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Abstract

We consider an experimental design setting in which units are assigned to treatment

after being sampled sequentially from an infinite population. We derive asymptotic ef-

ficiency bounds that apply to data from any experiment that assigns treatment as a

(possibly randomized) function of covariates and past outcome data, including stratifi-

cation on covariates and adaptive designs. For estimating the average treatment effect

of a binary treatment, our results show that no further first order asymptotic efficiency

improvement is possible relative to an estimator that achieves the Hahn (1998) bound

in an experimental design where the propensity score is chosen to minimize this bound.

Our results also apply to settings with multiple treatments with possible constraints

on treatment, as well as covariate based sampling of a single outcome.

1 Introduction

It is common practice in the design of experiments to use baseline covariates or data from past

waves to inform sampling or treatment assignment. An example is stratification, in which

units are grouped into blocks using baseline covariates, and then randomized to treatment

or control separately within each block, thereby ensuring that the covariate distribution is

“balanced” between treatment and controls. In a review of a selection of research articles

using experiments in development economics, Bruhn and McKenzie (2009) report that about
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3/4 of these articles use some form of stratification. Further description and discussion of such

designs are given in survey articles (Duflo et al., 2007) and textbooks (Imbens and Rubin,

2015; Rosenberger and Lachin, 2015). See also Bugni et al. (2018) for further references.

Such designs have received renewed interest in the theoretical literature, with several

papers deriving asymptotic approximations to the sampling distribution of estimators and

test statistics in such designs (see, among others, Bugni et al., 2018; Bai et al., 2021). One

goal of this literature has been to design experiments that improve the asymptotic efficiency

of estimators and tests. In the case of a binary treatment, the efficiency bound of Hahn

(1998) gives a lower bound on the asymptotic performance of estimators and tests for the

average treatment effect (ATE) under experimental designs that lead to independent and

identically distributed (iid) data. A key finding is that one can use data from past waves

to design an experiment that optimizes this bound, along with a subsequent estimator that

achieves the optimized bound (Hahn et al., 2011; Tabord-Meehan, 2023; Cytrynbaum, 2023).

However, the Hahn (1998) bound not apply once one allows for randomization rules involving

stratification on covariates or data from past waves. Can the optimized Hahn (1998) bound

be further improved using stratification or other dependence-inducing experimental designs?

In this paper, we derive asymptotic efficiency bounds in a general setting that allows for

such designs. Applied to the case of a binary treatment, our results show that the optimized

Hahn (1998) bound indeed gives a lower bound for the performance of any estimator or test

with data from any experimental design in this general setting. The key technical result

is a likelihood expansion and local asymptotic normality theorem that applies to arbitrary

experimental designs that assign treatment after observing the entire set of covariates and

past outcome values for an independent sample from an infinite population. To derive these

results, we apply techniques used in the recent literature deriving asymptotic distributions

of estimators in related settings (in particular, we use apply a martingale representation

similar to those used in Abadie and Imbens, 2012) to a Le Cam style local expansion of the

likelihood ratio. Applying these results to the least favorable submodels used to derive the

corresponding bounds in the iid case then gives the efficiency bounds.

Several papers written around the same time as this one consider related problems in-

volving asymptotic efficiency bounds in experiments. Bai et al. (2023) and Rafi (2023)

consider a setting similar to ours, but consider efficiency among certain restricted classes of

treatment rules involving covariate based stratification. This differs from our main efficiency

bounds (Theorems 4.1 and 5.1) which do not restrict the treatment rule or impose only

cost constraints, although our likelihood expansion and general local asymptotic normality
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result (Theorem 3.1 and Corollary 3.1) are useful as technical tools in these other settings.

Another literature (Adusumilli, 2023; Kuang and Wager, 2023; Hirano and Porter, 2023)

focuses on bandit problems and related settings. While these papers consider interesting

dynamic problems that fall outside of the scope of the present paper, they do not address

whether experimental design choices such as stratified randomization can be used to improve

on efficiency bounds for iid data.

The rest of this paper is organized as follows. Section 2 gives an informal description of

our results in a simple setting with a binary treatment and no constraints on the experimental

design. Section 3 describes the formal setup, and includes our main technical results. Section

4 applies these results to provide a formal statement of the optimality result in the simple

setting in Section 2. Section 5 considers a more general setting with multiple treatments and

possible constraints on overall treatment and sampling. Proofs are given in an appendix.

2 Informal Description of Results in a Simple Case

Consider the case of a binary treatment. Unit i has potential outcomes Yi(0) and Yi(1)

under treatment and non-treatment. In addition, there is a vector of baseline covariates

Xi associated with individual i. We assume that (Xi, Yi(0), Yi(1)) are drawn iid from some

population, and we are interested in the ATE E[Yi(1) − Yi(0)] for this population. The

researcher first observes a sample X1, . . . , Xn of baseline covariates. The researcher chooses a

treatment assignment Wn,i for each unit i, and observes Yi(Wn,i) for this unit. The treatment

assignment Wn,i can depend on the entire sample of baseline covariates, as well as past

outcomes Yj(Wn,j) for j = 1, . . . , i− 1.1

One possible design is to assign treatment independently across i, with P (Wi = 1|Xi) =

e(Xi). The conditional treatment probability e(x) is referred to in the literature as the

propensity score. This yields iid data, so that the semiparametric efficiency bound of Hahn

(1998) applies, giving

ve(·) = var (µ(Xi, 1)− µ(Xi, 0)) + E
σ2(Xi, 0)

1− e(Xi)
+ E

σ2(Xi, 1)

e(Xi)
(1)

as a bound for the asymptotic variance of an estimator of the ATE, where µ(x,w) =

E[Yi(w)|Xi = x] and σ2(x,w) = var(Yi(w)|Xi = x). We can choose the propensity score e(·)
1We subscript by n as well as i since the treatment assignment rule depends on the entire sample

X1, . . . , Xn and can therefore vary arbitrarily with n; see Section 3 for a formal description of our nota-
tion.
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to minimize this bound by taking first order conditions: the optimal propensity score e∗(·)
satisfies

σ2(x, 0)

[1− e∗(x)]2
=

σ2(x, 1)

e∗(x)2
. (2)

Following the literature, we refer to this as the Neyman allocation, after Neyman (1934).

