. By estimating the model separately

on the pre- and post-2009 samples and differencing, we are able to estimate the structural

breaks, if any, in the loadings of each individual series on a common Eurozone-wide real

activity factor. We then construct EB point estimates and robust EBCIs based on these

initial break estimates. Our goal is to gauge whether the reduced-form pattern of intra-

Eurozone co-movements changed substantially following the financial crisis of 2008–2009.

6.2.1 Data

We construct a quarterly data set of 13 economic variables for each of the 19 current Euro-

zone countries, spanning the years 1999–2018. The 13 variables fall into several categories,

including familiar real business cycle variables, the current account, consumer confidence,
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consumer and house prices, wages, asset prices, and credit aggregates. We supplement with

aggregate data on oil prices (Brent), Eurozone short-term interest rates, and euro exchange

rates versus each of five major currencies. The resulting data set features 221 time series,

8 of which are Eurozone-wide. There are at least 7 country-specific variables available for

every Eurozone country. We transform all variables to stationarity following similar conven-

tions as in the rich U.S. data set constructed by Stock and Watson (2016). A detailed data

description is given in Supplemental Appendix E.4.

6.2.2 Framework

We assume that the n = 221 time series are driven by a small number of common factors as

in a standard DFM (Stock and Watson, 2016). We allow for the possibility of a structural

break in all parameters between 2008q4 and 2009q1. Let λ
(0)
i , λ

(1)
i ∈ Rr denote the pre- and

post-2009 factor loadings of series i on the latent Eurozone-wide real activity factor (this

factor is identified by assuming that this is the sole common factor that drives aggregate

Eurozone GDP growth). The parameters of interest are the loading breaks θi = λ
(1)
i − λ(0)i

for each of the time series i = 1, . . . , n. The preliminary unshrunk break estimates Yi are

computed by applying standard principal components methods separately on the 1999q1–

2008q4 and 2009q1–2018q4 subsamples and taking differences. We standardize the data

such that an estimated break magnitude of 0.5, say, means that the time series in question

responds by 0.5 standard deviation units less to a one unit increase in the Eurozone-wide

real activity factor in the post-2009 sample than in the pre-2009 sample. See Supplemental

Appendix E.4 for details on the model, assumptions, and estimation procedure.

Due to the small sample size—10 years of quarterly data on each subsample—and because

we are interested in inspecting the individual break magnitudes, we use EB methods to shrink

the estimated breaks Yi toward 0 (the economically relevant focal point of no breaks).

6.2.3 Results

Table 3 shows that, if we impose both 2nd and 4th moments, the robust 95% EBCIs only need

to be very marginally wider than the parametric ones to ensure the desired average coverage.

This is because the maximal coverage distortion of the parametric EBCI (averaged across

series i) is at most 0.2 percentage points based on the estimated 2nd and 4th moments

of the break distribution. This is also consistent with the “rule of thumb” mentioned in

Remark 3.1, since the shrinkage factor wEB exceeds 0.3. In fact, the estimated kurtosis κ of

the loading break distribution is 2.994, consistent with normality. Imposing the second and

fourth moments of the break magnitude distribution leads to a non-trivial 10.0% reduction
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Table 3: Statistics for 95% EBCIs for structural breaks in the Eurozone DFM.

Baseline t-stat shrinkage

(1) (2) (3) (4)

Moments used µ2 µ2 & κ µ2 µ2 & κ

Panel A: Summary statistics

√
µ2 0.291 1.640

κ 2.994 3.479

E[µ2/σ
2
i ] 2.727

E[wEB,i] 0.647 0.729

E[wopt,i] 0.721 0.664 0.776 0.743

E[non-cov of parametric EBCIi] 0.062 0.052 0.056 0.051

Panel B: E[half-lengthi]

Robust EBCI 0.370 0.333 0.381 0.372

Optimal robust EBCI 0.344 0.333 0.377 0.371

Parametric EBCI 0.330 0.370

Unshrunk CI 0.433 0.433

Panel C: Efficiency relative to robust EBCI

Optimal robust EBCI 1.075 1.001 1.011 1.001

Parametric EBCI 1.122 1.009 1.031 1.004

Unshrunk CI 0.855 0.768 0.880 0.858

Notes: Columns (1) and (2) correspond to shrinking Yi as in the baseline implemen-
tation. Columns (3) and (4) shrink the t-statistic Yi/σ̂i, as in Remark 3.8. Columns
(1) and (3) impose only a constraint on the second moment of θi, while columns (2)
and (4) also impose the fourth moment. “E[non-cov of parametric EBCIi]”: aver-
age of maximal non-coverage probability of parametric EBCI, given the estimated
moments. µ2 and κ refer to moments of θi (“baseline”) or of θi/σi (“t-stat”).

30



in the length of the robust EBCI, relative to only imposing the second moment.

The unshrunk confidence intervals are on average 30.1% longer than the baseline robust

EBCIs that exploit fourth moments. For comparison, in addition to the baseline results,

Table 3 also shows results for robust EBCIs that use t-statistic shrinkage and/or length-

optimal shrinkage, but we do not comment on those results for brevity.

Figure 7 plots the shrinkage-estimated loading breaks and associated robust EBCIs. For

clarity, we focus on three series: real GDP growth (GDP), changes in the 10-year government

bond spread vis-à-vis the 3-month Eurozone interest rate (GOVBOND), and stock price

index growth (STOCKP). Results for the remaining series are reported in a previous version

of this paper (Armstrong et al., 2020). While only two countries (Luxembourg and Malta)

experience significant breaks in their real GDP loadings, many countries experience breaks in

the loadings on the two financial series. The government bond spread exhibits statistically

significant breaks in 10 countries (in the sense that the EBCI excludes 0). Since all but

one estimated break is negative, and the estimated pre-2009 loadings were negative in all

countries, these spreads have become even more negatively related to the Eurozone-wide real

activity factor following the financial crisis. Stock price indices exhibit significant breaks in

9 countries, but in this case the tendency has been for national indices to become less

strongly (positively) correlated with Eurozone real activity. In unreported results, we find

that CPI inflation has similarly become less positively correlated with Eurozone real activity.

Moreover, some largest-in-magnitude point estimates of breaks occur for credit aggregates

in periphery countries; yet, many of these breaks are imprecisely estimated according to the

robust EBCI. As is the case for GDP growth, other traditional real business cycle indicators

such as real consumption growth, capacity utilization, wage growth, and the unemployment

rate do not undergo significant breaks in most countries.

We conclude that the financial crisis of 2008–2009 was associated with breaks in the

relationship between several financial variables and the overall Eurozone real activity cycle.

However, traditional real business cycle indicators by and large do not exhibit such breaks.

A Moment estimates

The EBCI in our baseline implementation has valid EB coverage asymptotically as n→∞,

so long as the estimates µ̂2 and κ̂ are consistent. While the particular choice of the estimates

µ̂2 and κ̂ does not affect the CI asymptotically, finite sample considerations can be important

for small to moderate values of n. In particular, it is possible that unrestricted moment-based

estimates of µ2 and κ be below their theoretical lower bounds of 0 and 1, in which case it
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Figure 7: Shrinkage-estimated loading breaks (red crosses), corresponding 95% robust EBCIs
(thick black vertical lines), and unshrunk loading break estimates (blue circles). Baseline
shrinkage implementation as in Section 3.2. Large text labels indicate the series type,
while small text labels indicate the country (country codes are defined in Supplemental
Appendix E.4). The sign (+/–) next to the country indicates the sign of the estimated
pre-break loading. Series: real GDP growth (GDP), changes in 10-year government bond
spread vs. Eurozone 3-month rate (GOVBOND), stock price growth (STOCKP).
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is not clear how to define the EBCI.10 To address this issue, in analogy to finite-sample

corrections to parametric EBCIs proposed in Morris (1983a,b), Appendix A.1 derives two

finite-sample corrections to the unrestricted estimates that approximate a Bayesian estimate

under a flat hyperprior on (µ2, κ). We verify that these corrections give good coverage in

an extensive set of Monte Carlo designs in Section 4.4. Second, the moment independence

condition (9) allows for some choices in how µ2 and κ are estimated, which we discuss in

Appendix A.2.

A.1 Finite n Corrections

To derive our estimates of µ2 and κ, we first consider unrestricted estimation under the

moment independence conditions (9). For µ2, these conditions imply the moment condition

E[(Yi −X ′iδ)2 − σ2
i | Xi, σi] = µ2. Replacing Yi −X ′iδ with the residual ε̂i = Yi −X ′i δ̂ yields

the estimate

µ̂2,UC =

∑n
i=1 ωiW2i∑n
i=1 ωi

, W2i = ε̂2i − σ̂2
i , (20)

for any weights ωi = ωi(Xi, σ̂i). Here, UC stands for “unconstrained,” since the estimate

µ̂2,UC can be negative. To incorporate the constraint µ2 > 0, we use an approximation

to a Bayesian approach with a flat prior on the set [0,∞). A full Bayesian approach to

estimating µ2 would place a hyperprior on possible joint distributions ofXi, σi, θi, which could

potentially lead to using complicated functions of the data to estimate µ2. For simplicity,

we compute the posterior mean given µ̂2,UC, and we use a normal approximation to the

likelihood. Since the posterior distribution only uses knowledge of µ̂2,UC, we refer to this as

a flat prior limited information Bayes (FPLIB) approach.

