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Abstract

This article is a selective review of literatures in statistics and econometrics that

have attempted to formalize the idea that statistical procedures based on misspecified

models can be used to reach valid conclusions. In addition to papers that explicitly

treat misspecification, we discuss approaches from the literatures on nonparametric

statistics and set identified models. We note that a large part of all of these literatures

take the same conceptual approach to misspecification: expand the misspecified model

to form a new model that one can defend as correctly specified. Applying standard

statistical concepts to the expanded model then yields procedures that are deemed

robust to misspecification. We discuss some examples and review how some familiar

estimators from the literatures on robust estimation and nonparametric statistics arise

from this approach. We also discuss issues related to model validation and specification

testing.

1 Introduction

Aside from purely descriptive work, nearly all empirical research in economics relies on

models in some way. A statistical model gives a probabilistic description of how the data

at hand was generated. In addition, statistical models often go beyond the data at hand to

describe a scientific theory of how some aspect of the world works. This may be as simple as

positing that the data generating process will continue when new observations are drawn, or

it may involve a theory (sometimes called “structural” or “causal”) of some policy change
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or intervention. For the purposes of this article, we will say that the model is misspecified

if either or both of these two aspects of the modeling process do not provide an accurate

description of reality.

Empirical studies that use models typically do so in order to draw conclusions about the

real world. What can we say about these conclusions in the presence of model misspeci-

fication? In many cases, authors will acknowledge the possibility of misspecification while

arguing that their conclusions are nonetheless valid or at least useful in some way. How-

ever, these arguments are often vague. The lack of precise arguments about the validity of

conclusions drawn from misspecified models has drawn criticism. In a discussion of model-

ing assumptions used in the difference-in-differences literature, Manski and Pepper (2018,

p. 237) state: “Empirical researchers often say that such assumptions are approximations,

but they do not formalize what this means.” Andrews et al. (2017, Section II) note that

discussions in empirical papers about modeling assumptions often make claims about the

relative importance of these assumptions that “have no obvious formal meaning.”

Is there any real meaning to the idea that misspecified models can be taken to data to

draw valid or useful conclusions? If so, how can we make this idea precise? Do we need

to adjust our estimators, CIs and other statistical procedures to take misspecification into

account? If so, how? The present article is a selective review of literatures in statistics and

econometrics that have offered answers to these questions. In addition to papers that explic-

itly frame their contribution as one of “misspecification robustness,” we discuss approaches

from the literatures on nonparametric estimation and set identified models. We focus on a

particular approach to misspecification that encompasses a large part of all three literatures:

given a misspecified econometric model, expand the model to a larger model that one can

defend as being correctly specified. This approach gives precise answers to the questions

posed above: estimators and other procedures should be judged by how they perform in the

expanded model. In particular, one does not need new statistical concepts to formalize the

notion of “robustness to misspecification” or “validity under misspecification:” one simply

applies standard statistical concepts to the expanded model.

While the literatures on misspecification robustness, nonparametric statistics and set

identified models all treat misspecification by expanding the original model, these literatures

tend to do so in different ways. Nonetheless, many of the problems considered in these

literatures are amenable to the same basic idea: compute estimators that optimally trade

off worst-case bias and variance in the expanded model and use these estimators to form

CIs and other procedures. This approach leads to procedures that have minimax optimality
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properties in many settings. Applying this approach after expanding the original model

in different ways leads to different “robust” procedures, some of which may be familiar to

readers. In particular, the Huber estimator from the robust estimation literature and the

local polynomial estimator from the nonparametric statistics literature arise from applica-

tions of this approach. We also discuss how similar ideas involving bias-variance tradeoffs

play a role in analyzing tests and estimators and forming optimal procedures in set identified

econometric models.

The fact that different ways of expanding the model to allow for misspecification lead to

different statistical procedures is a manifestation of the fact that how one expands the model

to account for missepcification will, in general, affect the conclusions one draws. To make

precise the statement that an estimator or other procedure is “robust to misspecification,”

one must be explicit about how one is expanding the model to allow for misspecification.

Thus, the question of how to expand a potentially misspecified model to be robust to mis-

specification is, itself, an important research topic. In addition to discussing methods for

estimation and inference once the model has been expanded to allow for misspecification, we

discuss various proposals for expanding the parameter space to account for misspecification

in different settings, as well as the role of specification testing and model validation in this

endeavor.

The remainder of this paper is organized as follows. Section 2 introduces the basic

setup and introduces examples from the literature. Section 3 uses a simple example to

show how misspecification can severely affect the conclusions of an analysis. Section 4

reviews concepts from statistical decision theory and statistical practice that can be used

to analyze estimators and other procedures once the model has been expanded to allow for

misspecification. Section 5 presents a general approach to misspecification robust inference

based on bias-variance tradeoffs and explains how it has been used in our running examples.

Section 6 discusses other approaches to data analysis in misspecified models. Section 7

discusses the choices involved in expanding the parameter space to allow for misspecification

and the role of validation and specification tests. Section 8 discusses some of the historical

connections between the literatures on misspecification, nonparametrics and set identified

models. Section 9 concludes.
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2 Setup

2.1 Basic setup and notation

We consider a general setting where a researcher observes data Y . The researcher specifies a

model, which posits that the data Y follows a distribution indexed by an unknown parameter

θ in a parameter space Θ. We use subscripts Eθ and Pθ to be explicit about expectations

and probability statements depending on θ when such explicit notation is needed. Here, θ

may include nuisance parameters such as distributions of error terms.

The researcher is interested in some transformation T (θ). In addition to specifying the

data generating process Pθ, the model specifies an interpretation of T (θ) as an object that is

policy relevant or of scientific interest in some way. We will say that the model is misspecified

if either (1) the data Y does not follow the distribution Pθ for any θ ∈ Θ or (2) the modeling

assumptions that lead us to be interested in T (θ) as a policy relevant parameter fail.

2.2 Misspecification robustness as expanded parameter space

In this review article, we focus on a general approach that formally allows for misspecification

by expanding the parameter space. In particular, one posits a new (larger) parameter space

Θ and set of distributions Pθ for this parameter space. An important part of this approach

is that the transformation T (θ) must be defined on this larger parameter space so that T (θ)

retains its policy relevant or scientific interpretation.

Definition. We refer to the approach just described as the expanded parameter space ap-

proach to misspecification. We use the term baseline model or original model for the original,

possibly misspecified model. We use the term expanded model to refer to the larger model.

Ideally, the expanded model is defined in such a way that the researcher can argue

convincingly that the expanded model is an adequate description of reality and therefore

does not itself suffer from misspecification. From a Bayesian perspective, one can think of

the expanded model as including all parameters allowed by a reasonable prior (see Remark

4.1 below). While debates about the meaning of mappings between models and reality are

not the main focus of this article, we note that a statistical model as defined in this article

falls into the general decision theoretic setup of Wald (1950). Therefore, debates about the

interpretation of decision theory going back to Savage (1954) are relevant to this question.

Recent discussions of this issue in econometrics include Stoye (2012), Manski (2021) and
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Hansen and Sargent (2024). See Armstrong et al. (2025) for a recent review of some of these

debates as they relate to empirical practice in economics.

Remark 2.1. In all of our examples, the baseline model can be parameterized as a subset

of the expanded model. For example, we may write the parameter in the expanded model as

θ = (β, γ) with parameter space B×Γ, where Γ is a subset of a vector space, with the baseline

model taking the same form with parameter space B × {0}. However, to avoid notational

clutter, we will not introduce any general notation to separately describe the baseline model

and expanded model, nor will we introduce general notation to parameterize the former as

a subset of the latter.

Remark 2.2. Strictly speaking, the parameter θ includes all nuisance parameters such as

distributions of error terms. However, often it is possible to treat some of these parameters

as fixed and known when asymptotic approximations such as the central limit theorem are

used. For example, in the linear regression model (Example 2 below), one can proceed as if

the error term is normally distributed with known variance conditional on the covariates and

then plug in an initial estimate of the conditional variance to obtain a feasible procedure. The

idea of treating some parameters as known for the purpose of asymptotic analysis (or using

asymptotics to make other simplifications) can be formalized using asymptotic efficiency

theory. See Hirano and Porter (2020) for a recent review and Grama and Nussbaum (2002),

Armstrong and Kolesár (2018) and Armstrong and Kolesár (2021b) for some results that are

relevant to the examples we consider below. In some parts of this article, we will make use

of such approximations and use θ and Θ to denote the parameter and parameter space after

an asymptotic approximation of this form where some unknown quantities are fixed.

2.3 Examples

We explain how several examples of approaches to misspecification from the literature fit

into our setup.

Example 1. Huber (1964) considered estimation of a location parameter µ in a parametric

family. For concreteness, let us consider the normal distribution with variance 1, which was

the main case Huber (1964) considered. The baseline model then specifies that the data

Y = (Y1, . . . , Yn) are iid with each following the N(µ, 1) distribution. This fits into our

framework with µ playing the role of θ.

The assumption that the sampling distribution is exactly described by a normal distribu-

tion is quite strong. Huber (1964) proposed to deal with misspecification by instead assuming
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that, given the location parameter µ, Yi − µ follows the distribution with cumulative distri-

bution function (cdf) F = (1 −M)Φ +MH where Φ denotes the N(0, 1) distribution and

H denotes an arbitrary distribution. Here M determines the magnitude of misspecification

from the original model that the researcher allows, and is taken to be known.

In our terminology, Huber’s setting gives an expanded model with parameter θ = (µ, F )

and parameter space Θ = Θ(M) = R×F where F(M) is the set of all probability distribu-

tions on the real line that take the form (1−M)Φ+MH for some cdf H. The parameter of

interest is still T (µ, F ) = µ. This expanded model is sometimes called the gross error model

due to the following interpretation: for each i, we draw from the correctly specified N(µ, 1)

model with probability 1 −M , but with probability 1 −M our sampling process makes an

error and draws from some distribution that can be arbitrarily different from the N(µ, 1)

distribution.