Since e∗() requires knowledge of the unknown conditional variance σ2(x,w), this design

is not feasible, but a feasible design can be obtained by using a pilot study to estimate

σ2(x,w) (Hahn et al., 2011). Using data from this experimental design, one can achieve

the semiparametric efficiency bound ve∗() using an estimator that adjusts flexibly for covari-

ates or uses a flexible estimate of the propensity score (Hahn et al., 2011). To avoid the

additional complexity of such estimators, one can alternatively design the experiment using

stratification on covariates, so that a simple estimator that weights on the (true) propensity

score achieves the bound (Tabord-Meehan, 2023; Cytrynbaum, 2023).

Such designs, however, lead to dependent data that violates the assumptions used in the

Hahn (1998) bound. Nonetheless, our results show that the bound ve∗(·) applies to these

designs, as well as any other experimental design for assigning treatment as a function of

past values and the entire vector of baseline covariates. Thus, the combinations of estimators

and experimental designs in Hahn et al. (2011); Tabord-Meehan (2023); Cytrynbaum (2023)

are indeed asymptotically optimal among any such design with any possible estimator.

Formally, semiparametric efficiency bounds amount to a statement that no uniform effi-

ciency improvement is possible over a class of distributions that is rich enough to include a

particular one dimensional submodel, called a “least favorable submodel.” Our results show

that this statement continues to hold for any experimental design in our setup, with the same

least favorable submodel as in the iid case. Section 4 provides a formal statement for the

binary setting considered here, and Section 5 generalizes this to multiple treatments and cost

constraints. Proofs are given in an appendix. The next section describes the formal setup

and derives the main technical results (likelihood expansion and local asymptotic normality)

used in our bounds.

3 Setup and Main Results

This section presents our formal setup and main technical results. Section 3.1 presents

notation and sampling assumptions. Section 3.2 presents the assumptions on parametric
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submodels. Section 3.3 presents our main likelihood expansion and local asymptotic nor-

mality theorem.

3.1 Setup and Sampling Assumptions

We consider a setting in which baseline covariates Xi and potential outcomes {Yi(w)}w∈W

are associated with unit i, where W = {0, . . . ,#W − 1} is a finite set of possible treatment

assignments. We assume that Xi, {Yi(w)}w∈W are drawn iid from some population. The

researcher chooses a treatment assignment Wn,i for each observation i, and observes Xi and

Yn,i = Yi(Wn,i) for each observation i. In forming this assignment rule, the researcher first

observes the entire sample X(n) = (X1, . . . , Xn) of covariates. The rule is then allowed

to depend sequentially on observed outcome variables. Let Y
(i)
n = (Yn,1, . . . , Yn,i). The

treatment rule is given by W (n) = (Wn,1, . . . ,Wn,n) where Wn,i = wn,i(X
(n), Y

(i−1)
n , U) is

a measureable function of (X(n), Y
(i−1)
n , U) and U is a random variable independent of the

sample, which allows for randomized treatment rules. We will also allow for unit i not to be

assigned to any treatment group, in which case none of the outcomes Yi(w) are observed, and

we set Wn,i = −1 and Yi = 0. Based on this data, the researcher then forms an estimator or

test for some parameter of the population distribution of Xi, {Yi(w)}w∈W .

Remark 3.1. Our setup allows for experimental designs that use information on baseline

covariates in essentially arbitrary ways. Designs involving stratified randomization on co-

variates and, in particular, matched pairs, are allowed. Our setup also includes designs that

use outcomes from a pilot study, by defining observations 1, . . . , npilot as observations from

this study. Note that treating the randomization device U as a random variable of fixed di-

mension does not lead to a loss of generality, since transformations of U can be incorporated

into the sampling rule wn,i(X
(n), Y

(i−1)
n , U).

Remark 3.2. We follow much of the literature by assuming that our sample is taken indepen-

dently from an infinite population. In particular, this assumption is made in papers deriving

asymptotics for estimators and tests under stratified sampling including Bugni et al. (2018)

and Bai et al. (2021), and papers on experimental design including Imbens et al. (2009),

Hahn et al. (2011), Tabord-Meehan (2023) and Cytrynbaum (2023). One can consider this

an approximation to a setting where one samples from a large population of N units. For-

mally, each unit j = 1, . . . , N has covariates and outcomes X∗
j , {Y ∗

j (w)}w∈W , and we we draw

Xi, {Yi(w)}w∈W by drawing a random variable j(i) over the uniform distribution on 1, . . . , N ,

and then defining Xi = X∗
j(i) and Yi(w) = Y ∗

j(i)(w) for each w ∈ W . This corresponds exactly
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to sampling from the larger population with replacement, which is a good approximation to

sampling without replacement when N is large.

Thus, our setup incorporates an assumption that the experimental design involves ran-

domized sampling from a large population.2 Results that explicitly address the question of

whether it is indeed optimal to randomly sample from a (possibly large) finite population

include Savage (1972, Ch. 14, Section 8) and Blackwell and Girshick (1954, Section 8.7).3

We note that our results do allow for some statements about the optimal use of covariates for

sampling a single outcome (by taking W to be a singleton and incorporating cost constraints,

as in Section 5).

3.2 Parametric Submodel and Likelihood Ratio

We consider a finite dimensional parametric model indexed by θ. We are interested in ef-

ficiency bounds at a particular θ∗. While our analysis will allow us to consider parametric

settings, we will be primarily interested in using least favorable submodels to derive semi-

parametric efficiency bounds in infinite dimensional settings, as in the ATE bound for binary

treatment described in Section 2. In cases where ambiguity may arise, we subscript expec-

tations Eθ and probability statements Pθ by θ to indicate that Xi, {Yi(w)}w∈W are drawn

from this model.

Let fX(x; θ) denote the density of Xi with respect to νX , and let fY (w)|X(y|x; θ) denote
the density of Yi(w) with respect to νY,w, where νX and νY,w are measures that do not depend

on θ. Let pU denote the density of U (which does not depend on θ). The probability density

of U,X1, . . . , Xn, Yn,1, . . . , Yn,n is

pU(u)
n∏

i=1

[
fX(xi; θ)

∏
w∈W

fY (w)|X(yi|xi; θ)
I(wn,i=w)

]
(3)

where wn,i = wn,i(x1, . . . , xn, y1, . . . , yi−1, u). The researcher makes a decision using the

2This also means that treatment assignments that assign units to treatment groups deterministically as
a function of the index i or covariates Xi are still “randomized” in the sense that the subset of units in each
treatment group is random as a subset of the larger population. For example, the assignment that takes
Wn,i = 0 for i = 1, . . . , n/2 and Wn,i = 1 for i = n/2+1, . . . , n is “randomized” in the sense that the sample
of treated units {j(i) : i = n/2 + 1, . . . , n} is a random subset of the population 1, . . . , N , as well as being
a random subset of the sampled units (it is not a deterministic function of the set {j(i) : i = 1, . . . , n} of
sampled units).

3The notion of “optimality” is slightly different in these references, since they consider finite-sample
minimax over a fixed set of distributions, in contrast to the semiparametric results in the present paper
which correspond to asymptotic minimax bounds over a localized parameter space.
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observed data X1, . . . , Xn, Y1,n, . . . , Yn,n, along with the treatment rule and the variable U ,

which determine the treatment assignments Wi,n. Since the treatment rule is known once

U is given, we can take the observed data to be X1, . . . , Xn, Y1, . . . , Yn and U , so that the

likelihood is given by (3).

Following the literature on asymptotic efficiency, we make a quadratic mean differentia-

bility assumption on the model (see van der Vaart, 1998, Section 7.2, for a definition).

Assumption 3.1. The family fX(x; θ) is differentiable in quadratic mean (qmd) at θ∗ with

score function sX(Xi), and, for each w ∈ W, the family fY (w)|X(y|x; θ) is qmd at θ∗ with

score function sw(Yi(w)|Xi).

Here, the qmd condition for the conditional distribution fY (w)|X(y|x, θ) is taken to mean

that the family is qmd whenXi is distributed according to θ∗; i.e. the family θ 7→ fX(x; θ
∗)fY (w)|X(y|x; θ)

is qmd at θ∗. Let IX = Eθ∗sX(Xi)sX(Xi)
′ denote the information for Xi, and let IY (w)|X(x) =

Eθ∗ [sw(Yi(w)|Xi)sw(Yi(w)|Xi)
′|Xi = x] and IY (w) = Eθ∗IY (w)|X(Xi) = Eθ∗ [sw(Yi(w)|Xi)sw(Yi(w)|Xi)

′]

denote the conditional and unconditional information for Yi(w) for each w. Note that these

are finite by Theorem 7.2 in van der Vaart (1998).

3.3 Likelihood Expansion and Local Asymptotic Normality

Consider a sequence θn = θ∗ + h/
√
n where θ∗ is given. To obtain efficiency bounds, we

extend Le Cam’s result on the asymptotics of likelihood ratio statistics in parametric families

(Theorem 7.2 in van der Vaart (1998)) to our setting, with the likelihood given in (3). Since

pU does not depend on θ, this term drops out, and the log of the likelihood ratio for θ∗ vs

θn is given by

ℓn,h =
n∑

i=1

ℓ̃X(Xi; θn) +
∑
w∈W

n∑
i=1

I(Wn,i = w)ℓ̃Y (w)|X(Yi, Xi; θn)

where

ℓ̃X(x; θ) ≡ log
fX(x; θ)

fX(x; θ∗)
, ℓ̃Y (w)|X(y, x; θ) ≡ log

fY (w)|X(y; x, θ)

fY (w)|X(y; x, θ∗)
, w ∈ W .
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Theorem 3.1. Under Assumption 3.1, the likelihood ratio ℓn,h satisfies

ℓn,h =
1√
n

n∑
i=1

h′sX(Xi) +
1√
n

n∑
i=1

∑
w∈W

I(Wn,i = w)h′sw(Yi(w)|Xi)

− 1

2
h′IXh− 1

2n

n∑
i=1

∑
w∈W

I(Wn,i = w)h′IY (w)|X(Xi)h+ oPθ∗ (1). (4)

Theorem 3.1 can be used to prove the following local asymptotic normality result.

Corollary 3.1. Suppose Assumption 3.1, holds and let Ĩn = IX + 1
n

∑n
i=1

∑
w∈W I(Wn,i =

w)IY (w)|X(Xi). Let Ĩ
∗ be a positive definite symmetric matrix. If Ĩn converges in probability to

Ĩ∗ under θ∗, then ℓn,h converges in distribution to a N(−h′Ĩ∗h/2, h′Ĩ∗h) law under θ∗. If Ĩn ≤
Ĩ∗+oP ∗

θ
(1) (where inequality is in the positive definite sense), then one can define a probability

space under each θ with an additional random variable Z(n) (and with the marginal distri-

bution of U,X(n), Y
(n)
n under θ unchanged) such that ℓ̃n,h = log

dPθ∗+h/
√
n

dPθ∗
(U,X(n), Y

(n)
n , Z(n))

converges in distribution to a N(−h′Ĩ∗h/2, h′Ĩ∗h) law under θ∗.

According to Corollary 3.1, the model indexed by θ∗ + h/
√
n is locally asymptotically

normal in the sense of Definition 7.14 in van der Vaart (1998). Therefore, the risk of any

decision is bounded from below asymptotically by the risk from a decision in the limiting

model, in which a N(h, Ĩ∗) random variable is observed. Augmenting the data by the

variables Zi is a technical trick that appears to be needed to cover, for example, treatment

rules that do not assign any treatment to some individuals, which is relevant in the setting

in Section 5 with cost constraints. The bounds obtained from local asymptotic normality

still apply to the original setting in which the variables Zi are not observed, since the bound

from the N(h, Ĩ∗) model applies to decisions that do not use the variables Zi.

4 Efficiency Bounds for Average Treatment Effect

We now apply these results to derive the asymptotic efficiency bound for estimation and

inference on the average treatment effect (ATE) E[Yi(1) − Yi(0)] in the case of a binary

treatment (W = {0, 1}), as described in Section 2. Given a population distribution, the

variance bound (1) corresponds to a least favorable one-dimensional submodel indexed by θ ∈
R, with θ∗ corresponding to the given population distribution. Thus, we consider the variance

bound ve() in (1) with µ(x,w) = µθ∗(x,w) = Eθ∗ [Yi(w)|Xi = x] and σ2(x,w) = σ2
θ∗(x,w) =

var(Yi(w)|Xi = x), and we define the Neyman allocation e∗(x) in (2) with σ2(x,w) =
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σ2
θ∗(x,w) = var(Yi(w)|Xi = x). We then consider a submodel through θ∗ that corresponds

to the least favorable submodel used to derive this bound in the iid case. Calculations in

Hahn (1998, pp. 326-327) show that this submodel takes the form in Section 3, with

sX(Xi) = µθ∗(Xi, 1)− µθ∗(Xi, 0)− Eθ∗ [µθ∗(Xi, 1)− µθ∗(Xi, 0)],

s0(Yi|Xi) =
Yi(0)− µθ∗(Xi, 0)

1− e(xi)
and s1(Yi|Xi) =

Yi(1)− µθ∗(Xi, 1)

e(xi)
. (5)

The score function for this submodel is

s(Xi, Yi(0), Yi(1),Wi) = sX(Xi) + (1−Wi)s0(Yi|Xi) +Wis1(Yi|Xi)

and the information is Eθ∗s(Xi, Yi(0), Yi(1),Wi)
2 = ve(·). Furthermore, letting ATE(θ) =

Eθ[Yi(1) − Yi(0)] for θ in this submodel the calculations in Hahn (1998, pp. 326-327) show

that ATE(θ) is differentiable at θ∗ in the sense of p. 363 of van der Vaart (1998), and that

s(Xi, Yi(0), Yi(1),Wi) is the efficient influence function, so that

ATE(θ∗ + t)− ATE(θ∗) = tEθ∗s(Xi, Yi(0), Yi(1),Wi)
2 + o(t) = tve(·) + o(t) (6)

as t → 0. These calculations require regularity conditions on the submodel so that certain

derivatives can be taken under integrals. Rather than stating these as primitive conditions,

we will assume (6) directly.

We now apply Theorem 3.1 to show that no further improvement is possible relative

to the semiparametric efficiency bound ve∗(), with propensity score given by the Neyman

allocation e∗(). We begin with a local asymptotic normality theorem.

Theorem 4.1. Consider a model satisfying Assumption 3.1, with sX , s0 and s1 given

by the score (5) for the least favorable submodel with e(·) given by the Neyman alloca-

tion (2). Let wn,i(X
(n), Y

(i−1)
n , U) be any sequence of treatment rules. Then the sequence

of experiments Pθ∗+h/
√
n is locally asymptotically normal (as defined in Definition 7.14,

p. 104 of van der Vaart, 1998) with information ve∗(·): ℓn,h converges in distribution to

a N(−h2ve∗(·)/2, h
2ve∗(·)) law under θ∗.

A consequence of the local asymptotic normality result in Theorem 4.1 and the differ-

entiability of the ATE parameter in this submodel, as defined in (6), is that the efficiency

bound ve∗(·) gives a bound on the asymptotic performance of any procedure under any sam-

pling scheme. We now state a local asymptotic minimax result, which gives such a bound
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for estimators in this setting. Other statements from asymptotic efficiency theory in regular

parametric and semiparametric models (as in, e.g. Chapters 7, 8, 15 and 25 of van der Vaart

(1998)) follow as well, but we omit them in the interest of space.

Corollary 4.1. Suppose in addition that (6) holds. Let ÂTEn = ÂTEn(X
(n), Y

(n)
n ,W (n))

be any sequence of estimators computed under some sequence of treatment rules Wn,i =

wn,i(X
(n), Y

(i−1)
n , U). For any loss function L that is subconvex (as defined on p. 113 of

van der Vaart, 1998), we have

sup
A

lim inf
n→∞

sup
h∈A

Eθ∗+h/
√
nL(

√
n(ÂTEn − ATE(θ∗ + h/

√
n))) ≥ ET∼N(0,ve∗(·))L(T )

where the first supremum is over all finite sets in R.

Remark 4.1. Note that Theorem 4.1 also implies that, in the least favorable submodel, any

treatment assignment rule leads to the same optimal variance. To get some intuition for

this, we can think of our setting as a game against nature in which the researcher chooses

an assignment rule and a decision procedure, and nature chooses a submodel. In this game,

nature chooses a least favorable submodel, which makes the researcher indifferent between

all treatment assignments, just as an opponent’s optimal strategy makes a player indifferent

between all pure strategies that have positive probability of being played in a mixed strategy

equilibrium. To achieve this, the least favorable submodel sets the information IY (w)|X(Xi)

to be equal across the treatment groups w = 0, 1.

Of course, this does not mean that arbitrary treatment assignments can be used to achieve

this bound in a nonparametric setting. For example, if one assigns all units to treatment,

then clearly the ATE cannot even be consistently estimated, since we never observe untreated

units. Such assignments are optimal in the least favorable submodel, but they can perform

strictly worse outside of this submodel. Again, the analogy of a game against nature is

helpful: while the researcher is indifferent between certain pure strategies in equilibrium,

such pure strategies do not themselves constitute equilibrium play.

5 Multiple Treatments and Constraints

We now generalize the setup in Section 4 to derive efficiency bounds allowing for multiple

treatments and constraints on the number of units sampled or assigned to each treatment.

Such constraints may arise from a budget constraint on a costly treatment, or on the overall

number of units sampled.
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Let us now consider a parameter

τ =
∑
w∈W

E[a(Xi, Yi(w), w)] =
∑
w∈W

E[Ỹi(w)].

where Ỹi(w) = a(Xi, Yi(w), w) for a function a(x, y, w) specified by the researcher. Consider

first a treatment assignment rule in which treatment w is assigned with probability p(Xi, w)

given Xi, independently over i. We allow for the possibility that the treatment probabil-

ities do not add up to one, in which case we set Wn,i = −1 and Yi = 0 with probability

1 −
∑

w∈W p(Xi, w) conditional on Xi. We will show that no further efficiency gain is pos-

sible relative to an estimator that achieves the semiparametric efficiency bound under this

independent sampling scheme with p() chosen to minimize this bound.

The semiparametric efficiency bound for τ under this sampling scheme at a distribution

corresponding to θ∗ is given by

vp(·) = varθ∗

[∑
w∈W

µ̃θ∗(Xi, w)

]
+
∑
w∈W

Eθ∗
σ̃2
θ∗(Xi, w)

p(Xi, w)

where µ̃θ∗(Xi, w) = Eθ∗ [Ỹi(w)|Xi] and σ̃2
θ∗(Xi, w) = varθ∗(Ỹi(w)|Xi). The least favorable

submodel takes the form in Section 3 with

sX(Xi) =
∑
w∈W

[µ̃θ∗(Xi, w)− Eθ∗µ̃θ∗(Xi, w)]

sw(Yi(w)|Xi) =
Ỹi(w)− µθ∗(Xi, w)

p(Xi, w)
, w ∈ W (7)

The score function for this submodel is

s(Xi, {Yi(w)}w∈W ,Wi) = sX(Xi) +
∑
w∈W

I(Wn,i = w)sw(Yi(w)|Xi).

Furthermore, letting τ(θ) =
∑

w∈W Eθ[a(Xi, Yi(w), w)] =
∑

w∈W Eθ[Ỹi(w)] for θ in this sub-

model, τ(θ) is differentiable at θ∗ in the sense of p. 363 of van der Vaart (1998), and

s(Xi, {Yi(w)}w∈W ,Wi) is the efficient influence function, so that

τ(θ∗ + t)− τ(θ∗) = tEθ∗s(Xi, {Yi(w)}w∈W ,Wi)
2 + o(t) = tvp(·) + o(t) (8)

as t → 0. This follows by arguments similar to those in Hahn (1998). These arguments

11



require regularity conditions on the submodel to ensure that certain derivatives can be taken

under integrals. Rather than stating these as primitive conditions, we will assume (8) di-

rectly.

Consider minimizing vp(·) over p(·) subject to constraints∑
w∈W

p(x,w) ≤ 1 all x,
∑
w∈W

Eθ∗r(Xi, w)p(Xi, w) ≤ c (9)

where c is a dr×1 vector and r(·) is a dr×1 vector valued function. The first constraint simply

states that treatment probabilities do not add up to more than one. The second constrains

some linear combination of overall treatment probabilites. For example, if W = {0, 1} with

1 corresponding to a costly treatment, we could take r(x,w) = I(w = 1) to incorporate a

constraint on overall cost of the experiment, as in Hahn et al. (2011). Letting λ(x) and µ

be Lagrange multipliers for these constraints and dropping the first term of vp(·), which does

not depend on p(·), the Lagrangian is

L = Eθ∗

{∑
w∈W

σ̃2
θ∗(Xi, w)

p(Xi, w)
+ λ(Xi)

[∑
w∈W

p(Xi, w)− 1

]
+ µ′

[∑
w∈W

r(Xi, w)p(Xi, w)− c

]}
.

Let p∗(x,w) be the choice of p(·) that solves this problem. Taking first order conditions gives

σ̃2
θ∗(x,w)

p∗(x,w)2
= λ(x) + µ′r(x,w) all x,w. (10)

The complementary slackness conditions are

λ(x)
∑
w∈W

p∗(x,w) = λ(x) all x, µk

∑
w∈W

Eθ∗p
∗(Xi, w)rk(Xi, w) = µkck k = 1, . . . , dr. (11)

Note, in particular that, in the least favorable submodel, IY (w)|X(x) =
σ̃2
θ∗ (x,w)

p∗(x,w)2
= λ(x) +

µ′r(x,w), and the semiparametric efficiency bound can be written as

vp∗(·) = IX +
∑
w∈W

Eθ∗p
∗(Xi, w)IY (w)|X(Xi)

= IX +
∑
w∈W

Eθ∗p
∗(Xi, w)λ(Xi) + µ′

∑
w∈W

Eθ∗p
∗(Xi, w)r(Xi, w)

= IX + Eθ∗λ(Xi) + µ′c

12



where the last step uses the complementary slackness condition (11).

Now consider the performance of an alternative sampling scheme wn,i(X
(n), Y

(i−1)
n , U)

under this submodel. We impose that the constraints (9) hold on average, in the sense that

1

n

n∑
i=1

∑
w∈W

r(Xi, w)I(Wn,i = w) ≤ c+ oPθ∗ (1). (12)

Theorem 5.1. Consider a model satisfying Assumption 3.1 with sX and sw given by (7)

with p(·) satisfying (10) and (11). Let wn,i(X
(n), Y

(i−1)
n , U) be any sequence of treatment

rules satisfying (12). Then the sequence of experiments Pθ∗+h/
√
n (possibly modified so that

it is defined on on X(n), Y (n), U, Z(n) where Z(n) is an auxiliary random variable and the

marginal distribution of X(n), Y (n), U remains unchanged) is locally asymptotically normal

(as defined in Definition 7.14, p. 104 of van der Vaart, 1998) with information vp∗(·):

log
dPθ∗+h/

√
n

dPθ∗
(U,X(n), Y

(n)
n , Z(n)) converges in distribution to a N(−h2vp∗(·)/2, h

2vp∗(·)) law un-

der θ∗.

Theorem 5.1 and the differentiability condition (8) imply that a normal shift experiment

with variance vp∗(·) provides a bound on the performance of any decision and under any

feasible treatment rule in this submodel. We now provide a formal statement for estimation in

the form of a local asymptotic minimax theorem. This generalizes Corollary 4.1 to the setting

considered in this section. As with Corollary 4.1, we omit other efficiency statements (such

as efficiency bounds for hypothesis tests, or bounds on the variance of regular estimators) in

the interest of space.

Corollary 5.1. Suppose, in addition, that (8) holds. Let τ̂n = τ̂n(X
(n), Y

(n)
n ,W (n)) be any se-

quence of estimators computed under some sequence of treatment rulesWn,i = wn,i(X
(n), Y

(i−1)
n , U).

For any loss function L that is subconvex (as defined on p. 113 of van der Vaart, 1998), we

have

sup
A

lim inf
n→∞

sup
h∈A

Eθ∗+h/
√
nL(

√
n(τ̂n − τ(θ∗ + h/

√
n))) ≥ ET∼N(0,vp∗(·))L(T )

where the first supremum is over all finite sets in R.
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A Proofs

A.1 Proof of Theorem 3.1

It is immediate from Theorem 7.2 in van der Vaart (1998) that

n∑
i=1

ℓ̃X(Xi; θn) =
1√
n

n∑
i=1

h′sX(Xi)−
1

2
h′IXh+ oPθ∗ (1).
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To prove (4), we obtain a similar decomposition for the terms involving ℓ̃Y (w)|X . Let w ∈ W

be given. Let Vn,i = 2

[√
fY (w)|X(Yi(w)|Xi;θn)√
fY (w)|X(Yi(w)|Xi;θ∗)

− 1

]
. The qmd condition then implies nEθ∗ [(Vn,i−

n−1/2h′sw(Yi(w)|Xi))
2] → 0. Note that

ℓ̃Y (w)|X(Yi, Xi; θ) = 2 log

(
1 +

1

2
Vn,i

)
= Vn,i −

1

4
V 2
n,i + V 2

n,ir(Vn,i)

where the last equality uses a second order Taylor expansion of t 7→ 2 log(1 + t/2), with

limt→0 r(t) = 0. It follows immediately from the proof of Theorem 7.2 in van der Vaart

(1998) that
∑n

i=1 I(Wn,i = w)V 2
n,i|r(Vn,i)| ≤

∑n
i=1 V

2
n,i|r(Vn,i)| = oPθ∗ (1). Thus,

n∑
i=1

I(Wn,i = w)ℓ̃Y (w)|X(Yi, Xi; θ) =
n∑

i=1

I(Wn,i = w)Vn,i −
1

4

n∑
i=1

I(Wn,i = w)V 2
n,i + oPθ∗ (1).

We will show that each of the terms

n∑
i=1

I(Wn,i = w)
[
Vn,i − Eθ∗ [Vn,i|Xi]− n−1/2h′sw(Yi(w)|Xi)

]
(13)

n∑
i=1

I(Wn,i = w)

{
Eθ∗ [Vn,i|Xi] +

1

4n
h′IY (w)|X(Xi)h]

}
(14)

n∑
i=1

I(Wn,i = w)

[
V 2
n,i −

1

n
h′IY (w)|X(Xi)h

]
(15)

converge in probability to zero under θ∗.

Let An,i = Vn,i − E[Vn,i|Xi]− n−1/2h′sw(Yi(w)|Xi) so that the summand in (13) is given

by I(Wn,i = w)An,i. For i ≤ n, let F2,n,i denote the sigma algebra generated by X(n),

{Yj(w)}w∈W,1≤j≤i−1 and U . Note that Wn,i is measureable with respect to F2,n,j for j ≥ i,

and that An,i is measureable with respect to F2,n,j for j > i. In addition, Eθ∗ [An,i|F2,n,i] =

Eθ∗ [An,i|Xi] = 0, where the last step uses the fact that sw is a score function conditional on

Xi. Thus, for j > i,

Eθ∗ [I(Wn,i = w)I(Wn,j = w)An,iAn,j|F2,n,j] = I(Wn,i = Wn,j = w)An,iEθ∗ [An,j|Xj] = 0

16



so that the expectation of the square of (13) is given by

n∑
i=1

Eθ∗I(Wn,i = w)A2
n,i ≤ nEθ∗A

2
n,i ≤ nEθ∗

{[
Vn,i − n−1/2h′sw(Yi(w)|Xi)

]2}→ 0

by qmd, where the last inequality uses the fact that An,i is equal to Vn,i−n−1/2h′sw(Yi(w)|Xi)

minus its expectation given Xi.

For (14), note that

Eθ∗ [Vn,i|Xi] = Eθ∗

[
2

√
fY (w)|X(Yi|Xi, θn)√
fY (w)|X(Yi|Xi, θ∗)

− 2

∣∣∣∣Xi

]

= Eθ∗

[
2

√
fY (w)|X(Yi|Xi, θn)√
fY (w)|X(Yi|Xi, θ∗)

−
fY (w)|X(Yi|Xi, θn)

fY (w)|X(Yi|Xi, θ∗)
− 1

∣∣∣∣Xi

]

= −Eθ∗

(√fY (w)|X(Yi|Xi, θn)√
fY (w)|X(Yi|Xi, θ∗)

− 1

)2 ∣∣∣∣Xi

 = −1

4
Eθ∗

[
V 2
i,n|Xi

]
.

Thus, the expectation of the absolute value of (14) is bounded by 1/4 times

nEθ∗
{∣∣Eθ∗

[
V 2
i,n − h′IY (w)|X(Xi)h/n|Xi

]∣∣} = Eθ∗
{∣∣Eθ∗

[
nV 2

i,n − (h′sw(Yi(w)|Xi))
2|Xi

]∣∣} .
Letting Ṽi = h′sw(Yi(w)|Xi), this is bounded by

Eθ∗{|nV 2
i,n − [h′sw(Yi(w)|Xi)]

2|} = Eθ∗(|nV 2
i,n − Ṽ 2

i |) = Eθ∗ [|(
√
nVi,n + Ṽi)(

√
nVi,n − Ṽi)|]

≤
√

Eθ∗ [(
√
nVi,n + Ṽi)2]

√
Eθ∗ [(

√
nVi,n − Ṽi)2]

≤
{
2

√
Eθ∗(Ṽ 2

i ) +

√
Eθ∗ [(

√
nVi,n − Ṽi)2]

}√
Eθ∗ [(

√
nVi,n − Ṽi)2].

This converges to zero since Eθ∗ [(
√
nVi,n − Ṽi)

2] = nEθ∗ [(Vi,n − n−1/2h′sw(Yi(w)|Xi))
2] → 0

by qmd.

For (15), note that Eθ∗
{∣∣∑n

i=1 I(Wn,i = w)
[
V 2
i,n − (n−1/2h′sw(Yi(w)|Xi))

2
]∣∣} is bounded

by Eθ∗{|nV 2
i,n − [h′sw(Yi(w)|Xi)]

2|}, which was shown above to converge to zero. Thus, to

show that (15) converges in probability to zero under θ∗, it suffices to show that 1
n

∑n
i=1 I(Wn,i =

w)
[
(h′sw(Yi(w)|Xi))

2 − h′IY (w)|X(Xi)h
]
converges in probability to zero under θ∗. This

follows by a law of large numbers for martingale difference arrays (Theorem 2 in An-

drews, 1988), since the summand is a martingale difference array with respect to the fil-
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tration F2,n,i, and it is uniformly integrable under θ∗ since it is bounded by the sequence

(h′sw(Yi|Xi))
2 + h′IY (w)|X(Xi)h, which is iid and has finite mean. This completes the proof

of (4).

A.2 Proof of Corollary 3.1

We use a martingale representation similar to the one used for matching estimators by

Abadie and Imbens (2012). For i = 1, . . . , n, let F̃n,i denote the sigma algebra generated by

X1, . . . , Xi, and let Bn,i = h′sX(Xi)/
√
n. For i = n + 1, . . . , 2n, let F̃n,i, denote the sigma

algebra generated by X(n), {Yj(w)}w∈W,1≤j≤i−1−n and U , and let Bn,i =
∑

w∈W I(Wn,i−n =

w)h′sw(Yi−n(w)|Xi−n)/
√
n. Then {Bn,i}2ni=1 is a martingale difference array with respect to

the filtration
{
F̃n,i

}2n

i=1
. In addition,

∑2n
i=1Eθ∗ [B

2
n,i|F̃n,i−1] = h′Ĩnh, and, by Theorem 3.1,

we have ℓn,h =
∑2n

i=1Bn,i − h′Ĩnh/2 + oPθ∗ (1). In the case where Ĩn converges in probability

to Ĩ∗ under θ∗, it then immediately from a central limit theorem for martingale arrays

(Theorem 35.12 Billingsley, 1995) that ℓn,h converges to a N(−h′Ĩ∗h/2, h′Ĩ∗h) law under

θ∗ (the Lindeberg condition follows since {Bn,i}ni=1 and {Bn,i}2ni=n+1 are each dominated by

sequences of iid variables with finite second moment).

Now consider the case where Ĩn ≤ Ĩ∗ + oPθ∗ (1). Let Σn = Σn(X
(n)) be a sequence of

positive semidefinite symmetric matrices with Ĩn + Σn = I∗ + oPθ∗ (1). Given U,X(n), Y
(n)
n ,

let Z1, . . . , Zn be iid and normally distributed under θ with identity covariance and mean

Σ
1/2
n (θ − θ∗). Then

ℓ̃n,h = log
dPθ∗+h/

√
n

dPθ∗
(U,X(n), Y (n)

n , Z(n)) = ℓn,h +
n∑

i=1

Z ′
iΣ

1/2
n h/

√
n− h′Σnh/2

=
2n∑
i=1

Bn,i +
n∑

i=1

Z ′
iΣ

1/2
n h/

√
n− h′(Ĩn + Σn)h/2 + oPθ∗ (1)

where the last step applies Theorem 3.1. Let us define Bn,i = Z ′
i−2nΣ

1/2
n h/

√
n for i =

2n + 1, . . . 3n, so that the above display can be written as
∑3n

i=1Bn,i − h′(Ĩn + Σn)h/2 +

oPθ∗ (1). Letting F̃n,i be the sigma algebra generated by F̃n,2n and Z1, . . . , Zi−2n for i = 2n+

1, . . . , n, {Bn,i}3ni=1 is a martingale difference array with respect to the filtration
{
F̃n,i

}3n

i=1
.

Furthermore,
∑3n

i=1 Eθ∗ [B
2
n,i|F̃n,i−1] = h̃′(In + Σn)h = h′Ĩ∗h + oPθ∗ (1), and it satisfies the

Lindeberg condition by the arguments above and uniform boundedness of Σn. It therefore

follows that ℓ̃n,h converges in distribution under θ∗ to a N(−h′Ĩ∗h/2, h′Ĩ∗h) law as claimed.
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A.3 Proof of Theorem 4.1

We have IY (0)|X(Xi) = E[sY (0)|X(Yi|Xi)
2|Xi] =

σ2
θ∗ (Xi,0)

[1−e∗(Xi)]2
and IY (1)|X(Xi) = E[sY (1)|X(Yi|Xi)

2|Xi] =
σ2
θ∗ (Xi,1)

e∗(Xi)2
so that, by (2), IY (0)|X(Xi) = IY (1)|X(Xi). Letting IY |X(Xi) = IY (0)|X(Xi) =

IY (1)|X(Xi), we then have

IX +
1

n

n∑
i=1

∑
w∈{0,1}

I(Wn,i = w)IY (w)|X(Xi) = IX +
1

n

n∑
i=1

IY |X(Xi),

which converges to ve∗(·) under θ
∗ by the law of large numbers. Thus, applying Corollary 3.1

with ve∗(·) playing the role of Ĩ∗, ℓn,h converges to a N(−h2ve∗(·)/2, h
2ve∗(·)) law under θ∗ as

claimed.

A.4 Proof of Corollary 4.1

The result is immediate from local asymptotic normality and the local asymptotic minimax

theorem, as stated in Theorem 3.11.5 in van der Vaart and Wellner (1996). (Formally, we

consider the submodels θ∗+ h̃(nve∗(·))
−1/2 indexed by h̃ when applying the definition of local

asymptotic normality on p. 412. Then n1/2[ATE(θ∗ + h̃(nve∗(·))
−1/2)− ATE(θ∗)] → h̃v

1/2
e∗(·),

so that the derivative condition on the top of p. 413 holds with κ̇(t) = v
1/2
e∗(·)t.)

A.5 Proof of Theorem 5.1

We have

IX +
1

n

n∑
i=1

∑
w∈W

I(Wn,i = w)IY (w)|X(Xi) = IX +
1

n

n∑
i=1

∑
w∈W

I(Wn,i = w)[λ(Xi) + µ′r(Xi, w)]

≤ IX +
1

n

n∑
i=1

(λ(Xi) + µ′c) + oPθ∗ (1) = vp∗(·) + oPθ∗ (1)

where the inequality uses (12) and the last step applies the law of large numbers. The result

now follows from Corollary 3.1, with vp∗(·) playing the role of Ĩ∗.

A.6 Proof of Corollary 5.1

The result is immediate from local asymptotic normality and the local asymptotic minimax

theorem (van der Vaart and Wellner, 1996, Theorem 3.11.5). (As with the proof of Corol-
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lary 4.1, we consider the submodels θ∗ + h̃(nvp∗())
−1/2 when applying the definition of local

asymptotic normality on p. 412.)
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