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• Consider a statistical model in which we observe Y with distribution f(·; θ), where θ

is an unknown parameter taking values in a parameter space Θ.

• We use the notation Eθ and Pθ to denote expectations and probabilities when Y is

distributed according to the parameter θ.

• We will discuss some decision theoretic concepts for formalizing the notion that a

particular estimator or test is “optimal” or “preferred” to another estimator. We will

then apply this to answer the question of when or in what sense ordinary least squares

(OLS) is optimal in the regression model.

Formally, we will consider the linear regression model with fixed design:

Y
n×1

= X
n×k

θ
k×1

+ ε
n×1

ε ∼ N(0, σ2 I
n×n

)

where we treat X = (x1, . . . , xn)′ as fixed (nonrandom) and σ2 as known. This can be

written as

Y ∼ N(Xθ, σ2I),

so we obtain our setup with f(y; θ) given by the multivariate normal density with

mean Xθ and variance σ2I. We can take Θ to be Rk, or we can consider restricted

parameter spaces, such as restricting the magnitude of ‖θ‖. The OLS estimator is

given by θ̂OLS = (X ′X)−1X ′Y .

– Since we treat X = (x1, . . . , xn)′ as nonrandom, our treatment can be related to
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the treatment in Hansen’s text (in which X is random) by conditioning on X

in his setup. Note also that we use Y in place of Hansen’s y and ε in place of

Hansen’s e.

• We are faced with a set A of possible actions. If we choose an action a ∈ A and the

parameter is given by θ, we incur a loss

L(θ, a),

where L(θ, a) is called the loss function. A decision rule is a mapping δ(Y ) that takes

the data Y to an action in A. The risk function of the decision rule δ is

R(θ, δ) = EθL(θ, δ(Y )) =

∫
L(θ, δ(y))f(y; θ) dy.

• Examples of decisions and loss functions:

– In the problem of estimation, the action space A is identical to the parameter

space Θ, and the decision function δ(Y ) is called an estimator, often written

θ̂ = θ̂(Y ). A common choice is squared error loss, given by (in the case where θ

is scalar)

L(θ, θ̂) = (θ̂ − θ)2

which leads to mean squared error (MSE) as the risk function:

R(θ, θ̂) = Eθ

[
(θ̂ − θ)2

]
Of course, other loss functions are possible, for example, absolute error loss

L(θ, θ̂) = |θ̂ − θ|.

∗ Often, θ is multivariate, and we are interested in a scalar function T (θ) (e.g. in

the linear regression model, we are often interested in a particular coefficient,

say θ1, viewing the rest of the variables as controls). Then, we can phrase the

estimation problem as coming up with an estimator T̂ for T (θ), and we can

define squared error loss as L(θ, T̂ ) = (T̂ − T (θ))2 (and similarly for absolute

error, etc.).

– In the problem of hypothesis testing, we are interested in determining whether
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θ ∈ H0 or θ ∈ H1, where H0 and H1 are called the null hypothesis and alternative

hypothesis. The action space is {0, 1}, with 1 denoting rejection of the null and 0

denoting failure to reject. The decision function δ(Y ) is called a test, and is often

denoted φ(Y ). We can define the loss function as

φ(Y ) = 0 φ(Y ) = 1

θ ∈ H0 0 LI

θ ∈ H1 LII 0

where LI and LII are relative weights given to type I and II errors respectively.

• The risk function R(θ, δ) defines a partial ordering on decision functions δ. If R(θ, δ) ≤
R(θ, δ̃) for all θ, then δ is preferred to δ̃. If δ is preferred to δ̃ and the inequality is

strict for some θ, then δ is strictly preferred to δ. We say that δ is admissible if no

other decision function δ̃ is strictly preferred to δ.

• Since this is only a partial ordering, we will typically not be able to come up with a

“uniformly optimal” decision. In other words, we will typically have decisions δ and δ̃

with R(θ, δ) > R(θ, δ̃) for some values of θ and R(θ, δ) < R(θ, δ̃) for other values of θ.

Two ways of addressing this...

• The minimax risk of a decision δ over the parameter space Θ is given by

Rminimax(Θ, δ) = sup
θ∈Θ

R(θ, δ).

A decision that optimizes minimax risk is said to be minimax.

• The Bayes risk of a decision δ for a prior π(θ) on θ is given by

RBayes(π, δ) =

∫
R(θ, δ)π(θ) dθ.

A decision that optimizes Bayes risk for a prior π(θ) is said to be a Bayes decision for

prior π(θ).

– We can interpret Bayes risk as coming from a setup where θ is drawn randomly

from π(θ), and Y is then drawn from f(y; θ). The prior can be interpreted as

representing the researcher’s beliefs.
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• We can view statistical decision theory as modeling the empirical researcher as a ratio-

nal individual making a choice under uncertainty, using the framework typically taught

in a first year graduate microeconomic theory course (see, e.g., Ch. 6 of Mas-Colell

et al., 1995).

– The loss L(θ, δ) plays the role of the (negative of the) Bernoulli utility function.

– The Bayes risk RBayes(π, δ) plays the role of the (negative of the) expected utility

from the decision δ when uncertainty in θ is characterized by π(θ).

– In contrast to the direct interpretation of Bayes risk as (the negative of) expected

utility, the minimax criterion is perhaps more influential in statistics than in

microeconomic theory. However, it has interpretations that are closely related to

concepts encountered in microeconomic theory:

∗ The minimax decision (choosing δ to minimize Rminimax(Θ, δ)) arises from a

zero-sum game against nature in which the empirical researcher chooses δ and

nature chooses θ. The researcher’s payoff is −R(θ, δ(Y )), and nature’s payoff

is R(θ, δ(Y )).

∗ Minimax can be used to formalize the idea of ambiguity aversion (see Gilboa

and Schmeidler, 1989).

∗ The minimax decision can be motivated as a way for a group of individu-

als with different priors to agree on a single decision. A decision with low

minimax risk will have low Bayes risk regardless of the prior.

– Much of statistical decision theory was developed in parallel with related topics

in microeconomic theory, with some of the same people working on both topics.

See early books on these topics such as Blackwell and Girshick (1954) and Savage

(1972).

• Consider the hypothesis testing setup. The size of the test φ is given by the worst-case

risk over the null when LI (the weight on type I error) is given by 1:

size(φ) = sup
θ∈H0

R(θ, φ) = sup
θ∈H0

Eθφ(Y ).

The classical approach is to take a given α (often α = .05) and to restrict attention

to tests with size bounded by α. This can be considered a partial minimax approach,

since type I error is handled with a minimax (worst-case) criterion.
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With this approach, tests satisfying this criterion are compared according to type II

error, with type I error not playing any further role so long as the size is controlled.

For θ ∈ H1, we refer to the rejection probability Eθφ(Y ) (one minus the risk with

LII = 1) as the power of the test at θ. As with the general problem of optimizing risk,

the problem of “maximizing power subject to size control” does not, in general, have

a unique solution, and we can resolve this choice using Bayes or minimax. In certain

cases, the same test φ maximizes power subject to the size constraint simultaneously

at each θ ∈ H1. Such a test is called uniformly most powerful (UMP). When a UMP

test exists, we don’t have to worry about how to trade off power over different parts

of H1: the UMP test is optimal regardless.

• Often, additional considerations such as unbiasedness are imposed when comparing

estimators. Unbiasedness is difficult to motivate from a decision theoretic perspective

as being of interest per se, although it becomes useful if estimates are averaged over

multiple studies as a form of meta-analysis.

• The concepts of admissibility, Bayes risk and minimax risk are related by two important

theorems (we summarize them here without giving formal conditions):

– Under regularity conditions, a decision is admissable if and only if there exists a

prior π such that it is Bayes.

– Under regularity conditions, there exists a prior π such that the minimax decision

is the Bayes decision for π. This prior is called least favorable.

• Suppose that a decision δ has constant risk function: R(θ, δ) does not depend on θ.

Then, if δ is admissible, it is also minimax (admissability means that any other decision

δ′ has R(θ, δ′) > R(θ, δ) for some θ; since the right hand side is constant over θ, the

sup of the left hand side over θ must be greater than the sup of the right hand side over

θ). However, the converse is not true (a minimax decision with constant risk function

need not be admissible).

Optimality of OLS for Linear Regression

• The Gauss-Markov Theorem states that θ̂OLS = (X ′X)−1X ′Y minimizes variance

among unbiased estimators that are linear in Y (i.e. estimators of the form A(X)
k×n

Y
n×1

such that EθA(X)Y = θ for all θ). A common (and very reasonable) critique of this
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theorem is that it is difficult to motivate restricting attention to linear unbiased es-

timators: if there is a biased and/or nonlinear estimator that performs better for all

θ, we would probably want to use it! This section discusses some optimality results

for OLS that are not subject to this critique, as well as criteria under which OLS is

suboptimal.

• Let Tθ be a linear functional of θ, where T
k×1

is a row vector (e.g. if T = (1, 0, . . . , 0),

then Tθ = θ1, the first coefficient). In the fixed design homoskedastic normal model

with known error variance, the OLS estimator θ̂OLS = (X ′X)−1X ′Y has two important

optimality properties for estimation and inference on Tθ:

– T θ̂OLS is an admissable minimax estimator for Tθ (under general conditions on

the loss function).

– Consider the null hypothesis H0 : Tθ ≤ T0, where T0 ∈ R is given. The uniformly

most powerful (UMP) test of H0 is a z-test based on T θ̂OLS: it rejects when

T θ̂OLS > T0 + z1−α · se(T θ̂OLS) where z1−α is the 1 − α quantile of the N(0, 1)

distribution and se(T θ̂OLS) = σ
√
T (X ′X)−1T ′.

• On the other hand, OLS is suboptimal according to other criteria:

– OLS is suboptimal for the Bayes criterion RBayes(π, θ̂) unless we take π to be an

improper prior (an improper prior refers to the case where π integrates to ∞; to

accomodate this case, we have to define Bayes risk as a limit of Bayes risk for

proper priors).

– If we consider a restricted parameter space Θ̃ ( Rk, then OLS is suboptimal for

Rminimax(Θ̃, θ̂) (minimax risk over Θ̃) for typical choices of Θ̃.

– Suppose that, rather than looking at risk of a single functional Tθ, we look at

overall risk for θ with loss function L(θ, θ̂) = ‖θ̂ − θ‖2 =
∑k

j=1(θ̂j − θj)2. Then

θ̂OLS is inadmissable when k ≥ 3.

0.1 Optimality for One-sided Testing

• To prove the testing optimality result, let φ be a test of H0 : Tθ ≤ T0 with size α and

let Kφ(θ) = Eθφ(Y ) denote its power function.
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• Step 1: let θ0 ∈ H0 and θ1 ∈ H1. Let φNP,θ0,θ1 denote the test that maximizes power at

θ1 subject to the constraint that the rejection probability at θ0 is bounded by α (but

without requiring size control over all of H0). Argue that Kφ(θ1) ≤ KφNP,θ0,θ1
(θ1).

• Step 2: By the Neyman-Pearson lemma (covered in Econometrics I), φNP,θ0,θ1 is the

likelihood ratio test for θ0 vs θ1. Derive φNP,θ0,θ1 and compute its power KφNP,θ0,θ1
(θ1)

at θ1.

• Step 3: Minimize KφNP,θ0,θ1
(θ1) over θ0 ∈ H0. By Step 1, this gives an upper bound on

Kφ(θ1).

• Step 4: Let φOLS be the test described above based on T θ̂OLS. Derive KφOLS(θ1) and

show that it is identical to the bound derived in Step 3.

• Step 5: Since θ1 was arbitrary, the result follows: for all θ1 ∈ H1 and any level α test

φ, KφOLS(θ1) ≥ Kφ(θ1).

• Suppose that we are interested in the first component θ1 (here, we change notation by

using θ1 to refer to the first component, rather than the whole parameter vector of an

alternative parameter value). We wish to perform inference on θ1 while controlling size

regardless of θ2, . . . , θk. However, we are only allowing for arbitrary values of θ2, . . . , θk

as a precaution: we only care about having good power when θ2, . . . , θk are zero.

This might lead us to attempt to form a test where we only use the first regressor and

throw away the rest of the regressors (i.e. forming a test based on the short regression),

perhaps with some additional pre-testing procedure in which we add other regressors

if their parameters are statistically significant in the long regression. The above result

tells us that such a procedure cannot improve on a procedure where we always use

the long regression while controlling size, even if it “turns out” that all of the other

coefficients are indeed equal to zero.

0.2 Admissibility and Minimaxity of OLS for Linear Functionals

• In this section, we sketch a proof of admissibility and minimaxity of T θ̂OLS as an

estimator of Tθ for squared error loss L(θ, T̂ ) = (T̂ − Tθ)2 (the result also holds for

loss functions of the form L(θ, T̂ ) = `(T̂ − Tθ) where ` satisfies certain conditions).

First, note that R(θ, T θ̂OLS) is constant in θ (since the distribution of T θ̂OLS − Tθ
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does not depend on θ). Thus, it suffices to show admissibility (as noted in a comment

above, any admissible estimator with constant risk is also minimax).

• By unbiasedness of OLS, R(θ, T θ̂OLS) = varθ(T θ̂OLS) = σ2T (X ′X)−1T ′. Suppose that,

for some alternative estimator T̂ and some θ∗, we have R(θ∗, T̂ ) < σ2T (X ′X)−1T ′. We

will show that there exists θ such that R(θ, T̂ ) > σ2T (X ′X)−1T ′, thereby showing

admissibility of T θ̂OLS.

• Step 1: Consider the one-dimensional submodel Θ̃a = {θ∗ + ta|t ∈ R}, where a is a

vector in Rk with Ta 6= 0. For θ = θ∗ + ta in this submodel, we have

Y −Xθ∗ ∼ N(tXa, σ2I)

so that the problem of estimating θ can be reduced to estimating t in this model. Let B

be a (n−1)×n matrix such that (Xa,B′) is invertible and BXa = 0 (i.e. all of the rows

of B are orthogonal to Xa). Let Ỹ = (Xa)′(Y −Xθ∗)/(aX ′Xa) and Z = B(Y −Xθ∗).
Then (Ỹ , Z) is a one-to-one transformation of Y with Ỹ ∼ N(t, σ2/a′X ′Xa), Z ∼
N(tBXa, σ2BB′) = N(0, σ2BB′) and Z independent of Ỹ .

• Step 2: For the estimator T̂ = T̂ (Y ) with lower risk than T θ̂OLS at θ∗, we have, for

θ∗ + ta in the submodel,

R(θ, T̂ ) = Eθ(T̂ − Tθ)2 = Eθ∗+ta(T̂ − T (θ∗ + ta))2 = Eθ∗+ta(T̂ − Tθ∗ − tTa))2

= (Ta)2Eθ∗+ta((T̂ − Tθ∗)/Ta− t)2 = (Ta)2R̃(t, t̂a) (1)

where R̃(t, t̃a) is the risk of the estimator t̂ = (T̂ − Tθ∗)/Ta for t. Since t̂ can be

written as a function of Ỹ , Z where Z is independent noise that does not depend on

t, R̃(t, t̂) corresponds to the risk function for a (possibly randomized) estimator of t

based on Ỹ ∼ N(t, σ2/(a′X ′Xa)). By Example 2.8 (starting on p. 324) in Lehmann

and Casella (1998), Ỹ is admissable for t in this setting, so R̃(t, t̂) cannot be less than

or equal to σ2/(a′X ′Xa) for all t with strict inequality for some t. In particular, if

R̃(0, t̂) < σ2/(a′X ′Xa), then there must be some t such that R̃(t, t̂) > σ2/(a′X ′Xa).

Combining this with (1), it follows that,

if R(θ∗, T̂ ) < σ2(Ta)2/(a′X ′Xa), then sup
θ
R(θ, T̂ ) > σ2(Ta)2/(a′X ′Xa). (2)
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• Step 3: To obtain the sharpest bound in (2), we maximize (Ta)2/(a′X ′Xa) over

a. The solution sets a proportional to (X ′X)−1T ′ (this can be seen by noting that

the maximization problem is equivalent to maximizing Ta subject to a bound on

a′X ′Xa and taking first order conditions for the Lagrangian for this problem), which

gives (Ta)2/(a′X ′Xa) = (T (X ′X)−1T ′)2/(T (X ′X)−1X ′X(X ′X)−1T ′) = T (X ′X)−1T ′.

Plugging this into (2), it follows that, if R(θ∗, T̂ ) < σ2T (X ′X)−1T ′, then there exists

θ with R(θ, T̂ ) > σ2T (X ′X)−1T ′. This is exactly what we needed to show.

0.3 Suboptimality for Bayes with Proper Prior and Minimax with

Restricted Parameter Space

• Let Θ̃ be a convex subset of Rn. A theory of minimax affine estimators (estimators of

the form c(X) + a(X)Y ) has been developed for this case which derives the minimax

affine estimator as the solution to a convex optimization problem and shows that the

minimax affine estimator is near minimax among all estimators (see Donoho, 1994).

As an example, the minimax affine estimator when Θ̃ = {θ|‖θ‖ ≤ C} (we restrict the

magnitude of θ by bounding its Euclidean norm) turns out to be a ridge regression

estimator, which takes the form (X ′X +λI)−1X ′Y where λ is a constant that depends

on C (see Sections 4.1.2 and D.2 of Armstrong and Kolesár, 2016).

• Under a Bayes criterion, the optimal estimator under squared error loss is the posterior

mean (the mean of the conditional distribution of θ given the observed value of Y ,

calculated with θ ∼ π(θ) and Y |θ ∼ f(Y ; θ)). As an example, if π(θ) is the N(0, σA−1)

distribution, then the optimal estimate under squared error loss is (X ′X + A)−1X ′Y .

When A is a multiple of the identity matrix, this again gives the ridge regression

estimator. See Rossi et al. (2012, Section 2.8.1).

• The ridge regression estimator is an example of a shrinkage estimator. For other priors

π or parameter spaces Θ̃, other optimal estimators can be derived, and these can often

be interpreted as using different forms of “shrinkage” or “regularization.” These ideas

come up often in the fields of high dimensional and nonparametric statistics.
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0.4 Inadmissability for Estimation of the Entire Vector θ when

k ≥ 3

• Consider the case where X = I, so that we are simply interested in estimating a

vector of normal means based on a single observation of each variable (equivalently,

we can view these observations as sample means of each variable): Yj ∼ N(βj, σ
2) for

j = 1, . . . , k. The inadmissability of the estimator (Y1, . . . , Yk) for (β1, . . . , βk) when

k ≥ 3 is a classic result due to Stein (1956). See the first chapter of Efron (2012) for

an intuitive discussion of this phenomenon and proof.

• This phenomenon is related to the ideas of adaptive estimation (in the example above

of minimax with constrainted parameter space Θ̃ = {θ|‖θ‖ ≤ C}, this corresponds,

roughly speaking, to estimating C) and empirical Bayes (an example of this is letting

Σ = τI in the example above and estimating τ).
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