The gross error model expands the original N(µ, 1) model by associating the parameter

θ not only with the N(µ, 1) distribution but also with any distribution F that satisfies

dg.e.(F ;N(µ, 1)) ≤M , where dg.e.(P ;Q) is the smallest value of M̃ such that P can be written

as P = (1 − M̃)Q +MH for some distribution H. The function dg.e.(P ;Q) is one way of

quantifying the distance between distributions P and Q. More generally, one can consider

other notions of d(P ;Q) of distance between distributions, thereby leading to other expanded

models. One can also consider baseline parametric models other then the normal location

model, or even baseline models that are not fully parametric in the sense that they do not

parametrically specify all error distributions. A large literature in statistics and econometrics

has considered expanded models that fall into this class. References include Huber (2004);

Donoho and Liu (1988); Kitamura et al. (2013); Andrews et al. (2020); Bonhomme and

Weidner (2022); Christensen and Connault (2023).

Example 2. Consider a linear regression model: {(Xi, Yi)}ni=1 are iid and we assume

Yi = ψ(Xi)
′β + Ui, E[Ui|Xi] = 0 (1)

for some known p×1 vector of functions ψ(x). For example, suppose Xi is univariate and we

take ψ(x) = (1, x, . . . , xp−1), in which case we are positing a (p− 1)th order polynomial for

the regression function. We take this parametric regression model to be the baseline model,

with β as the parameter.

Sacks and Ylvisaker (1978) considered the possibility of misspecification in this baseline
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parametric model. In particular, they considered the expanded model

Yi = ψ(Xi)
′β + r(Xi) + Ui, E[Ui|Xi] = 0, |r(x)| ≤M(x)

where r(·) is specification error and M(x) is a bound on specification error posited by the

researcher. They referred to this as an approximately linear regression model (i.e. ap-

proximately linear in ψ(x)). In this expanded model, the parameter θ is (β, r(·)) and the

parameter space Θ = Rp × {r(·) : |r(x)| ≤M(x) all x}.1

One of the main cases considered by Sacks and Ylvisaker (1978) is when the regression

function is p times differentiable near a point x0, with a bound M on the pth derivative. It

then follows from taking a Taylor approximation at x = x0 that the expanded model holds

with ψ(x) = (1, x− x0, . . . , (x− x0)
p−1) and M(x) = (M/p!) · |x− x0|p. The transformation

T (β, r(·)) = βj then corresponds to the (j + 1)th derivative of the regression function at

x0, with the intercept β1 corresponding to the regression function at x0. As we will see,

the theory of estimation in this setting is tied closely to classical nonparametric estimation

theory.

Example 3. The econometrics literature on set identification has considered numerous mod-

els that can be interpreted as expanded models for a misspecified baseline model. One strand

of this literature, going back to Manski (1989, 1990), has focused on relaxing assumptions

of random sample selection and random selection into treatment groups. To give a sim-

ple example, consider a binary variable of interest Y ∗
i that is observed only for part of

the population. We are interested in the distribution of Y ∗
i , which can be summarized by

p = P (Y ∗
i = 1). Letting Wi be an indicator variable for Y ∗

i being observed in the sample,

we observe {(Yi,Wi)
n
i=1} iid where Yi = Y ∗

i Wi.

Under the assumption of random selection into the sample, Y ∗
i is independent of Wi.

Letting q = P (Wi = 1), the joint distribution of an observation Yi,Wi is then determined by

the parameter θ = (p, q), with T (p, q) = p being the object of interest. Manski (1989, 1990)

considered relaxing the assumption of independence between Y ∗
i and Wi in various ways. If

we make no assumptions on the joint distribution of Y ∗
i andWi, we obtain an expanded model

where the distribution of Yi,Wi can be characterized by the parameter vector θ = (p, q0, q1)

1Formally, the parameter θ also includes the unknown conditional distribution GU (·|x) of Ui and the
distribution GX of Xi, so that we can write θ = (β,GU (·|x), GX). However, it is often possible to treat the
error distribution as known for the purpose of asymptotic analysis as discussed in Remark 2.2. Thus, we
can take the parameter to be θ = (β,GX) for the purpose of asymptotic analysis and, in some cases such as
the problem of estimating the regression function at a point considered below, we can treat GX as fixed and
take θ = (β, r(x)) to be the unknown parameter in the expanded model and θ = β in the baseline model.
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where p = P (Y ∗
i = 1), q1 = P (Wi = 1|Y ∗

i = 1) and q0 = P (Wi = 0|Y ∗
i = 0). The object of

interest is still T (p, q0, q1) = p.

Manski (1989, 1990) also considered relaxing the random selection assumption while

maintaining various other assumptions on the joint distribution of Wi, Y
∗
i , as well as related

settings involving covariates, selection into treatment and exclusion restrictions. See Manski

(2003) for a review of this and some of the subsequent work by Manski and coauthors on the

topic. The literature on partial identification has also considered relaxing various modeling

assumptions in other settings, such as equilibrium assumptions in games (e.g. Ciliberto and

Tamer, 2009). Further references to this literature can be found in review articles such as

Tamer (2010) and Canay et al. (2023).

Example 4. In the linear instrumental variables (IV) model, we observe {(Xi, Yi, Zi)}ni=1

where

Yi = X ′
iβ + Ui, E[UiZi] = 0.

Here, Yi is a scalar outcome variable, Xi is a p × 1 vector and Zi is a k × 1 vector with

k ≥ p. The unknown parameter θ includes β as well as the unknown distribution GX,Z,U of

Xi, Zi, Ui and the parameter space Θ consists of β ∈ Rp and GX,Z,U such that E[UiZi] = 0

under the distribution GX,Z,U .

A large literature has examined settings where the exogeneity assumption E[UiZi] = 0

holds only approximately. A common approach in this literature (e.g. Conley et al., 2010;

Masten and Poirier, 2021) is to allow Zi to enter directly into the outcome equation:

Yi = X ′
iβ + Z ′

iγ + Ui, E[UiZi] = 0.

This leads to an expanded model with parameters β, γ (as well as the nuisance parameter

GX,Z,U). The parameter of interest is still T (θ) = T (β, γ,GX,Z,U) = β (or perhaps a single

element of β).

Without further restrictions, the expanded model is clearly unidentified: if (β, γ) range

over all of Rp+k, then the identified set for any element of β will be the entire real line. One

approach used in the literature to obtain informative bounds (e.g. Armstrong and Kolesár,

2021b; Conley et al., 2010; Masten and Poirier, 2021) is to place a bound on the magnitude

of γ. Formally, this can be done by assuming that ∥γ∥ ≤M for some norm ∥·∥ and constant

M . One can also place other assumptions on γ, such as sign assumptions. Letting Γ denote

the set of values of γ that satisfy the researcher’s assumptions, the parameter space for
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(β, γ,GX,Z,U) is Rk × Γ × G where G is a set of distributions GX,Z,U for which E[UiZi] = 0

for all distributions in G.
More generally, one can consider the nonlinear generalized method of moments (GMM)

model, which imposes Eg(Wi, β) = 0 for data Wi and a function g() specified by the re-

searcher. The expanded model introduces an additional parameter c and specifies Eg(Wi, β) =

c, with some bound on the magnitude of c. The misspecified IV model falls into this frame-

work with g(Wi, β) = (Yi − X ′
iβ)Zi and c = EZ ′

iγ. This setting has been considered by

Andrews et al. (2017, 2020); Armstrong and Kolesár (2021b).

2.4 Defining T (θ) in the expanded model

As noted above, one part of forming the expanded model is defining the object of interest

T (θ) on the expanded parameter space. This should be done in a way so that T (θ) retains

its interpretation as an object that is policy relevant or of scientific interest. How one defines

T (θ) will sometimes depend on the source of misspecification and how one interprets it, as

the following example illustrates.

Example 1 (continued). Recall that we defined the object of interest to be T (µ, F ) = µ

in the expanded model where we observe data Yi where Yi − µ is distributed according to

F = (1−M)Φ+MH with H an unknown cdf. This can be given the following interpretation:

we sample from a population described by the N(µ, 1) distribution but, with probability M ,

our data is contaminated so that we draw from an arbitrary unknown cdf instead. In a

survey setting, this may occur because a proportion M of our respondent’s do not take the

survey seriously and give arbitrary answers (see the discussion at the beginning of Section

7 in Huber, 1964). In this contaminated normal model, the object of interest is still the

original N(µ, 1) distribution, leading to defining T (µ, F ) = µ (or some other transformation

of µ characterizing the N(µ, 1) distribution) in the expanded model.

Another setting described by the same expanded model is where one is not concerned

with data contamination, but where one views the N(µ, 1) assumption as holding only ap-

proximately. That is, we sample from a population Pµ,F with cdf y 7→ F (y − µ) where we

know that F = (1−M)Φ+MH and we do not face any issues with data contamination. In

this case, we would define T (µ, F ) to summarize the distribution Pµ,F of the observed data

(e.g. the median or mean of this distribution).
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2.5 Comparison to the pseudo-parameter approach

We focus in this review on approaches to misspecification that take the object of interest

T (θ) as given. Another approach to misspecification is to take an estimator T̂ of T (θ) that

is viewed as reasonable in the baseline model and consider its behavior when this model is

misspecified in essentially arbitrary ways (i.e. when we allow the distribution P of the data

to vary in essentially arbitrary ways). We then look for an estimand T (P ) such that T̂ can

be viewed as a reasonable estimator for T (P ) even when the model is misspecified (i.e when

we do not have P = Pθ for any θ). The estimand T (P ) is often referred to as a pseudo-

parameter. A classic example of this approach is the best linear predictor interpretation of

the ordinary least squares (OLS) estimator.

Example 2 (continued). The ordinary least squares (OLS) estimator for β in the linear

regression model (1) is given by β̂OLS = argminb

∑n
i=1(Yi − ψ(Xi)

′b)2. The best linear

predictor is defined by TBLP(P ) = argminbEP (Yi − X ′
ib)

2. Even if the linear model (1)

doesn’t hold, TBLP(P ) is defined and the OLS estimator is consistent for TBLP(P ) so long

as Xi and Yi have finite second moments. For this reason, TBLP(P ) is commonly used as a

pseudo-parameter in linear regression settings under misspecification. Tests and CIs based on

the OLS estimator are valid for TBLP(P ) even if the original linear model (1) is misspecified

so long as one uses robust standard errors as in White (1980a).

The pseudo-parameter approach contrasts with the approach that is the focus of the

present review paper, in which one fixes the parameter of interest T (θ) along with an ex-

panded model and seeks estimators T̂ that perform well in this expanded model. While these

approaches are conceptually distinct, they are often combined or used in tandem to motivate

a particular statistical procedure. For example, Huber used both approaches to motivate a

certain class of estimators that trim outliers in the setting of Example 1.

Approaches based on pseudo-parameters are perhaps most useful when the pseudo-

parameter can be related to an object of interest in the original model. We now discuss

some results of this form that have been obtained in the regression setting.

Example 2 (continued). Coefficients in a linear regression model are often interpreted as

causal effects of the given variable. Formally, if Xi consists of a scalar treatment variable

Di and additional covariates Wi, then we can interpret E[Yi|Di = d′,Wi = w] − E[Yi|Di =

d,Wi = w] as the causal effect of changing Di from d to d′ (conditional onWi = w) under the

Neyman-Rubin casual model if we assume that Di is as good as random conditional on Wi

(see Imbens and Wooldridge, 2009). One may also be interested in how E[Yi|Di = d,Wi = w]
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varies with d for purely descriptive reasons, even without a causal model. In other words,

letting Tw,d,d′ = E[Yi|Di = d′,Wi = w] − E[Yi|Di = d,Wi = w], we are interested in Tw,d,d′

for particular values of w, d and d′ or perhaps averages over this quantity for different values

of w, d and d′.

Several results are available relating Tw,d,d′ to the best linear predictor pseduo parameter.

Suppose that one specifies the regression function E[Yi|Di,Wi] = Diβ + ψ̃(Wi)
′γ for some

function ψ̃(Wi)
′γ. Then the best linear predictor coefficient on Di (i.e. the probability limit

of the OLS estimate of β) can be written as a weighted average of Tw,d,d′ over different values

of w under certain conditions. Basically, one needs the “control” part of the regression

function to be “correctly specified” in the sense that E[Yi|Di = d,Wi = w] = ψ̃(w)′γ for

some γ for value of d, or one must have E[Di|Wi] = ψ̃(w)′γ for some γ. Such results are

discussed in Angrist and Pischke (2008, Section 3.3.1) and include an influential result in

Angrist (1998) for the case where Di is binary. Earlier results relating regression derivatives

to best linear predictor coefficients include White (1980b) and Yitzhaki (1996).

The above example shows that there are cases where the best linear predictor and other

pseudo-parameters may be related to objects of interest in useful ways. However, these results

can still place strong requirements on correct specification of certain parts of the model: in

the example above, the ψ̃(Wi)
′γ term still has to be correctly specified. See Goldsmith-

Pinkham et al. (2022) and references therein for recent discussions of misapplications of

the result in Angrist (1998) described above. Another setting where pseudo-parameters

have been related to causal parameters of interest is in the IV setting, where an influential

result of Imbens and Angrist (1994) relates the pseudo-parameter estimated by certain IV

estimaters to averages of treatment effects over certain subgroups. These results also place

strong requirements on correct specification of certain aspects of the model when covariates

are included; see Blandhol et al. (2022) for a recent discussion.

In general, pseudo-parameters may not bear any clear relation to the object of interest

T (θ) as it is interpreted in the original model. We illustrate this point by example in the

next section.

3 The perils of ignoring bias from misspecification

To illustrate the problems that can arise when one ignores misspecification, consider the

regression discontinuity (RD) setting, in which a treatment Di is determined by a cutoff rule

involving a scalar variable Xi, called the running variable: Di = I(Xi > c) for some known
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Figure 1: Correctly specified RD

cutoff c. We are interested in the causal effect of the treatment Di on an outcome variable

Yi. Under continuity assumptions, we can interpret any jump in the regression function

E[Yi|Xi = x] at x = c as an average causal effect of the treatment Di on the outcome Yi

conditional on Xi = c. Details and references can be found in the review article by Imbens

and Lemieux (2008).

Issues with bias from misspecified parametric models have been a major concern in em-

pirical papers that use RD designs. Here, we draw from the textbook discussion of these

issues in Angrist and Pischke (2008, Ch. 6). Suppose we use a linear model for the regression

function E[Yi|Xi = x] on either side of the cutoff c. This leads to a particular case of the

linear model in Example 2:

Yi = (β1 + β2(Xi − c))I(Xi ≤ c) + (β3 + β4(Xi − c))I(Xi > c) + Ui, E[Ui|Xi] = 0.

We have parameterized the model so that T (β) = β3 − β1 gives the object of interest: the

jump at x = c.

What happens if we estimate this model using OLS? Figure 1 shows the OLS fit in a

correctly specified model. Here, we find evidence of a positive treatment effect, which turns

out to be correct for the simulated model. Figure 2 illustrates what can happen with a
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Figure 2: Misspecified RD

misspecified model. Here, the true regression function is continuous, so that the treatment

effect estimated in the RD design is zero. Indeed, the regression function is consistent

with the treatment effect being zero for all individuals. However, the OLS estimator finds

evidence of a positive effect. Furthermore, the spurious effect is statistically significant at

conventional levels and sizeable relative to the overall variation in the outcome variable (the

point estimate is .39 with a standard error of .096).

The simplicity of this example makes it a useful test case for informal arguments that

misspecified parametric models can be expected to lead to conclusions that are approximately

correct or useful in some way. Surely the finding of a large positive effect when no effect

exists is not an “approximately correct” finding! This example also raises issues with the

interpretation of the pseudo-parameter in this setting: the best linear predictor pseudo-

parameter suggests a nonzero effect even though the treatment has no effect at all. While

pseudo-parameters can be related to objects of causal or scientific interest in some settings,

this example illustrates that relying on the pseudo-parameter interpretation of estimands can

lead one astray if it is not accompanied by explicit arguments relating the pseudo-parameter

to an object of interest.
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4 Data analysis in the expanded model

The expanded models in the examples we have covered may appear difficult or nonstandard.

Nonetheless, these expanded models are themselves statistical models in the usual sense

as defined in textbooks (e.g. Wasserman, 2004, Ch. 6) and used in theories of estimation

(Lehmann and Casella, 1998), inference (Lehmann and Romano, 2005) and more general

statistical decision problems (going back to Wald (1950); see Berger (1985) for a textbook

treatment). In particular, standard ideas about how to form and analyze statistical proce-

dures in a general setting can still be applied. We first review these concepts before discussing

how they have been applied in the expanded model approach to misspecification.

4.1 Review of statistical concepts

Just as in more familiar settings, one can form an estimator T̂ = T̂ (Y ) of T (θ) with the

goal of making the estimation error T̂ − T (θ) small. One can then analyze the sampling

behavior of the error T̂ − T (θ) and report to the reader objects that help to convey the

range of possible sampling behavior. Taking a formal decision theoretic perspective, one

may choose a loss function ℓ(T̂ , T ) and analyze the risk function R(T̂ , θ) = Eθℓ(T̂ , T (θ)).

For example, the squared error loss function ℓ(T̂ , T ) = (T̂ − T )2 leads to the familiar mean

squared error (MSE) risk Eθ[(T̂ −T (θ))2]. To assess the accuracy of the estimator, one may

attempt to derive formal bounds on the worst-case risk over the parameter space Θ, using

asympotic approximations if necessary but ideally reporting exact finite sample bounds. If

formal bounds cannot be obtained, one may use Monte Carlo exercises to try to give an idea

of the possible sampling behavior of the estimator.

One can also use worst-case risk bounds to compare estimators. An estimator is minimax

if it minimizes worst-case risk supθ∈ΘRθ(T̂ , T ) over possible estimators T̂ . Rather than an

exact minimax estimator, one may seek a simple estimator that is highly efficient in the

sense that it nearly achieves the minimax bound. One may also take a Bayesian approach

and choose some prior distribution π over the expanded parameter space. This leads to the

Bayes risk criterion
∫
θ∈ΘRθ(T̂ , T (θ)) dπ(θ).

Standard definitions of a statistical hypothesis test and confidence interval (CI) also do

not necessarily need to be modified. A 100 ·(1−α) confidence interval C for T (θ) is a random

set that satisfies Pθ(T (θ) ∈ C) ≥ 1−α for all θ ∈ Θ. A hypothesis test ϕ(Y ) maps the data Y

to a zero-one decision to reject or fail to reject some null hypothesis about T (θ), such as the

null hypothesis HT0 : T (θ) = T0. The test is level α if the rejection probability Pθ(ϕ(Y ) = 1)
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is bounded by α for all θ with T (θ) = T0. As in more standard settings, one should analyze

the power Pθ(ϕ(Y ) = 1) of the test at alternatives θ where T (θ) ̸= T0 and argue that it is

substantially greater than the level α at plausible alternatives θ.

In addition to formal results on the sampling properties of estimators, tests and CIs,

one may also use less formal criteria to choose between estimators. For example, one may

seek estimators that are transparent and simple to describe. One may also apply statistical

decision theory to other decision problems in the expanded model, such as welfare based

policy decisions; see Manski (2004), Dehejia (2005).

Remark 4.1. If one adopts a Bayes criterion, one may also ask about misspecification of

the prior π. One approach to this issue is to relax the assumption of a single prior by

assuming only that the prior is in some given set Γ, leading to the Γ-minimax criterion

supπ∈Γ
∫
θ∈ΘRθ(T̂ , T (θ)) dπ(θ). While we do not discuss the question of misspecified priors

in this review, we note that prior misspecification is closely related to misspecification of

the parameter space: if the parameter space Θ is a subset of a larger set then applying the

minimax criterion with parameter space Θ corresponds to the Γ-minimax criterion with Γ

given by the set of priors supported on Θ.

4.2 Robust estimation and decision theory

The literature on robust estimation has introduced several concepts that can be understood

as applications of standard concepts from statistics and decision theory to the expanded

model. The notion of ambiguity aversion, often associated with model misspecfication (e.g.

Hansen and Sargent, 2024), has been formalized in the axiomatic decision theory literature

using minimax and related criteria (Gilboa and Marinacci, 2013). The literature on robust

statistics has formulated several notions of “robustness,” many of which amount to measuring

the robustness of a statistic using its asymptotic worst-case bias or variance (see Donoho

and Liu, 1988, and references therein). A related idea in the robust statistics literature is

the breakdown point of an estimator, which is defined as the smallest expanded model (e.g.

the smallest choice of M in Example 1) such that a nontrivial bound can be obtained on the

worst-case bias of the given estimator (Huber, 2004, p. 13).

It is helpful to remember that all of these concepts are applications of statistical theory

to an expanded model. While concepts such as the minimax criterion are often emphasized

in the robust statistics literature, they are also present in more mundane parametric settings.

For example, the asymptotic efficiency of maximum likelihood estimators can be formalized

using minimax in a particular sequence of local models (van der Vaart, 1998, Ch. 8).
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4.3 Complications arising in the expanded model

While the expanded models in our examples are still amenable to the application of the

concepts from the theory and practice of statistics described in Section 4.1, they bring up

some complications that do not arise in standard parametric settings. These include:

1.) infinite dimensional nuisance parameters, such as the distribution H in Example 1 or

the approximation error function r(·) in Example 2

2.) parameter spaces that incorporate bounds or inequalities, such as the bound M(x)

on the approximation error r(x) in Example 2, or the bounds on the effect γ of the

instruments Zi in Example 4.

3.) parameters that are set identified – for a given distribution P describing the observed

data, there may be multiple values of θ or T (θ) such that Pθ = P .

While set identification can raise conceptual issues, one can still apply the concepts in Section

4.1 when T (θ) is set identified. This viewpoint has become increasingly common following

the influential work of Imbens and Manski (2004) in the context of CIs and several papers by

Manski and other authors in the context of policy decisions based on statistical treatment

rules (e.g. Manski, 2007).

Conceptual issues aside, set identification may require some modification of the usual

methods used to analyze estimators and CIs. For example, if T (θ) is not point identified,

asymptotic analysis of worst-case risk may be complicated by the fact that worst-case bounds

on risk will not shrink to a point as the sample size grows. Issues (1) and (2) can also

complicate estimation and inference, even when T (θ) is point identified. The main issue here

is that exploiting the bounds defined by the parameter space may lead to biased estimators.

Despite these issues, familiar approaches involving approximately normal point estimators

and CIs based on these estimators and their standard errors can often be fruitfully applied,

with some modifications to take into account bias. We turn to this topic in the next section.

5 Approximately normal estimators

Often, one can construct estimators T̂ that are approximately normal in the expanded model:

T̂ − T (θ)
d
≈ N(bias(θ), V (θ)). (2)

16



Furthermore, an estimate V̂ is available of V (θ) that is accurate enough to be used for

inference.2 These statements can be formalized using appropriate uniform central limit

theorems and laws of large numbers that show that remainder terms converge to zero at an

appropriate rate, but we do not discuss such formal results here.

In the settings we consider here, the asymptotic bias term bias(θ) cannot be consistently

estimated, but one can bound this term using the worst-case bias

bias = bias(Θ) = sup
θ∈Θ

| bias(θ)|.

Thus, to describe the approximate range of possibilities of sampling distributions to the

reader, one can report bias along with the standard error. To provide additional information

to the reader, one can also report bias(Θ) for different parameter spaces that allow for

different amounds of misspecification from the original model, or one can report bias(θ)

for particular parameters θ in the expanded model that represent particularly plausible or

important deviations from the original model.

Once the worst-case bias has been calculated, it can be used to compute a 100 · (1−α)%

CI:

T̂ ± [bias + z1−α/2

√
V̂ ]

where z1−α/2 is the 1 − α/2 quantile of the N(0, 1) distribution. One can also form a less

conservative CI by taking into account the fact that the bias cannot be simultaneously equal

to |bias| and −|bias|, as emphasized by Imbens and Manski (2004). In the case where V (θ)

doesn’t depend on θ (or when V (θ) only depends on certain elements of θ that don’t enter into

bias(θ)), this can be done by using a quantile of the N(bias/V̂ , 1) distribution as the critical

value; see Armstrong and Kolesár (2018). Such CIs that explicitly include bias bounds are

sometimes called bias-aware CIs (e.g. Noack and Rothe, 2024).

The normal approximation (2) can also be used to choose between estimators. Suppose

we have a class of estimators T̂w where w is some index chosen by the researcher. Suppose

the approximation (2) holds for some bias(θ;w) and V (θ;w) for each w. We can then choose

the estimator T̂w that trades off bias and variance in a way that we choose. For example,

2As discussed in Remark 2.2, one can often treat certain nuisance parameters such as the conditional
distribution of error terms in Example 2 as known for the purpose of this asymptotic approximation. Such
nuisance parameters do not need to be included in θ for the purposes of the worst-case bias and variance
calculations discussed in this section.
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the minimax MSE choice of w minimizes worst-case MSE:

min
w

sup
θ∈Θ

{
bias(θ;w)2 + V (θ;w)2

}
If we are interested in CIs, we can also directly optimize the length a CI of the form given

above.

A concept that can be useful in deriving asymptotic representations of the form (2) is

the influence function. We will say that a statistic T̂ is asymptotically linear with influence

function ψIF(·) if

T̂ − T (θ) ≈ 1

n

n∑
i=1

ψIF(Yi) (3)

in large samples (as with the approximation (2), we do not discuss the formal results that jus-

tify this approximation here). The influence function representation (3) leads to the normal

approximation (2) with bias(θ) = EθψIF(Yi) and V (θ) = varθ(ψIF(Yi)). The influence func-

tion representation can also be helpful in understanding the estimator T̂ from a mechanical

or algorithmic perspective: ψIF(Yi) measures the contribution or “influence” of observation

Yi on the estimate T̂ .

In settings where a certain form of linearity holds, an influence function representation

(3) will hold exactly and can be used to obtain exact finite sample bias and variance calcu-

lations. This is the case in Example 2. In nonlinear settings, bias calculations based on the

influence function representation (3) will typically hold only as an approximation for small

deviations from the original model, an idea that can be formalized using the framework of

local misspecification. Such approximations are relevant in Examples 1 and 4. We turn to

these examples in the next section.

5.1 Examples

Example 1 (continued). In this example, the original model is the N(µ, 1) location model

and the expanded model is the gross error model where Yi−µ ∼ F where F = (1−M)ϕ+MH

and H is an arbitrary distribution. In the correctly specified normal location model, the

sample mean Ȳ = 1
n

∑n
i=1 Yi is asymptotically efficient. Indeed, it is minimax even in finite

samples (Lehmann and Casella, 1998, Example 2.8, pp. 324-326). However, in the expanded

model, both the bias and variance of Ȳ can be made arbitrarily large by taking H to be a

point mass at some large value.
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To ameliorate this issue, Huber (1964) proposed a class of M-estimators, defined as

T̂ = argmin
t

n∑
i=1

ρ(Yi − t)

for some function ρ(). Huber argued that a particular class of M-estimators, now called

Huber estimators, have good properties in terms of both the asymptotic bias bias(µ, F ) and

asymptotic variance V (µ, F ) in the gross error model. This class corresponds to taking

ρ(t) = ρHuber,k(t) where ρHuber,k(t) = t2/2 for |t| < k and ρHuber,k(t) = k|t| − k2/2 for |t| ≥ k,

where k is a tuning parameter chosen by the user. Note that the Huber estimator is also

defined by the first order conditions

n∑
i=1

ρ′Huber,k(Yi − T̂ ) = 0, ρ′Huber,k(t) =

t |t| < k

0 |t| > k

Thus, Huber estimators have the effect of trimming outliers.

The class of Huber estimators contain the sample mean and sample median as limiting

cases where k → ∞ and k → 0 respectively. In the gross error model, Huber (1964)

showed that the Huber estimator with an appropriate choice of k minimizes the worst-case

asymptotic variance when the distribution H is constrained to be symmetric. In addition, he

showed that the sample median (the limiting case as k → 0) minimizes worst-case asymptotic

bias in the gross error model. In subsequent work (Huber, 1965, 1968), Huber developed

finite sample optimality properties of this class of estimators for certain estimation and

inference problems.

When the N(µ, 1) model is correctly specified, M-estimators have the influence function

representation (3) with influence function

ψIF(Yi) =
ρ′(Yi − µ)[

d
dt

∫
ρ′(t− y) dΦ(y)

]
t=0

. (4)

This approximation can also be used to approximate the bias of M-estimators when specifi-

cation error M is small:

bias(µ, F ) ≈ Eµ,FψIF(Yi) =M

∫
ψIF(y) dH(y) where F = (1−M)Φ +MH.

The absolute value of this quantity is maximized when H places probability one on the value
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of y where |ψIF(y)| is largest, yielding the approximation

bias(Θ(M)) = sup
(µ,F )∈Θ(M)

| bias(µ, F )| ≈M sup
y∈R

|ψIF(y)|.

to the worst-case asymptotic bias. Due to this approximation, supy∈R |ψIF(y)| has been called

the gross error sensitivity of an estimator with influence function ψIF(y); see Huber (2004,

p. 14).

Using the influence function to approximate the bias yields insights into why the Huber

estimator controls bias from gross error specification. Since |ρ′(t)| is bounded by the user

specified parameter k, the influence function (4) is bounded, thereby controlling bias even

in the worst case.

Example 2 (continued). A popular approach to estimation in the linear model is the OLS

estimator, β̂OLS. More generally, one can consider the class of weighted least squares (WLS)

estimators, which take the form

β̂WLS,Kn = argmin
b

n∑
i=1

(Yi − ψ(Xi)
′b)2Kn(Xi)

=

(
n∑

i=1

Kn(Xi)ψ(Xi)ψ(Xi)
′

)−1 n∑
i=1

Kn(Xi)ψ(Xi)Yi.

where Kn(x) is a weighting function chosen by the researcher. For concreteness, suppose

we are interested in the jth element of β, so that T (β) = e′jβ where ej is the jth standard

basis vector. Note that the formula for the WLS estimator immediately gives an influence

function representation that holds exactly in finite samples.

e′jβ̂WLS,Kn − e′jβ = e′j

(
n∑

i=1

Kn(Xi)ψ(Xi)ψ(Xi)
′

)−1 n∑
i=1

Kn(Xi)ψ(Xi)(Yi − ψ(Xi)
′β).

=
1

n

n∑
i=1

wn(Xi)(Yi − ψ(Xi)
′β) where (5)

wn(x) = e′jΓ̂
−1
n,Kn

Kn(x)ψ(x), Γ̂n,Kn =
1

n

n∑
i=1

Kn(Xi)ψ(Xi)ψ(Xi)
′

Note that (5) is an algebraic identity that holds regardless of β. The influence function takes

the form ψIF(Xi, Yi) = wn(Xi)(Yi − ψ(Xi)
′β).3

3Note that the function wn(x) depends on the entire sample of covariates X = X1, . . . , Xn. Replacing
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In the baseline model where E[Yi|Xi] = ψ(Xi)
′β, it follows immediately from (5) that

the WLS estimator is unbiased condional on the sample of covariates X = (X1, . . . , Xn):

E[e′jβ̂WLS,Kn|X] = e′jβ. In the approximately linear model of Sacks and Ylvisaker (1978), we

have E[Yi|Xi] = ψ(Xi)
′β + r(Xi), which leads to the bias

bias(β, r(·);wn(·)) = E[e′jβ̂WLS,Kn|X]− e′jβ =
1

n

n∑
i=1

wn(Xi)r(Xi).

Under the approximately linear model, we assume only that |r(Xi)| ≤M(Xi) where M(Xi)

is specified by the researcher. This leads to maximum bias conditional on the design points

X = (X1, . . . , Xn) being given by

bias(wn(·)) = sup
β∈Rp,r(·):|r(x)|≤M(x) all x

| bias(β, r(·);wn(·))| =
1

n

n∑
i=1

|wn(Xi)M(Xi)| (6)

with the maximum being taken when r(Xi) = M(Xi) · sign(wn(Xi)). The variance (again

conditional on X = (X1, . . . , Xn)) is

V (wn(·)) =
1

n2

n∑
i=1

wn(Xi)
2σ2(Xi) where σ2(x) = E[Yi|Xi = x].

In the baseline model under correct specification, M(x) = 0 so that bias(wn(·)) = 0.

According to the Gauss-Markov Theorem, under homoskedastic errors (i.e. when σ2(x) is

constant), the choice of weighting function Kn(·) that minimizes V (wn(·)) subject to the

condition that bias(wn(·)) = 0 is the constant weighting function Kn(x) = 1, leading to the

OLS estimator. Indeed, the Gauss-Markov Theorem makes the stronger statement that OLS

is minimum variance unbiased among all linear estimators, meaning estimators that take the

form 1
n

∑n
i=1wn(Xi)Yi with wn(·) not necessarily taking the form in (5).

In the expanded model where r(x) may not be zero, unbiasedness is too much to ask for.

However, we can trade off bias and variance by minimizing a criterion such as worst-case

MSE:

min
wn(·)

bias(wn(·))2 + V (wn(·)). (7)

Γ̂n,Kn
with its expectation leads to a influence function representation where ψIF(x, y) does not depend on

the sample. Here, we avoid this approximation by taking a so-called fixed design approach and calculating
bias and variance conditional on the sample of covariates X1, . . . , Xn.
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Sacks and Ylvisaker (1978) proposed to generalize the Gauss-Markov Theorem directly by

computing a minimax linear estimator in the expanded model. In particular, they proposed

to choose wn(·) to minimize worst-case MSE under homoskedasticity. They showed that the

solution can be characterized using a Lagrangian and elementary algebraic derivations.

In general, these optimal weights may not take the form of a WLS estimator for any

simple weighting function Kn(·). However, in the case where M(x) = (M/p!)|x − x0| and
ψ(Xi) = (1, Xi − x0, . . . , (Xi − x0)

p−1) so that the approximately linear model follows from

a Taylor approximation at some point x0, a WLS approach with Kn() given by a kernel

function Kn(x) = k((x − x0)/hn) turns out to work well. Here, the kernel function k(t) is

taken to be a simple function such that Kn(x) = k((x − x0)/hn) downweights observations

away from x0 and hn is a tuning parameter called the bandwidth. Popular choices include

the uniform kernel k(t) = I(|t| < 1) or the triangular kernel k(t) = max{1 − |t|, 0}. The

resulting estimator is called a local polynomial estimator.

Local polynomial estimators with appropriately chosen bandwidth and kernel have been

shown to be asympototically optimal or nearly optimal for the MSE minimization problem

(7) as n → ∞ under regularity conditions on the density of Xi (Fan, 1993; Cheng et al.,

1997). Readers may recognize these results as optimality results for bandwidths, kernels and

rates of convergence from the nonparametric statistics literature. Armstrong and Kolesár

(2020) provide further references and discussions for such results. Asymptotic results of

this form may also be used to compute critical values that take into account maximum bias:

Armstrong and Kolesár (2020) show that in the commonly used case of local linear regression

(p = 2), one can achieve 95% asymptotic coverage by replacing the usual critical value 1.96

with the quantity 2.18. Furthermore, the usual practice of ignoring bias and using the critical

value 1.96 yields coverage 92.1% rather than the nominal 95% coverage.

While these results are asympototic, one can always report bias-aware CIs with bias(wn(·))
computed using the exact finite-sample formula (6). If finite sample efficiency is a concern,

one can use the exact finite-sample optimal weights proposed by Sacks and Ylvisaker (1978),

or one can use the finite sample bias and variance formulas to check the finite sample relative

efficiency of simple estimators. Recent applications of these approaches include Armstrong

and Kolesár (2018); Kolesár and Rothe (2018); Imbens and Wager (2019).

In addition to being useful for formal calculations of bias and relative efficiency, the

influence function representation (5) can also be used as a diagnostic to assess influential

observations for WLS estimators without reference to a particular expanded model. Di-

agnostics based on the influence function include the leverage (which corresponds to the
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influence function weight for observation i for estimating the fitted value ψ(Xi)
′β) which ap-

pears in textbook discussions of outlier detection for least squares estimators (e.g. Hansen,

2022, Section 3.19). In the regression discontinuity setting, Gelman and Imbens (2017) ad-

vocate plotting the influence function weights wn(Xi) to assess whether the WLS estimator

is intuitively reasonable.

Minimax linear estimators have been applied in a variety of settings beyond the approxi-

mately linear model. Donoho (1994) presents a general theory and optimality results for this

approach along with references to applications. More recent applications include Armstrong

and Kolesár (2021a), Kallus (2020) and Hirshberg et al. (2021). Minimax linear estima-

tors and related approaches have also been used in the literature on balancing weights; see

Ben-Michael et al. (2021).

Example 4 (continued). Consider the general setting where the baseline model imposes

Eg(Wi, β) = 0 for a function g() specified by the researcher. The expanded model allows

for misspecification by imposing Eg(Wi, β) = c where c is another unknown parameter,

constrained to be in some set C. Suppose we are interested in a differentiable scalar function

h(β) of the parameter β.

The generalized method of moments (GMM) estimator is given by

β̂GMM,Wn = argmin
b

(
n∑

i=1

g(Wi, b)

)′

Wn

(
n∑

i=1

g(Wi, b)

)

where Wn is a weighting matrix that converges in probability to some matrix W . In the

baseline model, the GMM estimator has the influence function representation

h(β̂GMM,Wn)− h(β) ≈ 1

n

n∑
i=1

k′Wg(Wi, β) where k
′
W = −H(Γ′WΓ)−1Γ′W (8)

and Γ =
[

d
db′
Eg(Wi, b)

]
b=β

is the derivative matrix of Eg(Wi, b) at b = β. In the baseline

model where c = 0, this leads to the usual GMM asymptotic variance formula k′WΣkW where

kW is given above and Σ = Eg(Wi, β)g(Wi, β)
′ is the covariance matrix of the moment

function g(Wi, β).

The influence function representation (8) continues to hold if we consider asymptotics

under a sequence of expanded models where C shrinks at a root-n rate (Newey, 1985).

This asymptotic setting, called local misspecification, is a useful tool for deriving asymptotic

asymptotic approximations where sampling error and specification error are of the same
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order of magnitude. In particular, it leads to the normal approximation

h(β̂GMM,Wn)− h(β)
d
≈ N(bias(c; kW ), V (kW )) where bias(c) = k′W c, V (kW ) = k′WΣkW/n.

Motivated by this asymptotic bias formula, Andrews et al. (2017) refer to kW as the sensitivity

of the estimator h(β̂GMM,Wn). They advocate reporting kW along with the GMM estimator

so that readers can assess the bias k′W c under deviations that they find plausible.

By specifying an expanded model where c is in some given set C, one can formalize the

idea that the model is “approximately correct.” Armstrong and Kolesár (2021b) show how

to choose the GMM weighting matrix and corresponding sensitivity kW in a way that is

optimal for a given set C. The calculations involve bias-variance tradeoffs similar to those

in the approximately linear model in Example 2 above. The resulting weight functions will

depend on the set C: if this set allows for a given component cj = Eg(Wi, β) to be large

relative to the bounds on other components of the moment condition, then this moment will

receive less weight.

6 Other approaches

In many settings, the approach described in Section 5 of trading off bias and variance to

obtain point estimates and CIs works reasonably well. Formal optimality results for such

estimators and CIs include Donoho (1994), Armstrong and Kolesár (2018) and Armstrong

and Kolesár (2021b) (see also the recent work of Yata (2023) for optimality results on policy

decisions based on this class of estimators). In particular, in normal or asympotically normal

settings where the expanded model is symmetric around the baseline model and a certain

form of linearity or asymptotic linearity holds, bias-aware CIs based on estimators that

optimally trade off bias and variance are not only near-minimax among all CIs, but also

near-optimal in the more optimistic setting where the baseline model is correctly specified.

In asymmetric settings, one can still choose a single estimator to trade off worst-case bias

and variance and base a CI on this estimator. However, it will often make more sense in

these settings to base inference on multiple estimators. We discuss this approach in Section

6.1. In settings where characterizing the asymptotic behavior of estimators in the expanded

model is difficult, CIs based on test inversion have been proposed. We discuss this approach

in Section 6.2.
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6.1 Combining bounds on T (θ)

The approach described in Section 5 uses bias-variance tradeoffs to arrive at a single estimator

in the expanded model. In some settings, it will be sensible to separately estimate upper

and lower bounds for T (θ). This is the case in Example 3.

Example 3 (continued). In the expanded model, we observe (Yi,Wi) where Wi is an in-

dicator variable for Y ∗
i being observed so that Yi = Wi · Y ∗

i . Since Y ∗
i is binary, we can

obtain an upper and lower bound for the parameter of interest p = E[Y ∗
i ] by replacing

the missing values with 1 and 0 respectively: Ȳ U = 1
n

∑n
i=1[Yi · Wi + (1 − Wi) · 1] and

Ȳ L = 1
n

∑n
i=1[Yi · Wi + (1 − Wi) · 0]. An upper 100 · (1 − α)% CI for p takes the form

Ȳ U + z1−α se(Ȳ
∗) where se(Ȳ ∗)2 is the standard error for ȲU . Similarly, one can form a lower

CI from Ȳ L. One can then form a two-sided CI by taking intersections of 100 · (1− α/2)%

one-sided CIs, employing a correction along the lines of Imbens and Manski (2004) to avoid

conservatism when sample error is small relative to the width of the identified set if one

wishes.

In the above example, there is only one natural estimate of an upper and lower bound

for the parameter of interest. In other cases, one may want to combine multiple estimators.

Here, we describe an approach that Chernozhukov et al. (2013) refer to as an intersection

bounds approach. Suppose that we have estimators T̂U
1 , . . . , T̂

U
m for which the asymptotic bias

is known to be positive. For example, if we have a lower bound biask(Θ) for the asymptotic

bias of each estimator, we can subtract biask(Θ) to obtain an upwardly biased estimator.

Let V̂1, . . . , V̂k be variance estimates. An upper 100 · (1− α)% CI can be obtained from any

of these estimators as (−∞, T̂j + z1−α

√
V̂k]. If one does not know a priori which of these

CIs will provide the best bound, one can take the intersection of these CIs after applying a

multiplicity correction, leading to the CI(
−∞, min

1≤j≤m

{
T̂j + cvα

√
V̂j

}]
(9)

where cvα is a multiplicity corrected critical value. For example, one can use the Bonferroni

critical value cvα = z1−α/m, or one can use a less conservative critical value that takes

into account the correlation between the estimates T̂1, . . . , T̂m. A lower CI can be obtained

analogously with downwardly biased estimators if such estimators are available, and a two-

sided CI can be obtained by intersecting the one-sided CIs.

The same approach can be applied to form a CI based on the infimum of upper CIs over
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estimators indexed by an infinite set, such as kernel estimators with different locations or

bandwidths. The theory used to derive the critical value can be more involved (see, e.g.,

Chernozhukov et al., 2014), but the idea is the same.

Example 3 (continued). In addition to the no-assumptions bounds discussed previously,

Manski (1990) considered the use of additional variablees and assumptions to obtain tighter

bounds on the distribution of Y ∗
i . Suppose we have an instrument Zi that is independent

of Y ∗
i , but which shifts the selection probability so that P (Wi = 1|Zi = z) is nonconstant.

If Zi is a discrete random variable taking on values 1, . . . ,m, then, for each j = 1, . . . ,m

we can obtain an estimate T̂j =
∑

i:Zi=j(YiWi+(1−Wi))

#{i:Zi=j} for E[Y ∗
i ] that is upwardly biased using

the sample where Zi = j. These estimates can be used along with their standard errors to

obtain an upper CI of the form (9).

This approach will not be feasible if Zi is continuously distributed or takes on a large

number of values relative to the sample size, since the estimates T̂j will be too noisy. In such

settings, one can still form an upwardly biased estimate by coarsening Zi. For concreteness,

suppose Zi takes on scalar values. Then, for any s ∈ R and t > 0, the estimator T̂s,t =∑
i:s<Zi<s+t(YiWi+(1−Wi))

#{i:s<Zi≤s+t} will be upwardly biased for E[Y ∗
i ]. Armstrong and Chan (2016) and

Chetverikov (2017) consider CIs of the form (9) based on these estimators and related kernel

estimators with the supremum taken over a set where s ranges over the whole real line and

t ≥ tn for tn → 0 at an appropriate rate. They show that such CIs are adaptive: they are

valid under essentially no assumptions on the smoothness of E[YiWi + (1 − Wi)|Zi = z],

while having nearly the same excess length as an oracle CI that uses prior knowledge of the

smoothness of E[YiWi + (1−Wi)|Zi = z].

The approach used in Armstrong and Chan (2016) and Chetverikov (2017) is related to

ideas used in the literature on adaptive inference and adaptive testing using shape restrictions

in nonparametric statistics (e.g. Dumbgen and Spokoiny, 2001). A general theory of adaptive

inference in convex parameter spaces has been developed by Cai and Low (2004). We end

this section with a discussion of adaptive inference under monotonicity in the context of our

Example 2.

Example 2 (continued). As discussed in Section 5.1, one can use the bound |r(x)| ≤M(x)

in the expanded model to form estimators that optimally trade off bias and variance, and to

construct CIs based on these estimators. In the case where ψ(Xi) = (1, Xi − x0, . . . , (Xi −
x0)

p−1) and the boundM(x) = (M/p!)|x−x0|p follows from a bound on Taylor approximation

error, this amounts to using the bound M on the pth derivative to choose the bandwidth for

a local polynomial estimator and to bound the bias of this estimator.
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The goal of adaptive inference is to avoid the need for the user to specify M and p

explicitly. Formally, one seeks a CI that (1) has coverage 1−α regardless of M and p, or for

a very conservative choice of M and p and (2) is nearly as short as a CI that uses knowledge

of M and p to choose the estimator and bound its bias. Unfortunately, results going back

to Low (1997) show that it is impossible to construct adaptive CIs in this setting: coverage

under a particular choice of M or p requires that the length of the CI reflects this a priori

choice even if it “turns out” that the regression function allows for a less conservative choice

of M or p.

To avoid these impossibility results, one must impose additional restrictions. One pos-

sibility is a shape restriction, such as a monotonicity or concavity restriction on the regres-

sion function E[Yi|Xi = x]. Consider the case where p = 1, so that the expanded model

gives a bound on the first derivative of the regression function: E[Yi|Xi = x] = β + r(x)

where r(x) = M · |x − x0| and β = E[Yi|Xi = x0]. The local polynomial estimator de-

scribed in Section 5.1 with p = 1 is the local constant or Nadaraya-Watson estimator

T̂ = argminb

∑n
i=1K((Xi − x0)/hn)(Yi − b)2 =

∑n
i=1 YiK((Xi−x0)/hn)∑n
i=1 K((Xi−x0)/hn)

. This approach requires

prior knowledge of the bound M on the first derivative of the regression function in order

to choose hn and bound the bias. As discussed above, impossibility results on adaptive in-

ference (Low, 1997; Armstrong and Kolesár, 2018) show that prior knowledge of the bound

M cannot be avoided. However, if one is willing to impose that the regression function

x 7→ E[Yi|Xi = x] is nondecreasing, one can salvage the possibility of adaptive inference.

For a nonnegative kernel function K(·), let

T̂U,h =

∑
i:Xi≥x0

YiK((Xi − x0)/hn)∑
i:Xi≥x0

K((Xi − x0)/hn)
, T̂L,h =

∑
i:Xi≤x0

YiK((Xi − x0)/hn)∑
i:Xi≤x0

K((Xi − x0)/hn)
.

Then T̂U,h and T̂L,h are respectively biased upward and downward for any h regardless of the

bound M on the first derivative (or even if no such bound holds). One can then combine

CIs based on these estimators for different bandwidths h or use data-driven choices of h

to obtain adaptive CIs. See Dumbgen (2003), Cai et al. (2013) and Armstrong (2015) for

examples of this approach.

6.2 Test inversion

In some settings, it may be difficult to find estimators T̂ and characterize their bias and

variance. One approach to inference in such settings is to base confidence sets on hypothesis

27



tests for the null Hθ0 : θ = θ0. Let Ŝ(θ0) be a test statistics and ĉv(θ0) a critical value

such that Pθ(Ŝ(θ) > ĉv(θ)) < α (or such that this inequality holds approximately in large

samples). Then the set {T (θ0) : Ŝ(θ0) > ĉv(θ0)} is a 100 · (1− α)% confidence set for T (θ).

Example 4 (continued). The moment inequalities literature has considered models where

a parameter β satisfies Eg(Wi, β) ≤ 0 for a function g() specified by the researcher. Here

g(Wi, β) is a Rp valued function and inequality is taken elementwise. This corresponds to the

misspecified GMM example where Eg(Wi, β) = c, but instead of bounding the magnitude

of c, we assume that c ≤ 0 (note, however, that we can incorporate lower and upper bounds

on a moment, say a1 ≤ Em(Wi, β) ≤ a2, by defining g(Wi, β) to include the components

(a1 −m(Wi, β),m(Wi, β)− a2)).

A common approach in this literature is to form a test statistic Ŝ(β0) that depends

on the vector of sample moments 1
n

∑n
i=1 g(Wi, β0) and is increasing in each component

of this vector. For example, one can take S(β0) = max1≤j≤p
1
n

∑n
i=1 g(Wi, β0). One then

obtains a CI for a parameter T (β) by collecting the values of β that this test fails to reject:

{T (β0) : S(β0) ≤ ĉv(β0)}. See Canay et al. (2023) for a recent review of this approach.

The CIs described in Section 5 take the form T̂ ± χ̂, where χ̂ is a constant that depends

on the standard error of T̂ and a bound on its bias. These CIs are called fixed length CIs,

since their length is fixed in an asymptotic setting where the variance of T̂ can be treated as

known. This feature makes it easy to assess the accuracy of the estimator and of inferences

drawn from this CI.

In contrast, CIs based on test inversion do not in general provide a measure of accuracy

based on their ex-post length. As an extreme example of this phenomenon, consider a CI

that is either equal to (−∞,∞) or a very small set depending on the outcome of a coin flip

that yields heads with probability α. When reporting such CIs, one should ideally include

a statistical power analysis showing that the tests used to form the CI are powerful enough

to rule out relevant parameter values.

While CIs that are based on test inversion without reference to particular estimators

can be difficult to analyze, ideas related to the bias-variance tradeoffs discussed in Section 5

often turn out to be relevant in settings involving inequalities or bounds. Armstrong (2014)

derives rates of convergence of confidence sets in set identified models based on conditional

moment inequalities (similar to the example described above, but using a vector of con-

ditional moments: E[g(Wi, β)|Xi = x] ≥ 0 all x). The derivations involve bias-variance

tradeoffs and rates of convergence that are slower than root-n and depend on smoothness
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conditions, similar to those in the nonparametric statistics literature discussed in the context

of Example 2 above.

7 Choosing the expanded model

The conclusions of an analysis based on an expanded model will depend on how this expanded

model is defined, including the relative magnitude of different sources of misspecification.

This section discusses some proposals from the literature for defining the expanded model.

7.1 Specification tests and choice of the bound

Often, the researcher will be required to take a stance on a bound M on the magnitude

of misspecification. Formally, the expanded model takes the form Θ(M) for some constant

M ≥ 0, with the baseline model obtained as the case where M = 0. This is the case in

Example 1 (M is the bound on the gross error probability), Example 2 (M is the bound on

the pth derivative used to obtain the Taylor approximation bound) and in some applications

of Example 4 (one places a bound ∥γ∥ ≤M for some norm ∥ · ∥).
Ideally, one would like to have a data-driven way of choosing M , perhaps based on spec-

ification tests or validation studies. The idea would be to choose M to be the smallest value

such that the expanded model Θ(M) “fits the data” in some way. One way of formalizing

this idea would be form a CI that is adaptive to M . Such a CI would be have nominal

coverage over Θ(∞) or over Θ(M) for some very conservative choice M , while being more

informative (i.e. substantially smaller) when M is smaller. Unfortunately, it can be shown

formally that this goal is not possible in the settings we consider here (Low, 1997; Armstrong

and Kolesár, 2018).

Even in settings where adaptive inference is not possible, it is often possible to find an

adaptive estimator : that is, a single estimator T̂ that is simultaneously near-minimax over

Θ(M) for a wide range of values ofM . In nonparametric estimation settings, Lepski’s method

(Lepskii, 1991) is an approach to choosing the bandwidths and related tuning parameters

that can be used for adaptive estimation. Adaptive estimation in low dimensional settings

such as the misspecified IV problem (Example 4) has been considered by Bickel (1984) and

Armstrong et al. (2023).

Part of the reason for these impossibility results is that it is not possible to get a data-

driven upper bound for the magnitude M of misspecification in these examples. In many
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cases, however, one can get a data-driven lower bound using specification tests. One possi-

bility is to report results for a range of values of M as a form of sensitivity analysis, along

with a lower bound obtained from specification tests.

Example 4 (continued). In the GMM model Eg(Wi, β) = 0, one can test the null that the

data generating process is described by this baseline model using a test for overidentifying

restrictions based on the minimized GMM objective function (Newey and McFadden, 1994,

Section 9.5). One can generalize this approach to test the null hypothesis that the data

generating process is described by the expanded model Eg(Wi, β) = c with parameter space

Θ(M) = {(β′, c′)′ : ∥c∥ ≤M} where ∥ · ∥ is a norm such as the ℓp norm ∥c∥ =
(∑

j |cj|p
)1/p

(Armstrong and Kolesár, 2021b, Appendix B). One can then report the lower CI [M̂,∞) for

M by taking M̂ to be the largest value of M such that the test fails to reject.

7.2 Data-driven bounds using auxiliary assumptions

One approach to obtaining a data-driven upper bound on the magnitude of misspecification

is to introduce auxiliary assumptions. A common approach is to impose assumptions that

rule out parameters θ that are only in Θ(M) when M is large, but which are difficult to

distinguish from parameters that are in Θ(M) for smallerM . The basic idea can be described

as follows: given parameter spaces Θ(M) indexed by M ≥ 0, assume that θ ∈ Θ(M) ∩Θaux

for some M where Θaux is a parameter space that introduces additional assumptions such

that the hypotheses

HM0 : θ ∈ Θ(M0) ∩Θaux vs HM1 : θ ∈ Θ(M1) ∩Θaux (10)

are easy to distinguish when M0 and M1 are far apart, in the sense that a statistical hy-

pothesis test for HM0 with uniformly high power over HM1 exists. Adding such auxiliary

assumptions restores the possibility of obtaining a useful data-driven upper bound on M .

In the nonparametric regression setting (Example 2), a sizeable literature has used self-

similarity conditions. These conditions, originally proposed by Giné and Nickl (2010), allow

for the automatic choice of M and p by imposing conditions that rule out nonsmooth func-

tions that are difficult to detect. Hoffmann and Nickl (2011) relate these conditions to

hypothesis testing problems of the form (10) (here adaptation and the corresponding hy-

pothesis testing problem are over the order p of the derivative as well as the bound M).

While self-similarity conditions allow for adaptation to M and p, they introduce additional

tuning parameters that are themselves subject to impossibility of adaptation results and
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therefore must be specified by the researcher; see Armstrong (2021). Another approach to

choosing the derivative bound M is to use a rule of thumb relating the smoothness bound

M near the point where the regression function is being estimated to a global polynomial

approximation. This approach is used by Armstrong and Kolesár (2020) to formally justify

bandwidth selection rules based on global polynomial estimates similar to those proposed in

Fan and Gijbels (1996, Chapter 4.2).

The literature on sensitivity analysis to IV exclusion restrictions (Example 4) has also

introduced assumptions of this form. A direct approach (applied, for example, by Masten

and Poirier (2021)) is to simply assume that the smallest value of M that one would fail to

reject in the population is in fact a valid upper bound.

One approach that has gained recent popularity is to impose assumptions relating omit-

ted variables bias from unobserved variables in OLS to omitted variables bias from observed

variables. This idea has been used informally to justify the practice (suggested in an influ-

ential paper by Leamer, 1983) of concluding that a result is robust if there is little change

in the OLS coefficient when additional covariates are added; however, writing down formal

conditions and procedures can be tricky: see Altonji et al. (2005) and the follow up papers

by Oster (2019), Masten and Poirier (2024) and Diegert et al. (2025).

7.3 Placebo tests

One approach to model validation is to estimate the effect of a policy change using a part

of the data where no policy change occured. Such estimates are sometimes called placebo

estimates. The idea is that, if the model specification is correct, the estimate should not be

statistically different from zero.

Without further assumptions, this approach is subject to the same issues and formal

impossibility results described above: the placebo estimates can give a lower bound on the

magnitude M of misspecification, but not an upper bound. One way of formally justify

placebo estimators is to assume that the location or part of the data set where the policy

change occurs is randomized. This allows the placebo estimates to be used in a Fisher

randomization test of the sharp null that the policy has no effect at all. Ganong and Jäger

(2018) take this approach in the regression discontinuity setting discussed in Section 3 above

(Ganong and Jäger (2018) focus on the related regression kink setting, but the approach

applies to regression discontinuity as well). They propose to form placebo cutoffs c1, . . . , cJ

away from the actual cutoff c and to use the same methods as those used to form the

original estimate T̂ to form placebo estimates T̂placebo,1, . . . , T̂placebo,J . One can then test the
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null hypothesis of no treatment effect by comparing |T̂ | to the magnitude of the placebo

estimates |T̂placebo,1|, . . . , |T̂placebo,J | and making an assumption that the cutoff point c was

randomly drawn with a given distribution. For example, if the distribution is uniform over

the placebo points, one uses the 1− α quantile of the estimates as a critical value.

The assumption that the discontinuity point is drawn randomly with a known distribution

may be strong in some applications. On the other hand, the alternative of explicitly choosing

the smoothness bound M or imposing auxiliary assumtions as discussed in Section 7.2 may

not be palatable either.

7.4 Defining misspecification using statistical distances

In Example 1, we started with the baseline N(µ, 1) model and considered the expanded

model where Yi ∼ F with dg.e.(F ;N(µ, 1)) ≤M where dg.e.(F,N(µ, 1)) is the smallest value

of M̃ such that we can write F as a mixture where one draws from a N(µ, 1) distribution

with probability M̃ and from an arbitrary distribution H with probability 1 − M̃ . More

generally, given a baseline model Pβ with parameter space β ∈ B and a function d(P ;Q)

that measures the distance between probability distributions P and Q, one can define the

expanded model with parameter space {(β, F ) : β ∈ β, d(F, Pβ) ≤M} where the data follow

the distribution Pβ,F = F . References that take this approach were given when Example 1

was introduced in Section 2.3.

While the gross error assumption dg.e.(F ;Pβ) ≤M has a clear interpretation as a bound

M on the probability of data contamination, the interpretation of expanded models based on

other notions of distance can be less clear. One popular choice is the class of distances defined

as dϕ(P ;Q) = EQϕ(
dP
dQ

) where dP
dQ

is the likelihood ratio and ϕ() is a convex function satisfying

certain regularity conditions. Recent papers including Andrews et al. (2020); Bonhomme and

Weidner (2022); Christensen and Connault (2023) have considered expanded models of this

form, partly motivated by the work of Hansen and Sargent (2001). Taking this approach

with the GMM model Eg(Wi, θ) = 0 as the baseline model (Example 4), Andrews et al.

(2020) show that this class of distances leads to an expanded model where Eg(Wi, θ) = c

and the parameter space for c is approximated by the set c′Σ−1c ≤M when the boundM on

the distance dϕ is small, where Σ is the variance matrix of the moment g(Wi, θ). Thus, the

expanded model places a bound on the misspecification of each moment proportional to the

variance of the moment. This may or may not correspond to bounds on failure of exogeneity

restrictions based on economic intuition.
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8 Discussion

In this review, we have covered papers from three seemingly distinct literatures: (1) mis-

specification and robust estimation (2) nonparametric statistics and (3) set identification.

We have noted that all three literatures ultimately use an expanded parameter space to

motivate and analyze statistical procedures such as estimators and CIs. Furthermore, in all

three literatures, efficiency comparisons of estimators and CIs often boil down to trading off

bias and variance. Nonetheless, while these literatures have drawn from each other at times,

much of their historical development has been separate. This section discusses some of the

historical connections between these literatures.

8.1 Set identification in robust estimation and nonparametrics

The econometrics literature has ultimately embraced the idea that standard statistical pro-

cedures and concepts can be usefully applied to set identified parameters without modifying

the basic definition of these concepts (as argued in the context of CIs by Imbens and Manski

(2004)). It is interesting to note that, while the results of Huber (1964) and Sacks and

Ylvisaker (1978) allow for set identified parameters, both papers express hesitance about

applying their results to set identified parameters.

In the contaminated normal model (Example 1), Huber (1964) notes in the first page of

the article that the parameter of interest T (µ, F ) = µ (the mean of the normal distribution

that is observed after data contamination) is “not uniquely determined” (i.e. not point

identified) and states that this causes “some inconvenience.” He then suggests that one

can “remove this difficulty” by assuming that the contamination distribution is symmetric

around µ (thereby making µ point identified) or by redefining the parameter of interest as

one that is point identified (i.e. considering a pseudo-parameter). Despite this hesitance to

consider statistical properties of estimators in set identified models, Huber (1964) ultimately

does so in Section 7, where he derives bounds on the bias of estimators for T (µ, F ) = µ

without imposing symmetry or other conditions to achieve point identification. Problems

involving hypothesis testing and confidence bounds for the set identified parameter µ in this

setting were also considered in later work (Huber, 1968).

Sacks and Ylvisaker (1978) introduce a condition (given by Equation (2.3) in their paper)

that is sufficient for the parameters β in the approximately linear model to be point identified.

They consider a fixed design setup (Xi’s are nonrandom), so there is no formal role for a

distribution of Xi, but the condition essentially says that β is identified if Xi is drawn from
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a distribution with support X for some set X . However, the authors later note that this

condition is in fact not needed for their results (Remark 6, p. 1128). They state that the

identification condition is used “to permit an unequivocal interpretation of the parameters

and therefore of the estimates.” They then note that one can often define X in a way such

that identification holds even if the observed Xi’s are far from such a set X . However, this

approach “may introduce fictitious treatments or locations and may be far from realistic so

that interpretation of the parameters will remain elusive.”

In later work, Knafl et al. (1982a,b) introduce confidence intervals for linear transfor-

mations of β in the approximately linear model. As with the minimax estimation results

in Sacks and Ylvisaker (1978), the results on coverage and optimality of these CIs do not

require point identification: the proposed CIs are valid for the set identified parameter in

the sense of Imbens and Manski (2004). This subsequent work does not appear to contain

any discussion of the issue of point vs set identification.

8.2 Nonparametrics and robust estimation

In the introductory paragraph of their paper, Sacks and Ylvisaker (1978) phrase their prob-

lem as one of robustness to misspecification of the regression function analogous the problems

of robustness to distributional assumptions considered by Huber (1964). However, their re-

sults ultimately contributed to the literature on nonparametric estimation.4 Other work by

these authors (e.g. Sacks and Ylvisaker, 1981) applied these ideas to other nonparametric

estimation problems such as density estimation, yielding optimality results for kernel based

nonparametric procedures.

Nonparametric methods motivated by Sacks and Ylvisaker’s ideas, such as local polyno-

mial estimators, have become popular in the applied literature on the RD setting discussed

in Section 3. Although this problem is not mentioned in their original papers, Sacks and

Ylvisaker were originally motivated by the RD problem and discussions with the originator

of the method, Donald Campbell; see Cook (2008) and Sacks and Ylvisaker (2012).

8.3 Recent developments in the econometrics literature

Problems where the parameter space involves bounds or inequalities have been of interest in

the econometrics literature on moment inequalities and set identified models discussed above.

4Given that nonparametric methods motivated by Sacks and Ylvisaker’s results have become popular in
the RD literature, it
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Such problems are often amenable to the use of ideas from the nonparametric statistics

literature involving bias-variance tradoffs. As mentioned above, efficiency comparisons of CIs

in conditional moment inequality models follow from such an approach (Armstrong, 2014).

Rambachan and Roth (2023, Corollary 3.3 and Lemma A.8) use a result on convex testing

from the nonparametric testing literature (Ingster and Suslina, 2003, Section 2.4.3) to derive

the power envelope for inference on the parameter of interest in a class of set identified

models. The same result was used by Armstrong and Kolesár (2018) to derive efficiency

bounds in settings that include the approximately linear model in Example 2. (A related

power envelope result from Romano et al. (2014, Theorem S.1) can also be derived as a special

case of this convex testing result). Ideas developed in the literature on robust estimation

problems such as Example 1 have also been fruitfully applied in the recent econometrics

literature. Kaido and Zhang (2019) uses results on robust testing from Huber and Strassen

(1973) to derive results on optimal tests in a class of incomplete models used in the literature

on structural estimation of games.

The general theory of optimal estimation and inference in convex parameter spaces de-

veloped in Ibragimov and Khas’minskii (1985), Donoho (1994), Cai and Low (2004) and

Armstrong and Kolesár (2018) applies not only to the nonparametric regression setting in

Example 2 but also to many problems of interest in the recent econometrics literature involv-

ing bounds and set identification. Related ideas in the literatures on nonparametric testing

and shape constrained inference have also proved useful in such settings (as in the papers by

Armstrong and Chan (2016), Chetverikov (2017) and Armstrong (2014) mentioned above).

Econometricians working on problems involving bounds and set identification should famil-

iarize themselves with this previous work, given that it applies directly to many problems of

this form.

9 Conclusion

In this article, we have reviewed an approach to misspecification in which the original mis-

specified model is embedded in an expanded model. The expanded model is intended to be

“correctly specified” in the sense that it is defensible as providing an adequate description

of reality. We have noted that this approach is commonly used not only in articles that

explicitly frame their contribution in terms of misspecification, but also in the literature on

nonparametric estimation and on set identified models. Indeed, other than papers that focus

exclusively on pseudo-parameters (as defined in Section 2.5), most, if not all, papers in the
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literature on misspecification consider expanded models of some form.

The expanded model approach to misspecification gives a concrete answer to the question

of how to interpret statistical procedures under misspecification. To evaluate an estimator,

CI or other procedure motivated by the original model, one simply examines its performance

in the expanded model. On the other hand, the burden is still on the researcher to formalize

the claim that the model is a useful approximation by proposing an expanded model and

using it to evaluate the performance (e.g. size and power of tests) of the procedures used in

the researcher’s empirical analysis. As we discussed in Section 7, deciding on an expanded

model and defending it can be a nontrivial task.

Let us conclude by turning back to the issues of misspecification in empirical practice

discussed at the beginning of this article. Is it indeed the case that empirical researchers

invoke models as an approximation without explaining what this means? How common is it

for empirical researchers in economics to formally account for misspecification by adjusting

their estimators and CIs based on an expanded model that accounts for misspecification in

a convincing way? While empirical economics as a whole is certainly not perfect in this

regard, some empirical papers are reasonably clear about using a clearly defined expanded

parameter space to motivate estimators and CIs. The recommendation to use local polyno-

mial estimators to account for Taylor approximation error, stemming from the analysis of

Sacks and Ylvisaker (1978) and discussed in Section 5.1 above, has been widely adopted in

the RD literature. While the formal analysis of Huber is rarely, if ever, invoked in applied

work, the general idea that the median is insensitive to outliers has motivated the use of

procedures such as quantile regression in empirical work.

My conjecture is that ad hoc procedures in empirical work that restrict attention to

certain parts of a data set can in many cases be motivated by a formal analysis of misspec-

ification using an expanded model. For example, event studies are often estimated using

only a few time periods before and after the given event rather than a long time series. One

might motivate this practice formally by writing down an expanded model (along the lines of

Manski and Pepper (2018) or Rambachan and Roth (2023)) where the two way fixed effects

model motivating the event study design holds only approximately, with approximation error

that gets worse over longer time horizons. Formalizing these ad hoc approaches may be a

useful direction for future research.

While applied researchers may be more adept at formally accounting for misspecification

than theoretical econometricians give them credit for, there is clearly room for improvement

for providing clear and convincing arguments that estimators and CIs used in empirical
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work properly account for misspecification. Even in settings where recommendations from

a formal analysis of an expanded model are used to motivate estimators in applied work, it

is less common in applied work to make a reasoned argument that a particular expanded

parameter space (including the boundM on the magnitude of misspecification that is needed

for the conclusions of the analysis to hold) is an adequate description of the situation at

hand. Formalizing some of the ideas regarding the use of specification tests and placebo

estimates to bound the magnitude of misspecification (as discussed in Sections 7.2 and 7.3)

may help with this task. How to choose the expanded parameter space and argue that a

particular expanded parameter space is adequate in a given setting are important problems

that may need to be tackled on a case by case basis. Progress on this front, perhaps through

collaboration between theoretical econometricians and applied researchers, would improve

the credibility of empirical research.
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