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1 Introduction

• This section of the course will cover two recent literatures in econometrics: weak in-

struments/weak identification and moment inequalities.

• We’ll give some intuition for theoretical motivation, but will focus on practical aspects,

particularly computation.

• In “standard” setting (GMM under the usual regularity conditions), estimation and

inference are handled using the same machinery:

– Form an estimate asymptotically normal θ̂ of a parameter θ.

– Report θ̂ as a point estimate and form confidence regions for θ based on this

asymptotic distribution (e.g. θ̂j ± z1−α/2 · sej as a confidence interval for θj).

– Easy to define relative efficiency using the same criterion for estimation, CI con-

struction and testing: smaller asymptotic variance is always better.

• This breaks down in the weak IV and moment inequality settings.

– Can’t form CI as estimate plus-or-minus a constant times standard error (for one

thing, estimates aren’t asymptotically normal).

– Rather, these literatures have focused on inverting tests for

Hθ : true parameter value is θ

leading to confidence regions of the form C = {θ : T (θ) ≤ c(θ)} where T (θ) is a

test statistic and c(θ) is a critical value.
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∗ The confidence region C typically does not simplify further. This contrasts

with “standard setting” in which the CI θ̂j ± z1−α/2sej inverts the two-sided

z-test (based on T (θ) = |θ̂j − θj|/sej and c(θ) = z1−α/2).

∗ We will focus (more than in a typical econometrics course) on issues that

arise in computing and reporting these confidence sets.

– The weak IV and moment inequality literatures have focused less on point esti-

mation than on inference (although there are some exceptions). Point estimation

in these settings is an important topic as well (people usually report point esti-

mates!), but we won’t spend much time on it in this course.

2 Weak Identification

• Consider the GMM model based on g(θ) = Eg(wi, θ) where θ is an unknown parameter

in Rdθ , g(wi, θ) is a known function taking values in Rdg and we observe {wi}ni=1.

• The true parameter value θ0 satisfies g(θ0) = 0.

• Let

ĝ(θ) =
1

n

n∑
i=1

g(wi, θ)

denote the sample mean. In the “standard” setting, we would use the GMM estimator

θ̂ = arg minθ ĝ(θ)′Wnĝ(θ) where Wn is a sequence of weighting matrices.

– Under “standard” regularity conditions,

√
n(θ̂ − θ0)

d→ N(0, (G(θ0)′WG(θ0))−1G(θ0)′WΣ(θ0)WG(θ0)(G(θ0)′WG(θ0))−1)

where

G(θ) =
d

dθ′
g(θ), Σ(θ) = var(g(wi, θ))

– To form a CI, we then estimate G(θ) and Σ(θ) using

Ĝ(θ) =
d

dθ′
ĝ(θ), Σ̂(θ) =

1

n

n∑
i=1

g(wi, θ)g(wi, θ)
′ − ĝ(θ)ĝ(θ)′
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(this form of Σ̂(θ) is for the iid case; if there is dependence, then an estimate

taking this into account will be needed) and form the CI for θj as θ̂j ± z1−α/2sej

where sej is 1/
√
n times the square root of the j, jth element of

(Ĝ(θ̂)′WnĜ(θ̂))−1Ĝ(θ̂)′WnΣ̂(θ̂)WnĜ(θ̂)(Ĝ(θ̂)′WnĜ(θ̂))−1.

• A key regularity condition needed for this is “strong identification:” we need the

equations g(θ) = 0 to be solved uniquely at θ0, and we need G(θ0) to be full rank.

• If G(θ0) is not full rank, then the CI may not have correct coverage.

– Note that it is not clear a priori whether there will be overcoverage or undercover-

age: the estimate will be inaccuate, but the standard errors will also be large with

high probability, since Ĝ(θ̂) will be close to rank deficient with high probability.

– However, it turns out that severe undercoverage is possible. One way of seeing

this is to note that, in the case where g(θ) = 0 for arbitrarily large values of θj (i.e.

the data cannot rule out arbitrarily large values of θj), the CI should be infinite

with high probability. However, typically Ĝ(θ̂) will be full rank with probability

one (even when G(θ) is not full rank) due to sampling error, so sej will be finite

with probability one.

• The literature on weak identification or weak instruments focuses on cases where G(θ0)

is not full rank (including lack of identification), or is “close to” not being full rank.

The latter case is modeled using sequences of data generating processes (dgps) that

change with the sample size, and we will not pursue it formally here. Note, however,

that a test is called level α when the rejection probability is less than α for all null

distributions. Thus, for the level of a test to be less than α+ε for large n, we need it to

be asymptotically level α+ ε for any sequence of null dgps. For this reason, sequences

of dgps that change with the sample size are relevant for controlling the level of a test

according to the “usual” definition of significance level.

• We will discuss some tests that from this literature, which are designed to be robust

to weak identification. First, we will give some examples of models where weak iden-

tification or lack of identification can be an issue.
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2.1 Examples

• Linear IV The linear IV model is GMM with g(xi, yi, zi, θ) = (yi − x′iθ)zi where yi

is scalar valued and zi takes values in Rdg . In this case, G(θ) = −Ezix′i, so the

identification assumption required for “standard” asymptotics is that Ezix
′
i must be

full rank. This amounts to an assumption that the instruments zi have to be correlated

with the endogenous variables xi (in the case where there are multiple variables in xi

that are not in zi, this also requires that the correlation with each instrument be

different in the right way to make this matrix nonsingular).

• Nonlinear IV Nonlinear IV is GMM with g(xi, yi, zi, θ) = ρ(xi, yi, θ)zi for some known

function ρ. In this case, G(θ) = Ezi
d
dθ′
ρ(xi, yi, θ), so the identification assumption is

similar to the linear case, but with d
dθ′
ρ(xi, yi, θ) in place of xi, so that zi needs to be

correlated with this nonlinear function of xi, yi rather than with xi.

2.2 Anderson-Rubin Test

• The issues with the “standard” approach arise because the normal approximation for

θ̂ is bad when G(θ0) is close to singular.

• To get around this, we can form a test based on ĝ(θ), which is asymptotically normal

even when G(θ) = 0. In particular, we have

√
n(ĝ(θ)− g(θ))

d→ N(0,Σ(θ)), Σ̂(θ)
p→ Σ(θ)

so long as a central limit theorem (CLT) and law of large numbers (LLN) hold. In the

iid case, it is sufficient that g(wi, θ) have a finite second moment. No conditions on

G(θ) are needed.

• Note that, if the true parameter value is equal to θ, then g(θ) = 0. Thus, we can base

tests about θ on estimates of g(θ).

• The Anderson-Rubin (AR) test of the null that the true parameter value is equal to θ

is based on the statistic

S(θ) = nĝ(θ)′Σ̂(θ)−1ĝ(θ).
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• Under the null, g(θ) = 0, so

S(θ) = [
√
n(ĝ(θ)− g(θ))]′Σ̂(θ)−1[

√
n(ĝ(θ)− g(θ))]

p→ χ2
dg ,

where χ2
dg

denotes the chi-square distribution with dg degrees of freedom (recall that a

quadratic form in a normal vector with the matrix given by the inverse of its variance

is distributed χ2 with the dimension of the vector as the degrees of freedom).

• Let qχ2,dg ,1−α denote the 1 − α quantile of the χ2
dg

distribution. The AR test rejects

when S(θ) > qχ2,dg ,1−α. The resulting confidence region is given by

C = {θ : S(θ) ≤ qχ2,dg ,1−α}.

• The Anderson-Rubin test for GMM was proposed by Stock and Wright (2000), and

is an extension of the test proposed by Anderson and Rubin (1949) for the IV model

with normal and homoskedastic errors.

• The confidence set C is a dθ dimensional confidence set for the parameter θ. If dθ > 3,

then it is not clear how to report it. In practice, one can report projections of the set

C onto each component. The projection onto the jth component is

{θj : θ ∈ C}.

We will discuss computing this later on. Note that C is not necessarily connected,

and the projection is not necessarily an interval (although we can report the smallest

interval containing it if we want to report an interval).

2.3 Kleibergen’s K Statistic

• An issue with the AR statistic is that it is inefficient under the “usual” (“strong identi-

fication”) asymptotics when dg > dθ (i.e. when the model is potentially overidentified).

– Intuition: under strong identification, GMM with optimal weighting uses an es-

timate of G(θ0) to choose the optimal combination of instruments. In contrast,

AR statistic does not use this information.

• To fix this, one can base inference on the joint asymptotic distribution of ĝ(θ) and
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Ĝ(θ):

√
n

(
ĝ(θ)− g(θ)

vec(Ĝ(θ))− vec(G(θ))

)
=
√
n

(
1
n

∑n
i=1[g(wi, θ)− Eg(wi, θ)]

1
n

∑n
i=1

[
vec
(
d
dθ′
g(wi, θ)

)
− Evec

(
d
dθ′
g(wi, θ)

)] )

d→ N

0,


Σ(θ)︸︷︷︸
dg×dg

VgG(θ)︸ ︷︷ ︸
dg×(dg ·dθ)

VGg(θ)︸ ︷︷ ︸
(dg ·dθ)×dg

VGG(θ)︸ ︷︷ ︸
(dg ·dθ)×(dg ·dθ)




where vec(A) stacks the columns of a matrix A into a vector. In the iid case, this holds

by the CLT so long as g(wi, θ) and its derivatives have bounded second moments, and

the asymptotic variance is(
Σ(θ) VgG(θ)

VGg(θ) VGG(θ)

)
= var

(
g(wi, θ)

vec
(
d
dθ′
g(wi, θ)

) )

which can be estimated using(
Σ̂(θ) V̂gG(θ)

V̂Gg(θ) V̂GG(θ)

)

=
1

n

n∑
i=1

(
g(wi, θ)

vec
(
d
dθ′
g(wi, θ)

) )( g(wi, θ)

vec
(
d
dθ′
g(wi, θ)

) )′ −( ĝ(θ)

vec(Ĝ(θ))

)(
ĝ(θ)

vec(Ĝ(θ))

)′

• Recall the score/Lagrange multiplier statistic of the null that the true value is equal

to θ. It is based on

d

dθ

1

2
ĝ(θ)′Wĝ(θ) = Ĝ(θ)′Wĝ(θ)

and is given by a quadratic form of this quantity, using an estimate of its variance:

LM(θ) = n
[
Ĝ(θ)′Wĝ(θ)

]′ [
Ĝ(θ)′W Σ̂(θ)WĜ(θ)

]−1 [
Ĝ(θ)′Wĝ(θ)

]
.

• Note that

√
nĜ(θ)Wĝ(θ)

d→ G(θ)WZg and Ĝ(θ)′W Σ̂(θ)WĜ(θ)
p→ G(θ)′WΣ(θ)WG(θ)
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where Zg ∼ N(0,Σ(θ)) follows the asymptotic distribution of ĝ(θ). If G(θ) is full

rank, then the latter matrix will be invertible, so that the LM statistic will have an

asymptotic χ2
dθ

distribution.

• If G(θ) is not full rank, then Ĝ(θ)′W Σ̂(θ)WĜ(θ) will not converge to an invertible

matrix. This will lead to sampling error in Ĝ(θ) playing a role in the asymptotic

distribution.

• The K statistic, proposed by Kleibergen (2005), gets around this by using an estimate

of G(θ) that is asymptotically independent of ĝ(θ).

• Recall that, if x and y are joint normal, then ỹ = y − cov(y, x)var(x)−1x and x are

normal and independent (since cov(ỹ, x) = cov(y, x) − cov(cov(y, x)var(x)−1x, x) =

cov(y, x) − cov(y, x)var(x)−1cov(x, x) = 0). We can apply this (asymptotically) to

Ĝ(θ) and ĝ(θ): let D̂(θ) be the dg × dθ matrix such that

vec(D̂(θ)) = vec(Ĝ(θ))− V̂Gg(θ)Σ̂−1(θ)ĝ(θ).

• The K statistic is formed by replacing Ĝ(θ) with D̂(θ) in the LM statistic:

K(θ) = n
[
D̂(θ)′Wĝ(θ)

]′ [
D̂(θ)′W Σ̂(θ)WD̂(θ)

]−1 [
D̂(θ)′Wĝ(θ)

]
= n

[
D̂(θ)′Σ̂−1(θ)ĝ(θ)

]′ [
D̂(θ)′Σ̂−1(θ)D̂(θ)

]−1 [
D̂(θ)′Σ̂−1(θ)ĝ(θ)

]
where we use W = Σ̂−1(θ) as the weighting matrix.

• It can be shown that, even when G(θ) is not full rank,

K(θ)
d→ χ2

dθ

when the null hypothesis g(θ) = 0 holds. This leads to the confidence set

C = {θ : K(θ) ≤ qχ2,dθ,1−α}.

• To understand this asymptotic distribution result, consider the case where G(θ) is a

matrix of zeros. Then, under the null hypothesis,
√
nĝ(θ)

d→ Zg and
√
nD̂(θ)

d→ ZD
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jointly where Zg and ZD are independent with Zg ∼ N(0,Σ(θ)). Thus,

K(θ) =
[√

nD̂(θ)′Σ̂−1(θ)
√
nĝ(θ)

]′ [√
nD̂(θ)′Σ̂−1(θ)

√
nD̂(θ)

]−1 [√
nD̂(θ)′Σ̂−1(θ)

√
nĝ(θ)

]
d→
[
Z ′DΣ−1(θ)Zg

]′ [
Z ′DΣ−1(θ)ZD

]−1 [
Z ′DΣ−1(θ)Zg

]
.

By independence of ZD and Zg, the conditional distribution of Z ′DΣ−1(θ)Zg given ZD

is N(0, Z ′DΣ−1(θ)Σ(θ)Σ−1(θ)ZD) = N(0, Z ′DΣ−1(θ)ZD). Thus, the asymptotic dis-

tribution in the above display is χ2
dθ

conditional on ZD, which means that it is χ2
dθ

unconditionally.

2.4 Tests Based on Both K(θ) and S(θ)

• The K statistic can be shown to be equal to a quadratic form in the derivative of the

continuous updating estimator (CUE) objective function ĝ(θ)Σ̂−1(θ)ĝ(θ). This reveals

an issue with the power of the K statistic: we will fail to reject at any local minimum

of the CUE objective.

• Another way of seeing this is to note that the K statistic is a quadratic form in

D̂(θ)′Σ̂−1ĝ(θ), so it will fail to reject when D̂(θ) is close to not being full rank even

when ĝ(θ) is far from zero. So we want to have some way of rejecting when D̂(θ) is

close to not being full rank.

• To ameliorate this, one can form a test statistic based on both K(θ) (the K statistic)

and S(θ) (the AR statistic). The idea is to put more weight on S(θ) when D̂(θ) is

close to reduced rank.

• Note that

K(θ) = nĝ(θ)′Σ̂−1(θ)D̂(θ)
[
D̂(θ)′Σ̂−1(θ)D̂(θ)

]−1

D̂(θ)′Σ̂−1(θ)ĝ(θ)

= nĝ(θ)′Σ̂−1/2(θ)PΣ̂−1/2D̂(θ)Σ̂
−1/2(θ)′ĝ(θ)

where PX = X(X ′X)−1X denotes the projection matrix for X. