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Appendix C Additional details

C.1 Constrained adaptation

The constrained adaptive estimator solves the problem

A⇤(B;R) = inf
✓̂
sup
B2B

Rmax(B, ✓̂)

R⇤(B)
s.t. sup

B2B
Rmax(B, ✓̂)  R. (19)

We can rewrite this formulation as a weighted minimax problem similar to the one in Section

4.1 by setting t = R/A⇤(B;R) and considering the problem

inf
✓̂
sup
B2B

max

(
Rmax(B, ✓̂)

R⇤(B)
,
Rmax(B, ✓̂)

t

)
= inf

✓̂
sup
B2B

Rmax(B, ✓̂)

min {R⇤(B), t} . (20)

Indeed, any solution to (19) must also be a solution to (20) with t = R/A⇤(B;R), since any

decision function achieving a strictly better value of (20) would satisfy the constraint in (19)

and achieve a strictly better value of the objective in (19). Conversely, letting Ã⇤(t) be the

value of (20), any solution to (20) will achieve the same value of the objective (19) and will

satisfy the constraint for R̄ = t · Ã⇤(t). In fact, this solution to (20) will also solve (19) for

R̄ = t · Ã⇤(t) so long as this value of R̄ is large enough to allow some scope for adaptation.

Arguing as in Section 4.1, we can write the optimization problem (20) as

inf
✓̂

sup
(✓,b)2[

B02BCB0

!̃(✓, b, t)R(✓, b, ✓̂), (21)

where !̃(✓, b, t) =

✓
inf

B2B s.t. (✓,b)2CB
min {Rmax(B), t}

◆�1

= max {!(✓, b), 1/t}
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and !(✓, b) is given in Lemma 4.1 in Section 4.1. Thus, we can solve (20) by solving for the

minimax estimator under the loss function (✓, b, d) 7! !̃(✓, b, t)L(✓, b, d). Letting A⇤(t) be the

optimized objective function, we can then solve (19) by finding a t such that R̄ = t · A⇤(t).

We summarize these results in the following lemma, which is proved in Section C.1.1 of

the appendix.

Lemma C.1. Any solution to (19) is also a solution to (21) with t = R/A⇤(B;R). Con-

versely, let Ã⇤(t) denote the value of (21) and let R̃(t) = Ã⇤(t)·t. If R̃(t) > inf ✓̂ supB2B Rmax(B, ✓̂)

and infB2B R⇤(B) > 0, then A⇤(B; R̃(t)) = Ã⇤(t) and any solution to (21) is also a solution

to (19) with R̄ = R̃(t).

C.1.1 Details for constrained adaptation

We provide proof for Lemma C.1, which shows the constrained adaption problem is equivalent

to the weighted minimax problem with a particular set of weights. The first statement is

immediate from the arguments proceeding the statement of the lemma in Section 4.4. For

the second statement, let �̄ be a decision rule with supB2B Rmax(B, �̄) < R̃(t). Such a decision

rule exists and satisfies supB2B
Rmax(B,�̄)

R⇤(B) < 1 by the assumptions of the lemma. Let �⇤t be a

solution to (20).

Suppose, to get a contradiction, that a decision �0 satisfies the constraint in (19) with

R̄ = R̃(t) and achieves a strictly better value of the objective than Ã⇤(t). For � 2 (0, 1), let

�0� be the randomized decision rule that places probability � on �̄ and probability 1 � �

on �0, independently of the data Y . Note that Rmax(B, �0�) = sup(✓,b)2CB R(✓, b, �0�) =

sup(✓,b)2CB

⇥
�R(✓, b, �̄) + (1� �)R(✓, b, �0)

⇤
 sup(✓,b)2CB �R(✓, b, �̄)+sup(✓,b)2CB(1��)R(✓, b, �0) =

�Rmax(B, �̄) + (1� �)Rmax(B, �0) so that, for � 2 (0, 1),

sup
B2B

Rmax(B, ��)  � sup
B2B

Rmax(B, �̄) + (1� �) sup
B2B

Rmax(B, �0) < R̃(t) = Ã⇤(t) · t

and

sup
B2B

Rmax(B, ��)

R⇤(B)
 � sup

B2B

Rmax(B, �̄)

R⇤(B)
+ (1� �) sup

B2B

Rmax(B, �0)

R⇤(B)
.

Since supB2B
Rmax(B,�̄)

R⇤(B) is finite and supB2B Rmax(B,�0)
R⇤(B) < Ã⇤(t), the above display is strictly less

than Ã⇤(t) for small enough �. Thus, for small enough �, the objective function in (21)
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evaluated at the decision function �� evaluates to

max

⇢
sup
B2B

Rmax(B, ��)

R⇤(B)
, sup
B2B

Rmax(B, ��)

t

�
< max

n
Ã⇤(t), R̃(t)/t

o
= Ã⇤(t),

a contradiction.

C.2 Numerical results on estimators as a function of 1� ⇢2

In practice, it is common to use a fixed threshold of 1.96, which corresponds to a pre-test

rule that switches between the unrestricted estimator and the GMM estimator based on

the result of the specification test. Doing so leads to high level of worst-case adaptation

regret especially when ⇢2 is close to one as shown in Figure A1. To minimize the worst-case

adaptation regret, the adaptive hard-threshold estimator needs to use a threshold that would

increase to infinity as ⇢2 gets closer to one.

Figure A1: Worst case adaptation regret as function of relative e�ciency

Notes: Vertical axis plots (Amax(B, ✓̂)� 1)⇥ 100 on log10 scale.

A pre-test estimator utilizing a fixed threshold at 1.96 realizes its worst-case risk when the

scaled bias b̃ is itself near the 1.96 threshold. As shown in Figure A2, the pre-test estimator

tends to exhibit substantially greater worst-case risk than the class of adaptive estimators

for most values of ⇢2. As discussed in Section C.3 below, adaptive estimators have large

worst-case risk when ⇢2 is close to one. The pre-test estimator has lower worst-case risk in

these cases, due to the fixed threshold at 1.96.
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Figure A2: Worst case risk increase relative to YU

Notes: Vertical axis plots (Rmax(1, ✓̂)� �U )/�U ⇥ 100 on log10 scale.

C.3 Asymptotics as |⇢| ! 1

This section considers the behavior of the worst-case adaptation regret as |⇢| ! 1 for

the optimally adaptive estimator as well as for the hard and soft-thresholding estima-

tors. Recall that 1 � ⇢2 is equal to �2
R,GMM/�2

U , so that |⇢| ! 1 corresponds to the

case where �2
R,GMM/�2

U ! 0. It will be convenient to phrase our results in terms of

⇢�2 � 1 = (1� ⇢2)/⇢2 = (1 + o(1)) · �2
R,GMM/�2

U as |⇢| ! 1.

Let A(�, ⇢) denote the worst-case adaptation regret of the estimator given by (4) un-

der the given value of ⇢, so that A(�, ⇢) returns the value of (6) with �̃ = �. We use

A⇤(⇢) = inf� A(�, ⇢) (where the infimum is over all estimators) to denote the loss of e�ciency

under adaptation for the given value of ⇢. Likewise, we denote by AS(�, ⇢) = A(�S,�, ⇢)

and AH(�, ⇢) = A(�H,�, ⇢) the worst-case adaptation regret for soft and hard-thresholding

respectively with threshold �, where �S,� are �H,� are defined in Section 4.3. Finally, we

use A⇤
S(⇢) = inf�AS(�, ⇢) and A⇤

H(⇢) = inf�AH(�, ⇢) to denote the minimum worst-case

adaptation regret for soft and hard-thresholding respectively.

The following theorem characterizes the behavior of A⇤(⇢), A⇤
S(⇢) and A⇤

H(⇢) as |⇢| ! 1.

Theorem C.1. We have

lim
|⇢|"1

A⇤(⇢)

2 log(⇢�2 � 1)�1
= lim

|⇢|"1

A⇤
S(⇢)

2 log(⇢�2 � 1)�1
= lim

|⇢|"1

A⇤
H(⇢)

2 log(⇢�2 � 1)�1
= 1.

4



In the remainder of this section, we prove Theorem C.1. We split the proof into upper

bounds (Section C.3.1) and lower bounds (Section C.3.2). The lower bounds in Section C.3.2

are essentially immediate from results in Bickel (1983) for adapting to B 2 B = {0,1},
whereas the upper bounds in Section C.3.1 involve new arguments to deal with intermediate

values of B.

C.3.1 Upper bounds

In this section, we show that A⇤
S(⇢)  (1 + o(1))2 log(⇢�2 � 1)�1 and A⇤

H(⇢)  (1 +

o(1))2 log(⇢�2 � 1)�1. Since A⇤(⇢) is bounded from above by both A⇤
S(⇢) and A⇤

H(⇢), this

also implies A⇤(⇢)  (1 + o(1))2 log(⇢�2 � 1)�1.

Let rS(�, t) = ET⇠N(µ,1)(�S,�(T )� µ)2 and rS(�, t) = ET⇠N(µ,1)(�H,�(T )� µ)2 denote the

risk of soft and hard-thresholding. Then

AS(�, ⇢) = sup
µ2R

rS(�, µ) + ⇢�2 � 1

rBNM(|µ|) + ⇢�2 � 1

and similarly for AH(�, ⇢). We use the following upper bound for rH(�, µ) and rS(�, µ),

which follows immediately from results given in Johnstone (2019).

Lemma C.2. There exists a constant C such that, for � > C, both rS(�, µ) and rH(�, µ)

are bounded from above by r̄(�, µ) where

r̄(�, µ) =

8
><

>:

min {� exp (��2/2) + 1.2µ2, 1 + µ2} |µ|  �

1 + �2 |µ| > �.

Proof. The bound for rH(�, µ) follows from Lemma 8.5 in Johnstone (2019) along with the

bound rH(�, 0)  2+"p
2⇡
� exp (��2/2) which holds for any " > 0 for � large enough by (8.15)

in Johnstone (2019). The bound for rL(�, µ) follows from Lemma 8.3 and (8.7) in Johnstone

(2019).

Let �̃⇢ =
p

2 log(⇢�2 � 1)�1. By Lemma C.2, A⇤
S(⇢) and A⇤

H(⇢) are, for (⇢
�2 � 1)�1 large

enough, bounded from above by the supremum over µ of

r̄(�̃⇢, µ) + ⇢�2 � 1

rBNM(|µ|) + ⇢�2 � 1
(22)

5



Let c(⇢) be such that c(⇢)/�̃⇢ ! 0 and c(⇢) ! 1 as |⇢| " 1. We bound (22) separately for

|µ|  c(⇢) and for |µ| � c(⇢). For |µ|  c(⇢), we use the bound rBNM(|µ|) � .8 · µ2/(µ2 + 1)

(Donoho, 1994), which gives an upper bound for (22) of

r̄(�̃⇢, µ) + ⇢�2 � 1

.8 · µ2/(µ2 + 1) + ⇢�2 � 1

p

2 log(⇢�2 � 1)�1 · (⇢�2 � 1) + 1.2µ2 + ⇢�2 � 1

.8 · µ2/(µ2 + 1) + ⇢�2 � 1


p
2 log(⇢�2 � 1)�1 + (1.2/.8) · (µ2 + 1) + 1 

p
2 log(⇢�2 � 1)�1 + (1.2/.8) · (c(⇢)2 + 1) + 1.

As |⇢| " 1, this increases more slowly than log(⇢�2 � 1)�1. For |µ| � c(⇢), we use the bound

rBNM(|µ|) � rBNM(c(⇢)) which gives an upper bound for (22) of

r̄(�̃⇢, µ) + ⇢�2 � 1

rBNM(|c(⇢)|) + ⇢�2 � 1
 r̄(�̃⇢, µ)

rBNM(|c(⇢)|) + 1 
1 + �̃2⇢

rBNM(|c(⇢)|) + 1.

As |⇢| " 1, c(⇢) ! 1 and rBNM(|c(⇢)|) ! 1, so that the above display is equal to a 1 + o(1)

term times �̃2⇢ = 2 log(⇢�2 � 1)�1 as required.

C.3.2 Lower bounds

In this section, we show that A⇤(⇢) � (1 + o(1))2 log(⇢�2 � 1)�1. Since A⇤
S(⇢) and A⇤

H(⇢)

are bounded from below by A⇤(⇢) , this also implies A⇤
S(⇢) � (1 + o(1))2 log(⇢�2 � 1)�1 and

A⇤
H(⇢) � (1 + o(1))2 log(⇢�2 � 1)�1.

Given an estimator �(Y ) of µ in the normal means problem Y ⇠ N(µ, 1), let m(�) =

ET⇠N(0,1)�(Y )2 denote the risk at µ = 0 and let M(�) = supµ2R ET⇠N(µ,1)(�(Y )� µ)2 denote

worst-case risk. The following lemma is immediate from Bickel (1983, Theorem 4.1).

Lemma C.3 (Bickel 1983, Theorem 4.1). For t 2 (0, 1], let �t be an estimator that satisfies

m(�t)  1� t. Then, as t " 1, M(�t) � (1 + o(1)) · 2 log(1� t).

Using this result, we prove the following lemma, which gives a lower bound for the worst-

case adaptation regret and the worst-case risk of any estimator achieving the upper bound

in Section C.3.1. The required lower bound A⇤(⇢) � (1 + o(1))2 log(⇢�2 � 1)�1 follows from

this result.

Lemma C.4. For ⇢ 2 (�1, 1), let �⇢ : R ! R be an estimator of µ in the normal means

problem Y ⇠ N(µ, 1). Suppose that the worst-case adaptation regret A(�⇢, ⇢) of the corre-
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sponding estimator (4) satisfies A(�⇢, ⇢)  (1 + o(1))2 log(⇢�2 � 1)�1 as |⇢| ! 1. Then the

following results hold as |⇢| ! 1.

i.) The worst-case risk of the corresponding estimator (4) is bounded from below by a

1 + o(1) term times 2⌃U log(⇢�2 � 1)�1

ii.) A(�⇢, ⇢) � (1 + o(1)) · 2 log(⇢�2 � 1)�1.

Proof. By the arguments Section B.1, the worst-case risk of the estimator (4) with � = �⇢

is given by ⌃U ·
⇥
⇢2 supµ ET⇠N(µ,1)(�⇢(T )� µ)2 + 1� ⇢2

⇤
. As |⇢| " 1, this is bounded from

below by a 1+ o(1) term times ⌃U supµ ET⇠N(µ,1)(�⇢(T )�µ)2. Similarly, A(�⇢, ⇢) is bounded

from below by a 1 + o(1) term times supµ ET⇠N(µ,1)(�⇢(T )� µ)2 as |⇢| " 1. Thus, it su�ces

to show that supµ ET⇠N(µ,1)(�⇢(T )� µ)2 � (1 + o(1)) · 2 log(⇢�2 � 1)�1.

To show this, note that it follows from plugging in b̃ = 0 to the objective in (6) that, for

any " > 0, we have, for |⇢| close enough to 1,

ET⇠N(0,1)�⇢(T )2

⇢�2 � 1
 A(�⇢, ⇢)  (2 + ") log(⇢�2 � 1)�1.

Applying Lemma C.3 with 1� t = (⇢�2 � 1) · (2 + ") log(⇢�2 � 1)�1, it follows that

sup
µ

ET⇠N(µ,1)(�⇢(T )� µ)2 � (1 + o(1)) · 2 log
⇥
(⇢�2 � 1) · (2 + ") log(⇢�2 � 1)�1

⇤

= (1 + o(1)) ·
⇥
2 log(⇢�2 � 1) + log(2 + ") + log log(⇢�2 � 1)�1

⇤
= (1 + o(1)) · 2 log(⇢�2 � 1)

as required.

Appendix D Computational details

In this section, we provide additional details on our computation of the adaptive estimator.

D.1 Computing minimax estimators

As shown in Sections 4.1 and 4.2, one can compute adaptive estimators by solving a weighted

minimax problem which, in our setting, can be further simplified using invariance. To solve

7



these problems, we use the insight that the minimax estimator can be characterized as a

Bayes estimator for a least favorable prior. We first give a brief review of this approach

before going into details for our setting.

Consider the generic problem of computing a minimax decision over the parameter space

C for a parameter # under loss L̄(#, �). We use E# and P# to denote expectation under # and

the probability distribution of the data Y under #. Letting ⇡ denote a prior distribution on

C, the Bayes risk of � is given by

RBayes(⇡, �) =

Z
E#L̄(#, �(Y )) d⇡(#) =

Z Z
L̄(#, �(y)) dP#(y)d⇡(#).

The Bayes decision, which we will denote �Bayes
⇡ , optimizes RBayes(⇡, �) over �. It can be

computed by optimizing expected loss under the posterior distribution for # taking ⇡ as the

prior. Under squared error loss, the Bayes decision is the posterior mean.

RBayes(⇡, �) gives a lower bound for the worst-case risk of � under C and RBayes(⇡, �Bayes
⇡ )

gives a lower bound for the minimax risk. Under certain conditions, a minimax theorem

applies, which tells us that this lower bound is in fact sharp. In this case, letting � denote

the set of priors ⇡ supported on C, the minimax risk over C is given by

min
�

max
⇡2�

RBayes(⇡, �) = max
⇡2�

min
�

RBayes(⇡, �) = max
⇡2�

RBayes(⇡, �
Bayes
⇡ ).

The distribution ⇡ that solves this maximization problem is called the least favorable prior.

When the minimax theorem applies, the Bayes decision for this prior is the minimax decision

over C.
The expression RBayes(⇡, �Bayes

⇡ ) is convex as a function of ⇡ if the set of possible decision

functions is su�ciently unrestricted and the set � is convex. While one may need to allow

randomized decisions in general, the estimation problems we consider will be such that the

Bayes decision is nonrandomized. Thus, we can use convex optimization software to compute

the least favorable prior and minimax estimator so long as we have a way of approximating

⇡ with a finite dimensional object that retains the convex structure of the problem.

In our setting, we use invariance arguments to obtain the objective function (6), which

is a minimax problem over the unknown parameter b̃ = b/�O (the noncentrality parameter

of the overidentification statistic TO). We solve (6), as well as the bounded normal mean

problem used to obtain the scaling in (6), by solving for a least favorable prior over b̃ using
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a finite dimensional approximation ⇡(b̃1), . . . , ⇡(b̃J) to the prior over a grid of J values of b̃.

The least favorable prior for (✓, b) is then given by a flat (improper) prior for ✓ along with

the corresponding prior for b̃ = b/�O, with the flat prior for ✓ following from invariance. We

now discuss the details of this approximation.

D.2 Discrete approximation to estimators and risk function

Operationally, discretizing the support of the random variable T 2 T into K points, finding

an estimator �(T ) is equivalent to finding a “policy” function � (t) : T ! R:

� (t) =
KX

k=1

 k1 {t = tk} .

Hence, we can rewrite the risk of estimator �(T ) when T ⇠ N(b, 1) as

ET⇠N(b,1)

 
KX

k=1

 k1 {T = tk}� b

!2

. (23)

Define µkb = PrT⇠N(b,1) (T = tk) as the probability of falling into the k’th grid point given

bias b, which can be evaluated analytically via the following discrete approximation to the

normal distribution

µkb = � ((tk + tk+1) /2� b)� � ((tk + tk�1) /2� b) , (24)

where we define t0 = �1 and tK+1 = 1, which ensures that
PK

k=1 µkb = 1. The discretized

approximation to the risk function (23) is therefore

KX

k=1

 2
kµkb � 2b

KX

k=1

 kµkb + b2. (25)

D.3 Computing minimax risk in the bounded normal mean prob-

lem

We now provide details on how to compute the minimax risk rBNM(|b̃|) in the bounded

normal mean problem, which allows us to easily compute the B-minimax risk as described

in (5) for each B 2 B.
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By definition, the minimax risk rBNM(|b̃|) is the minimized value of the following minimax

problem

min
�

max
b2[�|b̃|,|b̃|]

ET⇠N(b,1)(�(T )� b)2

whose solution is the minimax estimator �BNM
⇣
T ; |b̃|

⌘
. In particular, for each |b̃| = B/�O 2

{0.1, 0.2, . . . , 9} we calculate the minimax risk rBNM(|b̃|) following the steps below. To com-

pute the minimax risk function rBNM(|b̃|) for values of |b̃| that are not included in the fine

grid, we rely on spline interpolation.

1. Approximate the prior ⇡ with the finite dimensional vector ⇡ 2 �J , where the param-

eter space [�|b̃|, |b̃|] is approximated by an equally spaced grid of b values spanning

[�|b̃|, |b̃|] with a step size of 0.05, totaling to J grid values. Approximate the condi-

tional risk function as in (25), where the support for T ⇠ N(b, 1) is approximated by

an equally spaced grid of t values spanning [�|b̃| � 3, |b̃| + 3] with a step size of 0.1,

totaling to K grid values. The minimax problem becomes

max
⇡2�J

min
{ k}Kk=1

JX

`=1

⇡`

 
KX

k=1

 2
kµkb` � 2b`

KX

k=1

 kµkb` + b2`

!
. (26)

2. The solution to the inner optimization yields the posterior mean  ⇤
k (⇡) =

P
J

`=1 ⇡`µkb`
b`P

J

`=1 ⇡`µkb`

.

The outer problem is then

max
⇡2�J

JX

`=1

⇡`

 
KX

k=1

( ⇤
k (⇡))

2 µkb` � 2b`

KX

k=1

 ⇤
k (⇡)µkb` + b2`

!
.

3. Solve the outer problem for the least favorable prior ⇡⇤ based on sequential quadratic

programming via MATLAB’s fmincon routine. The minimax estimator �BNM
⇣
T ; |b̃|

⌘

is therefore
PK

k=1  
⇤
k (⇡

⇤) 1 {t = tk} and the minimax risk rBNM(|b̃|) is the minimized

value.

Since the objective is concave in ⇡ (it is the pointwise infimum over a set of linear functions;

see Boyd and Vandenberghe, 2004, p. 81), we can check that the algorithm has found a

global maximum by checking for a local maximum.
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D.4 Computing the optimally adaptive estimator for a given ⇢2

As explained in the main text, the adaptive problem only depends on ⌃ through the corre-

lation coe�cient ⇢2. For a given value of ⇢2, we use convex programming methods to solve

for the function �⇤(t; ⇢) based on the steps described below.

1. Approximate the prior ⇡ with the finite dimensional vector ⇡ 2 �J , where the param-

eter space for b/�O is approximated by an equally spaced grid of b̃ values spanning

[�9, 9] with a step size of 0.025, totaling to J grid values. Approximate the conditional

risk function as in (25), where the support for T ⇠ N(b̃, 1) is approximated by an

equally spaced grid of t values spanning [�12, 12] with a step size of 0.05, totaling to

K grid values. The adaptation problem (6) becomes

max
⇡2�J

min
{ k}Kk=1

JX

`=1

⇡`!`

 
KX

k=1

 2
kµkb` � 2b`

KX

k=1

 kµkb` + b2`

!
+ ⇢�2 � 1 (27)

where !` =
⇣
rBNM(|b̃`|) + ⇢�2 � 1

⌘�1

using output from the previous subsection.

2. The solution to the inner optimization yields  ⇤
k (⇡) =

P
J

`=1 ⇡`µkb`
!`b`P

J

`=1 ⇡`µkb`
!`

. The outer prob-

lem is then

max
⇡2�J

JX

`=1

⇡`!`

 
KX

k=1

( ⇤
k (⇡))

2 µkb` � 2b`

KX

k=1

 ⇤
k (⇡)µkb` + b2`

!
+ ⇢�2 � 1.

3. Solve the outer problem for the least favorable (adaptive) prior ⇡⇤ based on sequential

quadratic programming via Matlab’s fmincon routine. The adaptive estimator �⇤(t; ⇢)

is therefore
PK

k=1  
⇤
k (⇡

⇤) 1 {t = tk}. The loss of e�ciency under adaptation is the

minimized value.

As with the bounded normal mean problem, the objective is concave in ⇡, so we can check

that the algorithm has found a global maximum by checking for a local maximum.

This algorithm is a finite dimensional approximation to the optimization problem in

Theorem 4.1(iii). While Theorem 4.1(iii) does not formally show the existence of a solution

to this infinite dimensional problem, we find that the algorithm reliably converges to a

global maximum, and that the least favorable prior stabilizes as the number of gridpoints

11



and range of the grid increase. Based on this numerical finding, we conjecture that the

minimax problem in Theorem 4.1(iii) admits a least favorable prior, and that this solution

can be approximated arbitrarily well using the our grid approach.

D.5 Computing the optimally adaptive estimator based on the

lookup table

To simplify the computation of the optimally adaptive estimator, we pre-calculate the adap-

tive estimates over an unequally spaced grid tanh([0, 0.05, 0.10, . . . , 3]) of correlation coef-

ficients using the algorithm described above. As ⇢2 approaches one, the solution becomes

sensitive to small changes in ⇢. The uneven spacing of the ⇢ grid allows for more accurate

interpolation based on the simple pre-tabulated lookup table that we describe next.

To rapidly obtain a final estimator �⇤(TO; ⇢) for a given application, we conduct 2D

interpolation across ⇢2 and t values to tailor the adaptive estimates to the exact parameter

values desired. For example, we obtain �⇤ (TO;�0.524) based on spline interpolation at

⇢2 = (�0.524)2 together with the observed test statistic TO based on the 2D grid of ⇢2 and

t values.

D.6 Computing the analytic adaptive estimators

To find the analytic adaptive estimators in the class of ERM estimators, soft thresholding

estimators and hard thresholding estimators, it su�ces to solve the two dimensional mini-

max problem in threshold � and scaled bias level b̃. We provide details for the claim in the

main text that this two dimensional minimax problem can be easily solved even though the

minimax theorem does not apply to these restricted classes of estimators. To simplify the

computation of the analytic adaptive estimator in practice, we pre-calculate the adaptive

thresholds � over an unequally spaced grid tanh([0, 0.05, 0.10, . . . , 3]) of correlation coe�-

cients as explained above. To rapidly obtain a final estimator, for example, soft-thresholding

estimator �S,� (TO; ⇢) for a given application, we conduct a spline interpolation across ⇢2

values to tailor the threshold to the exact parameter values desired. For example, we ob-

tain �S,� (TO;�0.524) firstly based on spline interpolation at ⇢2 = (�0.524)2 to obtain the

threshold �, and then with the observed test statistic TO.

The derivation for soft and hard thresholding is largely based on the following equality

12



using moments of a truncated standard normal Xi | a < Xi < b. Let �(x) and �(x) denote

the pdf and cdf of a standard normal distribution. Then for any a < b, we have

Z b

a

x2�(x)dx = � (b)� � (a)� (b�(b)� a�(a)) . (28)

D.6.1 Soft thresholding

Rewrite the soft thresholding estimator as �S,� (TO) = 1 {TO > �} (TO � �)+1 {TO < ��} (TO + �)

and its risk function can be expressed as

ETO⇠N(b̃,1))

⇣
�S,� (TO)� b̃

⌘2

= ETO⇠N(b̃,1)

⇣
1 {TO > �}

⇣
TO � �� b̃

⌘
+ 1 {TO < ��}

⇣
TO + �� b̃

⌘
� 1 {�� < TO < �} b̃

⌘2

= b̃2
⇣
�
⇣
�� b̃

⌘
� �

⇣
��� b̃

⌘⌘
+

Z 1

��b̃

(x� �)2 �(x)dx+

Z ���b̃

�1
(x+ �)2 �(x)dx (29)

The integrals in (29) simplify to

Z 1

��b̃

(x� �)2 �(x)dx+

Z ���b̃

�1
(x+ �)2 �(x)dx

=

Z 1

��b̃

x2�(x)dx+

Z ���b̃

�1
x2�(x)dx

� 2�

 Z 1

��b̃

x�(x)dx�
Z ���b̃

�1
x�(x)dx

!

+ �2
⇣
1� �

⇣
�� b̃

⌘
+ �

⇣
��� b̃

⌘⌘

=1� �
⇣
�� b̃

⌘
+ �

⇣
��� b̃

⌘
+
⇣
(�� b̃)�(�� b̃)� (��� b̃)�(��� b̃)

⌘

� 2�
⇣
�(�� b̃) + �(��� b̃)

⌘
+ �2

⇣
1� �

⇣
�� b̃

⌘
+ �

⇣
��� b̃

⌘⌘

where we use the fact that
R1
��b̃ x

2�(x)dx+
R ���b̃

�1 x2�(x)dx =
R1
�1 x2�(x)dx�

R ��b̃

���b̃ x
2�(x)dx

and Equation (28).

The analytic adaptive objective function

min
�

max
b̃

ETO⇠N(b̃,1))

⇣
�S,� (TO)� b̃

⌘2
+ ⇢�2 � 1

rBNM(|b̃|) + ⇢�2 � 1
,
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can now be easily solved by Matlab’s fminimax function when the risk function is eval-

uated based on the simplified expression derived above, and the parameter space for b̃ is

approximated by an equally spaced grid values spanning [�9, 9] with a step size of 0.025.

D.6.2 Hard thresholding

Similarly rewrite hard thresholding as �H,� (TO) = (1� 1 {�� < TO < �})TO and its risk

function can be simplified due to Equation (28)

ETO⇠N(b̃,1))

⇣
�H,� (TO)� b̃

⌘2

= ETO⇠N(b̃,1)

⇣
(1� 1 {�� < TO < �})

⇣
TO � b̃

⌘
� 1 {�� < TO < �} b̃

⌘2

= b̃2
⇣
�
⇣
�� b̃

⌘
� �

⇣
��� b̃

⌘⌘
+

Z 1

�1
x2�(x)dx�

Z ��b̃

���b̃

x2�(x)dx.

D.6.3 Adaptive ERM

For the adaptive ERM estimator �ERM,�(TO) =
T 2
O

T 2
O
+�

· TO, we evaluate the risk function

based on 105 simulations draws from TO ⇠ N(b̃, 1) and similarly optimize � for the analytic

adaptive objective function.

Appendix E Pooling controls (LaLonde, 1986)

LaLonde (1986) contrasted experimental estimates of the causal e↵ects of job training derived

from the National Supported Work (NSW) demonstration with econometric estimates de-

rived from observational controls, concluding that the latter were highly sensitive to modeling

choices. Subsequent work by Heckman and Hotz (1989) argued that proper use of specifica-

tion tests would have guarded against large biases in LaLonde (1986)’s setting. An important

limitation of the NSW experiment, however, is that its small sample size inhibits a precise

assessment of the magnitude of selection bias associated with any given non-experimental

estimator. In what follows, we explore the prospects of improving experimental estimates of

the NSW’s impact on earnings by utilizing additional non-experimental control groups and

adapting to the biases their inclusion engenders.

We consider three analysis samples di↵erentiated by the origin of the untreated (“con-

trol”) observations. All three samples include the experimental NSW treatment group ob-
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servations. In the first sample the untreated observations are given by the experimental

NSW controls. In a second sample the controls come from LaLonde (1986)’s observational

“CPS-1” sample, as reconstructed by Dehejia and Wahba (1999). In the third sample, the

controls are a propensity score screened subsample of CPS-1. To estimate treatment e↵ects

in the samples with observational controls, we follow Angrist and Pischke (2009) in fitting

linear models for 1978 earnings to a treatment dummy, 1974 and 1975 earnings, a quadratic

in age, years of schooling, a dummy for no degree, a race and ethnicity dummies, and a

dummy for marriage status. The propensity score is generated by fitting a probit model of

treatment status on the same covariates and dropping observations with predicted treatment

probabilities outside of the interval [0.1, 0.9].

Let YU be the mean treatment / control contrast in the experimental NSW sample.

We denote by YR1 the estimated coe�cient on the treatment dummy in the linear model

described above when the controls are drawn from the CPS-1 sample. Finally, YR2 gives

the corresponding estimate obtained from the linear model when the controls come from

the propensity score screened CPS-1 sample. We follow the applied literature in assuming

trimming does not meaningfully change the estimand, a perspective that can be formalized by

viewing the trimmed estimator as one realization of a sequence of estimators with trimming

shares that decrease rapidly with the sample size (Huber et al., 2013).

Table A1 reports point estimates from all three estimation approaches along with stan-

dard errors derived from the pairs bootstrap. The realizations of (YR1, YR2) exactly reproduce

those found in the last row of Table 3.3.3 of Angrist and Pischke (2009) but the reported

standard errors are somewhat larger due to our use of the bootstrap, which accounts both for

heteroscedasticity and uncertainty in the propensity score screening procedure. The realiza-

tion of YU matches the point estimate reported in the first row of Angrist and Pischke (2009)’s

Table 3.3.3 but again exhibits a modestly larger standard error reflecting heteroscedasticity

with respect to treatment status.

While the experimental mean contrast (YU) of $1,794 is statistically distinguishable from

zero at the 5% level, considerable uncertainty remains about the magnitude of the average

treatment e↵ect of the NSW program on earnings. The propensity trimmed CPS-1 estimate

lies closer to the experimental estimate than does the estimate from the untrimmed CPS-

1 sample. However, the untrimmed estimate has a much smaller standard error than its

trimmed analogue. Though the two restricted estimators are both derived from the CPS-1
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Table A1: Estimates of the impact of NSW job training on earnings.

YU YR1 YR2 GMM2 GMM3 Adaptive Pre-test

Estimate 1794 794 1362 1629 1210 1597 1629
Std error (668) (618) (741) (619) (595)

Max Regret 26% 1 1 1 1 7.77% 47.5%
Risk rel. to YU

when b1 = 0 and b2 = 0 1 0.853 1.23 0.858 0.793 0.855 0.80
when b1 6= 0 and b2 = 0 1 1 1.23 0.858 1 0.925 0.993
when b1 6= 0 and b2 6= 0 1 1 1 1 1 1.077 1.475

Notes: Bootstrap standard errors in parentheses computed using 1,000 bootstrap samples. The GMM2

estimate imposes b2 = 0 only while the GMM3 estimate imposes b1 = 0 and b2 = 0. A J-test of the null

b1 = b2 = 0 motivating GMM3 yields a p-value at 0.04. A corresponding test of the null b2 = 0 motivating

GMM2 yields a p-value of 0.51. “Risk rel. to YU” gives worst case risk scaled by the risk (i.e. variance) of

YU . “Max regret” refers to the worst case adaptation regret in percentage terms (Amax(B, ✓̂)� 1)⇥ 100.

sample, our bootstrap estimate of the correlation between them is only 0.75, revealing that

each measure contains substantial independent information.

Combining the three estimators together via GMM, a procedure we denote GMM3,

yields roughly an 11% reduction in standard errors relative to relying on YU alone. However,

the J-test associated with the GMM3 procedure rejects the null hypothesis that the three

estimators share the same probability limit at the 5% level (p = 0.04). Combining only YU

and YR2 by GMM, a procedure we denote GMM2, yields a standard error 7% below that of

YU alone. The J-test associated with GMM2 fails to reject the restriction that YU and YR2

share a common probability limit (p = 0.51). Hence, sequential pre-testing selects GMM2.

Letting b1 ⌘ E[YR1 � ✓] and b2 ⌘ E[YR2 � ✓] our pre-tests reject the null that b1 = b2 = 0

and fail to reject that b2 = 0. However, it seems plausible that both restricted estimators

su↵er from some degree of bias. The adaptive estimator seeks to determine the magnitude

of those biases and make the best possible use of the observational estimates. In adapting

to misspecification, we operate under the assumption that |b1| � |b2|, which is in keeping

with the common motivation of propensity score trimming as a tool for bias reduction (e.g.,

Angrist and Pischke, 2009, Section 3.3.3). Denoting the bounds on (|b1|, |b2|) by (B1, B2), we

adapt over the finite collection of bounds B = {(0, 0), (1, 0), (1,1)}, the granular nature of
which dramatically reduces the computational complexity of finding the optimally adaptive

estimator. Note that the scenario (B1, B2) = (0,1) has been ruled out by assumption,

reflecting the belief that propensity score trimming reduces bias. See Appendix F for further

details.
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From Table A1, the multivariate adaptive estimator yields an estimated training e↵ect

of $1,597: roughly two thirds of the way towards YU from the e�cient GMM3 estimate.

Hence, the observational evidence, while potentially quite biased, leads to a non-trivial (11%)

adjustment of our best estimate of the e↵ect of NSW training away from the experimental

benchmark. In Table A2 we show that pairwise adaptation using only YU and YR1 or only YU

and YR2 yields estimates much closer to YU . A kindred approach, which avoids completely

discarding the information in either restricted estimator, is to combine YR1 and YR2 together

via optimally weighted GMM and then adapt between YU and the composite GMM estimate.

As shown in Table A3, this two step approach yields an estimate of $1,624, extremely close

to the multivariate adaptive estimate of $1,597, but comes with substantially elevated worst

case adaptation regret relative to a multivariate oracle who knows which pair of bounds in

B prevails.

While the multivariate adaptive estimate of $1,597 turns out to be very close to the

pre-test estimate of $1,629, the adaptive estimator’s worst case adaptation regret of 7.7% is

substantially lower than that of the pre-test estimator, which exhibits a maximal regret of

47.5%. The adaptive estimator achieves this advantage by equalizing the maximal adaptation

regret across the three bias scenarios {(b1 = 0, b2 = 0), (b1 6= 0, b2 = 0), (b1 6= 0, b2 6= 0)}
allowed by our specification of B. When both restricted estimators are unbiased, the adaptive

estimator yields a 14.5% reduction in worst case risk relative to YU . However, an oracle that

knows both restricted estimators are unbiased would choose to employ GMM3, implying

maximal adaptation regret of 0.855/0.793 ⇡ 1.077. When YR1 is biased, but YR2 is not, the

adaptive estimator yields a 7.5% reduction in worst case risk. An oracle that knows only YR1

is biased will rely on GMM2, which yields worst case scaled risk of 0.858; hence, the worst

case adaptation regret of not having employed GMM2 in this scenario is 0.925/0.858 ⇡ 1.077.

Finally, when both restricted estimators are biased, the adaptive estimator can exhibit up

to a 7.7% increase in risk relative to YU .

The near oracle performance of the optimally adaptive estimator in this setting suggests

it should prove attractive to researchers with a wide range of priors regarding the degree of

selection bias present in the CPS-1 samples. Both the skeptic that believes the restricted

estimators may be immensely biased and the optimist who believes the restricted estimators

are exactly unbiased should face at most a 7.7% increase in maximal risk from using the

adaptive estimator. In contrast, an optimist could very well object to a proposal to rely on
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YU alone, as doing so would raise risk by 26% over employing GMM3.

Appendix F Details of bivariate adaptation

In Appendix E, we report the results of adapting simultaneously to the bias in two restricted

estimators when the bias spaces take a nested structure. Denoting the bounds on (|b1|, |b2|)
of the two restricted estimators by (B1, B2), we adapt over the finite collection of bounds

B = {(0, 0), (1, 0), (1,1)}. Note that the scenario (B1, B2) = (0,1) has been ruled out by

assumption, reflecting the belief that propensity score trimming reduces bias. The minimax

risk over each bias space C(B1,B2) is therefore

R⇤(C(B1,B2)) =

8
>>>><

>>>>:

⌃U for (B1, B2) = (1,1)

⌃U � ⌃UO,2⌃
�1
O,2⌃UO,2 for (B1, B2) = (1, 0)

⌃U � ⌃UO⌃
�1
O ⌃UO for (B1, B2) = (0, 0)

(30)

Then �(YO) is the solution to the following problem

inf
�

max
(B1,B2)2B

maxb2C(B1,B2)
EYO⇠N(b,⌃O)(�(YO)� ⌃UO⌃

�1
O b)2 + ⌃U � ⌃UO⌃

�1
O ⌃UO

R⇤(C(B1,B2))

Since the three spaces are nested, we can rewrite the adaptation problem as

inf
�

sup
b2R⇥R

EYO⇠N(b,⌃O)(�(YO)� ⌃UO⌃
�1
O b)2 + ⌃U � ⌃UO⌃

�1
O ⌃UO

R̃(S̃(b))

where the scaling is

R̃(S̃(b)) =

8
>>>><

>>>>:

⌃U � ⌃UO⌃
�1
O ⌃UO if b1 = b2 = 0

⌃U � ⌃UO,2⌃
�1
O,2⌃UO,2 if b1 6= 0, b2 = 0

⌃U if b1 6= 0, b2 6= 0

(31)

Given the high dimensionality of the adaptation problem, we use CVX instead of Matlab’s

fmincon to solve the scaled minimax problem.
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F.1 Pairwise adaptation

For comparison with the trivariate adaptation estimates reported in the text, we also consider

pairwise adaptation using only YU and YR1 or only YU and YR2, keeping the bias spaces as

before. Specifically to adapt using only YU and YRj, we consider an oracle where the set B
of bounds B on the bias consists of the two elements 0 and 1.

Table A2: Pairwise adaptive estimates

YU YR GMM Adaptive Soft-threshold Pre-test

CPS-1 untrimmed 1794 794 1123 1659 1608 1794
Std error (668) (617) (600)

Rel. risk when b = 0 1 0.85 0.81 0.863 0.869 0.894
Rel. risk when b 6= 0 1 1 1 1.071 1.078 1.541

Max Regret 24% 1 1 7.1% 7.8% 54%
Max Regret 26% 1 1 24.8% 25.6% 79.5%

(rel. to multivariate)
Threshold 0.63 1.96

CPS-1 trimmed 1794 1362 1629 1657 1638 1362
Std error (668) (741) (619)

Rel. risk when b = 0 1 1.23 0.86 0.9 0.91 1.166
Rel. risk when b 6= 0 1 1 1 1.05 1.055 2.051

Max Regret 16.4% 1 1 5% 5.5% 105%
Max Regret 26% 1 1 13.6% 14.2% 105%

(rel. to multivariate)
Threshold 0.62 1.96

Notes: Bootstrap standard errors in parentheses computed using 1,000 bootstrap samples. In the top panel

YR corresponds to estimates using the untrimmed CPS-1 as controls, which are referred to as YR1 in the

main text. In the bottom panel, YR corresponds to estimates derived from the propensity score trimmed

CPS-1 sample, which are referred to as YR2 in the main text. Adaptive estimates adapt pairwise between

YU and YR within panel. If applicable, the adaptive thresholds are reported. “Max regret” refers to the

worst case adaptation regret in percentage terms (Amax(B, ✓̂)�1)⇥100. “Max Regret (rel. to multivariate)”

refers to the worst case adaptation regret in terms of the multivariate oracle. “Rel. risk” gives worst case

risk scaled by the risk (i.e. variance) of YU . The correlation between YU and YRj � YU is -0.44 in the top

panel and -0.38 in the bottom panel.

Table A2 shows that pairwise adaptation produces estimates much closer to YU than

the multivariate adaptive estimate. While pairwise adaptive estimates both incur smaller

adaptation regret, the e�ciency gain when the model is correct is smaller than with the

multivariate adaptive estimate.
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Table A3: Adapting pairwise with GMM composite

YU Ycomp GMM Adaptive Soft-threshold Pre-test

Estimate 1794 882 1173 1624 1601 1794
Std error (668) (612) (595)

Max Regret 26% 1 1 8% 8.3% 56%
Max Regret 26% 1 1 25.4% 26.3% 81.5%

(rel. to multivariate)
Threshold 1 0.64 1.96

Notes: Adaptive estimates for the impact of job training, adapting to Bcomp 2 {0,1}, which is the bound

on the bias of the composite estimator Ycomp = argmin✓(YR�✓)0⌃�1
R

(YR�✓). GMM combines Ycomp and YU

optimally under the assumption that Ycomp is unbiased. If applicable, the adaptive thresholds are reported.

“Max regret” refers to the worst case adaptation regret in percentage terms (Amax(B, ✓̂) � 1) ⇥ 100. “Max

Regret (rel. to multivariate)” refers to the worst case adaptation regret relative to the multivariate oracle

in (30). The correlation coe�cient between YU and Ycomp � YU is -0.45.

F.2 Bivariate adaptation with GMM composite

For another comparison with the trivariate adaptation estimates reported in the text, we also

consider combining YR1 and YR2 first via optimally weighted GMM, which is a composite

of the two Ycomp. We then adapt between YU and Ycomp. The bias space is now also a

composite of the two-dimensional bias space C(B1,B2), and we consider an oracle where the

set B of bounds B on the bias consists of the two elements 0 and 1.

Table A3 shows that composite adaptation produces estimates very similar to the mul-

tivariate adaptive estimate. The adaptation regret relative to an oracle who knows a bound

on the bias of composite is also small. However, for a fair comparison with multivariate

adaptation, one should compare its e�ciency loss relative to the multivariate oracle with

minimax risk specified in (30). This notion of worst case regret is substantially higher at

25% because bivariate adaptation against the GMM composite cannot leverage the nested

structure of the multivariate parameter space B.
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