To derive this formula, first note that, if m̂ is an estimate of a parameter m with m̂ |
m ∼ N(m,V ), then under a flat prior for m on [0,∞), the posterior mean of m is given by

b(m̂, V ) = m̂+
√
V φ(m̂/

√
V )/Φ(m̂/

√
V ),

where φ and Φ are the standard normal pdf and cdf respectively. Furthermore, if m̂ =∑n
i=1 ωiZi/

∑n
i=1 ωi where the Zi’s are independent with mean m conditional on the weights

10Formally, our results are asymptotic and require µ2 > 0 and κ > 1, so that these issues do not occur
when n is large enough. An alternative approach to the one we consider here would be to design intervals
that are valid for fixed n, or valid asymptotically under drifting sequences of values of µ2 that approach
zero with n. Applying such an analysis to our EBCIs (and the parametric EBCIs of Morris 1983a,b) is an
interesting topic that we leave for future research.
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ω = (ω1, . . . , ωn)′, then an unbiased estimate of the variance of m̂ given ω is given by

V (Z, ω) =

∑n
i=1 ω

2
i (Z

2
i − m̂2)

(
∑n

i=1 ωi)
2 −∑n

i=1 ω
2
i

.

Conditioning on the Xi’s and σi’s (and ignoring sampling variation in δ̂ and the σ̂i’s), we

can then apply this formula to µ̂2,UC, with Zi = W2i, where W2i is given in (20). This gives

the FPLIB estimate for µ2:

µ̂2,FPLIB = b(µ̂2,UC, V (W2, ω)).

To derive the FPLIB estimate for κ, we begin with an unconstrained estimate of µ4 =

E[(θi − X ′iδ)
4]. The moment independence condition (9) delivers the moment condition

µ4 = E[(Yi − X ′iδ)
4 + 3σ4

i − 6σ2
i (Yi − X ′iδ)

2 | Xi, σi], which leads to the unconstrained

estimate

µ̂4,UC =

∑n
i=1 ωiW4i∑n
i=1 ωi

, W4i = ε̂4i − 6σ̂2
i ε̂

2
i + 3σ̂4

i .

In order to avoid issues with small values of estimates of µ2 in the denominator, we apply

the FPLIB approach to an estimate of µ4 − µ2
2, using a flat prior on the parameter space

[0,∞). Using the delta method leads to approximating the variance of µ̂4,UC − µ̂2
2,UC with

the variance of
∑n

i=1 ωi(W4i − 2µ2W2i)/
∑n

i=1 ωi, so that the FPLIB estimate of µ4 − µ2
2 is

b(µ̂4,UC − µ̂2
2,UC, V (W4 − 2µ̂2,FPLIBW2, ω)), and the FPLIB estimate of κ is

κ̂FPLIB = 1 +
b(µ̂4,UC − µ̂2

2,UC, V (W4 − 2µ̂2,FPLIBW2, ω))

µ̂2
2,FPLIB

.

As a further simplification, we derive approximations in which the posterior mean for-

mula b(m̂, V ) is replaced by a simple truncation formula. We refer to this approach as

posterior mean trimming (PMT). In particular, suppose we apply the formula b(m̂, V ) to

an estimator m̂ such that m̂ ≥ m0 and V ≥ V0 by construction, where m0 < 0. Then the

posterior mean satisfies b(m̂, V ) ≥ b(m0, V0) (Pinelis, 2002, Proposition 1.2). Thus, a simple

approximation to the FPLIB estimator is to truncate m̂ from below at b(m0, V0). To ob-

tain an even simpler formula, we use the approximation b(m0, V0) = −V0/m0 + O(V
3/2
0 )

(Pinelis, 2002, Proposition 1.3), which holds as V0 → 0 (or, equivalently, as n → ∞,

provided the estimator m̂ is consistent). The variance of µ̂2,UC conditional on (Xi, σi) is

bounded below by 2
∑n

i=1 ω
2
i σ

4
i / (
∑n

i=1 ωi)
2
, and µ̂2,UC ≥ −

∑n
i=1 ωiσ

2
i /
∑n

i=1 ωi, so we can
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use V0/m0 = − 2
∑n
i=1 ω

2
i σ

4
i∑n

i=1 ωiσ
2
i ·
∑n
i=1 ωi

, which gives the PMT estimator

µ̂2,PMT = max

{
µ̂2,UC,

2
∑n

i=1 ω
2
i σ

4
i∑n

i=1 ωiσ
2
i ·
∑n

i=1 ωi

}
.

For κ, we simplify our approach to deriving a trimming rule by treating µ2 as known, and

considering the variance of the infeasible estimate κ̂∗UC =
∑n
i=1 ωi(ε̂

4
i−6σ̂2

i µ2−3σ̂4
i )

µ22
∑n
i=1 ωi

. Using the

above truncation formula for κ̂∗UC − 1 along with the fact that κ̂∗UC ≥
∑n
i=1 ωi(−6σ̂2

i µ2−3σ̂4
i )

µ22
∑n
i=1 ωi

and the lower bound 8
∑

i ω
2
i (2µ

3
2σ

2
i + 21µ2

2σ
4
i + 48µ2σ

6
i + 12σ8

i )/µ
4
2(
∑

i ωi)
2 on the variance

yields V0/m0 = −8
∑
i ω

2
i (2µ

3
2σ

2
i+21µ22σ

4
i+48µ2σ6

i+12σ8
i )

µ22(
∑
i ωi)

∑n
i=1 ωi(µ

2
2+6σ̂2

i µ2+3σ̂4
i )

. To simplify the trimming rule even further,

we only use the leading term of V0/m0 as µ2 → 0, V0/m0 = − 32
∑
i ω

2
i σ

8
i

µ22(
∑
i ωi)

∑n
i=1 ωiσ̂

4
i

+ o(1/µ2
2).

Plugging in µ̂2,PMT in place of the unknown µ2 then gives the PMT estimator

κ̂PMT = max

{
µ̂4,UC

µ̂2
2,PMT

, 1 +
32
∑n

i=1 ω
2
i σ̂

8
i

µ̂2
2,PMT

∑n
i=1 ωi ·

∑n
i=1 ωiσ̂

4
i

}
.

The estimators in step 2 of our baseline implementation in Section 3.2 correspond to µ̂2,PMT

and κ̂PMT, due to their slightly simpler form relative to estimators based on FPLIB. In

unreported simulations based on the designs described in Section 4.4 and Supplemental Ap-

pendix E.2, we find that EBCIs based on FPLIB lead to even smaller finite-sample coverage

distortions than those based on the baseline implementation that uses PMT, at the expense

of slightly longer average length.

A.2 Choice of Weighting and Alternative Estimators

Under the moment independence assumption (9), the weights ωi used to estimate µ2 and κ

can be any function of Xi, σi. Furthermore, while δ̂ can be essentially arbitrary as long as

it converges in probability to some δ such that (9) holds, it will often be motivated by the

conditional independence assumption E[θi − X ′iδ | Xi, σi] = 0, in which case one has the

option to use the WLS estimate δ̂ = (
∑n

i=1 ωiXiX
′
i)
−1∑n

i=1 ωiXiY
′
i where again ωi can be

any function of Xi, σi. In principle, the optimal choice of ωi under these conditions will be

different for each of these three estimates, and would require first stage estimates of certain

moments. For simplicity, we focus on using the same weights ωi for each of the estimates, and

on simple weights that do not require first stage moment estimates. The weights ωi = σ−2i
are optimal for estimating δ in the special case where µ2 = 0, but are in general not optimal

for estimating µ2 or κ, or for other values of µ2. Alternatively, one can use unweighted

estimates with ωi = 1/n.
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If one has access to the original data used to compute the estimates Yi, then other es-

timators may be available. For example, if the estimates can be written as sample means

Yi = T−1
∑T

t=1Wit, and Wit is independent across t conditional on θi, one can use the un-

biased jackknife estimate 2
nT (T−1)

∑n
i=1

∑T
t=2

∑t−1
s=1WitWis of µ2, and an analogous jackknife

estimate for κ.

B Computational details

As in the main text, let r(b, χ) = Φ(−χ− b) + Φ(−χ+ b). To simplify the statement of the

results below, let r0(b, χ) = r(
√
b, χ).

The next proposition shows that, if only a second moment constraint is imposed, the

maximal non-coverage probability ρ(m2, χ), defined in Eq. (4), has a simple solution:

Proposition B.1. The solution to the problem

ρ(m2, χ) = sup
F
EF [r(b, χ)] s.t. EF [b2] = m2 (21)

is given by ρ(m2, χ) = supu≥m2
{(1−m2/u)r0(0, χ) + m2

u
r0(u, χ)}. Let t0 = 0 if χ ≤

√
3, and

otherwise let t0 > 0 denote the solution to r0(0, χ)−r0(u, χ)+u ∂
∂u
r0(u, χ) = 0. This solution

is unique, and the optimal u satisfies u = m2 for m2 > t0 and u = t0 otherwise.

The proof of Proposition B.1 shows that ρ(m2, χ) is given by the least concave majorant

of the function r0. This majorant function can be computed via a univariate optimization

problem given in the statement of Proposition B.1.

The next result shows that, if in addition to a second moment constraint, we impose

a constraint on the kurtosis, the maximal non-coverage probability can be computed as a

solution to two nested univariate optimizations:

Proposition B.2. Suppose κ > 1 and m2 > 0. Then the solution to the problem

ρ(m2, κ, χ) = sup
F
EF [r(b, χ)] s.t. EF [b2] = m2, EF [b4] = κm2

2,

is given by ρ(m2, κ, χ) = r0(m2, χ) if m2 ≥ t0, with t0 defined in Proposition B.1. If m2 < t0,

then the solution is given by

inf
0<x0≤t0

{
r0(x0, χ) + (m2 − x0)

∂r0(x0, χ)

∂x0
+ ((x0 −m2)

2 + (κ− 1)m2
2) sup

0≤x≤t0
δ(x;x0)

}
,

(22)
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where δ(x;x0) =
r0(x,χ)−r0(x0,χ)−(x−x0) ∂r0(x0,χ)∂x0

(x−x0)2 if x 6= x0, and δ(x0;x0) = limx→x0 δ(x;x0) =
1
2
∂2

∂x20
r0(x0, χ).

If m2 ≥ t0, then imposing a constraint on the kurtosis doesn’t help to reduce the maximal

non-coverage probability, and ρ(m2, κ, χ) = ρ(m2, χ).

Remark B.1 (Least favorable distributions). It follows from the proof of these propositions

that distributions maximizing Eq. (21)—the least favorable distributions for the normalized

bias b—have two support points if m2 ≥ t0, namely −√m2 and
√
m2. Since the rejection

probability r(b, χ) depends on b only through its absolute value, the probabilities are not

uniquely determined: any distribution with these two support points maximizes Eq. (21). If

m2 < t0, there are three support points, b = 0, with probability 1−m2/t0 and b = ±√t0 with

total probability m2/t0 (again, only the sum of the probabilities is uniquely determined). If

the kurtosis constraint is also imposed, then there are four support points, ±√x0 and ±√x,

where x and x0 optimize Eq. (22).

Remark B.2 (Certificate of optimality). Since the optimization problem is a linear program,

we can computationally verify that this solution is correct using duality theory, and we

do this in our software implementation. In particular, the solution in the statement of

Proposition B.2 is based on the solution to the dual. By the duality theorem, the value

of the dual is necessarily greater than the value of the primal. Therefore, if the implied

least favorable distribution discussed in Remark B.1 satisfies the primal constraints on the

moments of b, and the implied non-coverage rate equals ρ(m2, κ, χ), it follows that the value

of the primal equals the value of the dual and the solution is correct. Alternatively, we

can solve the primal directly by discretizing the support of F on [0, t0] (in the proof of

Proposition B.2, we show that the solution is supported on this interval) using K support

points, for some large K. This turns the primal into a finite-dimensional linear program.

Since discretizing the support can only lower the value of the primal, if the solution is

numerically close to Eq. (22) (using some small numerical tolerance), it follows that this

solution must be numerically close to correct.

Finally, the characterization of the solution to the general program in Eq. (18) depends

on the form of the constraint function g. To solve the program numerically, one can discretize

the support of F to turn the problem into a finite-dimensional linear program, which can be

solved using a standard linear solver. In particular, we solve the problem

ρg(m,χ) = sup
p1,...,pK

K∑
k=1

pkr(xk, χ) s.t.
K∑
k=1

pkg(xk) = m,
K∑
k=1

pk = 1, pk ≥ 0.

37



Here x1, . . . , xK denote the support points of b, with pk denoting the associated probabilities.

C Coverage results

This appendix provides coverage results that generalize Theorems 4.1 and 5.1. Appendix C.1

introduces the general setup. Appendix C.2 provides results for general shrinkage estimators,

from which Theorem 5.1 follows. Appendix C.3 considers a generalization of our baseline

specification in the EB setting, and states a generalization of Theorem 4.1.

C.1 General setup and notation

Let θ̂1, . . . , θ̂n be estimates of parameters θ1, . . . , θn, with standard errors se1, . . . , sen. The

standard errors may be random variables that depend on the data. We are interested in

coverage properties of the intervals

CIi = {θ̂i ± sei · χi}

for some χ1, . . . , χn, which may be chosen based on the data. In some cases, we will condition

on a variable X̃i when defining EB coverage or average coverage. Let X̃(n) = (X̃1, . . . , X̃n)′

and let χ(n) = (χ1, . . . , χn)′.

As discussed in Section 4.1, the average coverage criterion does not require thinking of

θ as random. To save on notation, we will state most of our average coverage results and

conditions in terms of a general sequence of probability measures P̃ = P̃ (n) and triangular

arrays θ and X̃(n). We will use EP̃ to denote expectation under the measure P̃ . We can

then obtain EB coverage statements by considering a distribution P for the data and θ, X̃(n)

and an additional variable ν such that these conditions hold for the measure P̃ (·) = P (· |
θ, ν, X̃(n)) for θ, ν, X̃(n) in a probability one set. The variable ν is allowed to depend on n,

and can include nuisance parameters as well as additional variables.

It will be useful to formulate a conditional version of the average coverage criterion (15),

to complement the conditional version of EB coverage discussed in the main text. Due to

discreteness of the empirical measure of the X̃i’s, we consider coverage conditional on each

set in some family A of sets. To formalize this, let IX ,n = {i ∈ {1, . . . , n} : X̃i ∈ X}, and let

NX ,n = #IX ,n. The sample average non-coverage on the set X is then given by

ANCn(χ(n);X ) =
1

NX ,n

∑
i∈IX ,n

I{θi /∈ {θ̂ ± sei · χi}} =
1

NX ,n

∑
i∈IX ,n

I{|Zi| > χi},
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where Zi = (θ̂i − θi)/sei. We consider the following notions of average coverage control,

conditional on the set X ∈ A:

ANCn(χ;X ) ≤ α + oP̃ (1), (23)

and

lim sup
n

EP̃ [ANCn(χ;X )] = lim sup
n

1

NX ,n

∑
i∈IX ,n

P̃ (|Zi| > χi) ≤ α. (24)

Note that (23) implies (24), since ANCn(χ;X ) is uniformly bounded. Furthermore, if we

integrate with respect to some distribution on ν, X̃(n) such that (24) holds with P̃ (·) = P (· |
θ, ν, X̃(n)) almost surely, we get (again by uniform boundedness)

lim sup
n

E [ANCn(χ;X ) | θ] ≤ α,

which, in the case where X contains all X̃i’s with probability one, is condition (15) from the

main text.

Now consider EB coverage, as defined in (14) in the main text, but conditioning on X̃i.

We consider EB coverage under a distribution P for the data, X̃(n), θ and ν, where ν includes

additional nuisance parameters and covariates, and where the average coverage condition (24)

holds with P (· | θ, ν, X̃(n)) playing the role of P̃ with probability one. Consider the case

where X̃i is discretely distributed under P . Suppose that the exchangeability condition

P (θi ∈ CIi | I{x̃},n) = P (θj ∈ CIj | I{x̃},n) for all i, j ∈ I{x̃},n (25)

holds with probability one. Then, for each j,

P (θj ∈ CIj | X̃j = x̃) = P (θj ∈ CIj | j ∈ I{x̃},n) = E
[
P (θj ∈ CIj | I{x̃},n) | j ∈ I{x̃},n

]
= E

 1

N{x̃},n
∑
i∈I{x̃}

P (θi ∈ CIi | I{x̃})
∣∣∣ j ∈ I{x̃},n

 .
Plugging in P (· | θ, ν, X̃(n)) for P̃ in the coverage condition (24), taking the expectation

conditional on I{x̃},n and using uniform boundedness, it follows that the lim inf of the term

in the conditional expectation is no less than 1− α. Then, by uniform boundedness of this

term,

lim inf
n→∞

P (θj ∈ CIj | X̃j = x̃) ≥ 1− α. (26)

This is a conditional version of the EB coverage condition (14) from the main text.
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C.2 Results for general shrinkage estimators

We assume that Zi = (θ̂i − θi)/sei is approximately normal with variance one and mean

bi under the sequence of probability measures P̃ = P̃ (n). To formalize this, we consider a

triangular array of distributions satisfying the following conditions.

Assumption C.1. For some random variables b̃i and constants bi,n, Zi − b̃i satisfies

lim
n→∞

max
1≤i≤n

∣∣∣P̃ (Zi − b̃i ≤ t)− Φ(t)
∣∣∣ = 0

for all t ∈ R and, for all X ∈ A and any ε > 0, 1
NX ,n

∑
i∈IX ,n P̃ (|b̃i − bi,n| ≥ ε)→ 0.

Note that, when applying the results with P̃ (·) given by the sequence of measures P (· |
θ, ν, X̃(n)), the constants bi,n will be allowed to depend on θ, ν, X̃(n).

Let g : R → Rp be a vector of moment functions. We consider critical values χ̂(n) =

(χ̂1, . . . , χ̂n) based on an estimate of the conditional expectation of g(bi,n) given X̃i, where

the expectation is taken with respect to the empirical distribution of X̃i, bi,n. Due to the

discreteness of this measure, we consider the behavior of this estimate on average over sets

X ∈ A. We assume that there exists a function m : X → Rp that plays the role of the

conditional expectation of g(bi,n) given X̃i, along with estimates m̂i of m(X̃i), which satisfy

the following assumptions.

Assumption C.2. For all X ∈ A, NX ,n →∞ and

1

NX ,n

∑
i∈IX ,n

g(bn,i)−
1

NX ,n

∑
i∈IX ,n

m(X̃i)→ 0

and, for all ε > 0, 1
NX ,n

∑
i∈IX ,n P̃ (‖m̂i −m(X̃i)‖ ≥ ε)→ 0.

Assumption C.3. For every X ∈ A and every ε > 0, there is a partition X1, . . . ,XJ ∈ A
of X and m1, . . . ,mJ such that, for each j and all x ∈ Xj, m(x) ∈ Bε(mj), where Bε(m) =

{m̃ : ‖m̃−m‖ ≤ ε}.

Assumption C.4. For some compact set M in the interior of the set of values of
∫
g(b)dF (b)

where F ranges over all probability measures on R, we have m(x) ∈M for all x.

Let ρg(m,χ) and cvaα,g(m) be defined as in Section 5,

cvaα,g(m) = inf{χ : ρg(m,χ) ≤ α} where ρg(m,χ) = sup
F
EF [r(b, χ)] s.t. EF [g(b)] = m.

Let χ̂i = cvaα,g(m̂i). We will consider the average non-coverage ANCn(χ̂(n);X ) of the

collection of intervals {θ̂i ± sei · χ̂i}.
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Theorem C.1. Suppose that Assumptions C.1, C.2, C.3 and C.4 hold, and that, for some

j, limb→∞ gj(b) = limb→−∞ gj(b) =∞ and infb gj(b) ≥ 0. Then, for all X ∈ A,

EP̃ANCn(χ̂(n);X ) ≤ α + o(1).

If, in addition, Zi − b̃i is independent over i under P̃ , then ANCn(χ̂(n);X ) ≤ α + oP̃ (1).

C.3 Empirical Bayes shrinkage toward regression estimate

We now apply the general results in Appendix C.2 to the EB setting. As in Section 3, we

consider unshrunk estimates Y1, . . . , Yn of parameters θ = (θ1, . . . , θn)′, along with regressors

X(n) = (X1, . . . , Xn) and variables X̃(n) = (X̃1, . . . , X̃n)′, which include σi and which play

the role of the conditioning variables. (While Section 3 uses Xi, σi as the conditioning

variable X̃i, here we generalize the results by allowing the conditioning variables to differ

from Xi.) The initial estimate Yi has standard deviation σi, and we observe an estimate

σ̂i. We obtain average coverage results by considering a triangular array of probability

distributions P̃ = P̃ (n), in which the Xi’s, σi’s and θi’s are fixed. EB coverage can then be

obtained for a distribution P of the data, θ and some nuisance parameter ν̃ such that these

conditions hold almost surely with P (· | θ, ν̃, X̃(n), X(n)) playing the role of P̃ .

We consider the following generalization of the baseline specification considered in the

main text. Let

θ̂i = X̂ ′i δ̂ + w(γ̂, σ̂i)(Yi − X̂ ′i δ̂)

where X̂i is an estimate of Xi (we allow for the possibility that some elements of Xi are

estimated rather than observed directly, which will be the case, for example, when σi is

included in Xi), δ̂ is any random vector that depends on the data (such as the OLS estimator

in a regression of Yi on Xi), and γ̂ is a tuning parameter that determines shrinkage and may

depend on the data. This leads to the standard error sei = w(γ̂, σ̂i)σ̂i so that the t-statistic

is

Zi =
θ̂i − θi

sei
=
X̂ ′i δ̂ + w(γ̂, σ̂i)(Yi − X̂ ′i δ̂)− θi

w(γ̂, σ̂i)σ̂i
=
Yi − θi
σ̂i

+
[w(γ̂, σ̂i)− 1](θi − X̂ ′i δ̂)

w(γ̂, σ̂i)σ̂i
.

We use estimates of moments of order `1 < · · · < `p of the bias, where `1 < · · · < `p are

positive integers. Let µ̂` be an estimate of the `th moment of (θi −X ′iδ), and suppose that

this moment is independent of σi in a sense formalized below. Then an estimate of the `jth

moment of the bias is m̂i,j =
[w(γ̂,σ̂i)−1]`j µ̂`j
w(γ̂,σ̂i)

`j σ̂
`j
i

. Let m̂i = (m̂1, . . . , m̂p)
′. The EBCI is then

given by θ̂i ± w(γ̂, σ̂i)σ̂i · cvaα,g(m̂i) where gj(b) = b`j . We obtain the baseline specification
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in Section 3.2 when p = 2, `1 = 2, `2 = 4, γ̂ = µ̂2 and w(µ̂2, σ̂i) = µ̂2/(µ̂2 + σ̂2
i ).

We make the following assumptions.

Assumption C.5.

lim
n→∞

max
1≤i≤n

∣∣∣∣P̃ (Yi − θiσ̂i
≤ t

)
− Φ(t)

∣∣∣∣ = 0.

We give primitive conditions for Assumption C.5 in Supplemental Appendix D.2. This

involves considering a triangular array of parameter values such that sampling error and

empirical moments of the parameter value sequence are of the same order of magnitude, and

defining θi to be a scaled version of the corresponding parameter.

Assumption C.6. The standard deviations σi are bounded away from zero. In addition, for

some δ and γ, δ̂ and γ̂ converge to δ and γ under P̃ , and, for any ε > 0,

lim
n→∞

max
1≤i≤n

P̃ (|σ̂i − σi| ≥ ε) = 0 and lim
n→∞

max
1≤i≤n

P̃ (|X̂i −Xi| ≥ ε) = 0.

Assumption C.7. The variable X̃i takes values in S1 × · · · × Ss where, for each k, either

Sk = [xk, xk] (with −∞ < xk < xk < ∞) or Sk is a finitely discrete set with minimum

element xk and maximum element xk. In addition, X̃i1 = σi (the first element of X̃i is given

by σi). Furthermore, for some µ0 such that (µ0,`1 , . . . , µ0,`p) is in the interior of the set of

values of
∫
g(b) dF (b) where F ranges over probability measures on R where gj(b) = b`j and

some constant K, the following holds. Let A denote the collection of sets S̃1×· · ·× S̃s where

S̃k is a positive Lebesgue measure interval contained in [xk, xk] in the case where Sk = [xk, xk],

and S̃k is a nonempty subset of Sk in the case where Sk is finitely discrete. For any X ∈ A,

NX ,n →∞ and

1

NX ,n

∑
i∈IX ,n

(θi −X ′iδ)`j → µ0,`j ,
1

NX ,n

∑
i∈IX ,n

|θi|`j ≤ K, and
1

NX ,n

∑
i∈IX ,n

‖Xi‖`j ≤ K.

In addition, the estimate µ̂`j converges in probability to µ0,`j under P̃ for each j.

Theorem C.2. Let θ̂i and sei be given above and let χ̂i = cvaα,g(m̂i) where m̂i is given

above and g(b) = (b`1 , . . . , b`p) for some positive integers `1, . . . , `p, at least one of which is

even. Suppose that Assumptions C.5, C.6 and C.7 hold, and that w() is continuous in an

open set containing {γ} × S1 and is bounded away from zero on this set. Let A be as given

in Assumption C.7. Then, for all X ∈ A, EP̃ANCn(χ̂(n);X ) ≤ α + o(1). If, in addition,

(Yi, σ̂i) is independent over i under P̃ , then ANCn(χ̂(n);X ) ≤ α + oP̃ (1).

As a consequence of Theorem C.2, we obtain, under the exchangeability condition (25),

conditional EB coverage, as defined in (26), for any distribution P of the data and θ, ν̃ such
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that the conditions of Theorem C.2 hold with probability one with the sequence of probability

measures P (· | θ, ν̃, X(n), X̃(n)) playing the role of P̃ . This follows from the arguments in

Appendix C.1.

Corollary C.1. Let θ, ν,X(n), X̃(n), Yi follow a sequence of distributions P such that the con-

ditions of Theorem C.2 hold with X̃i taking on finitely many values, and P (· | θ, ν,X(n), X̃(n))

playing the role of P̃ with probability one, and such that the exchangeability condition (25)

holds. Then the intervals CIi = {θ̂i ± w(γ̂, σ̂i)σ̂i · cvaα,g(m̂i)} satisfy the conditional EB

coverage condition (26).
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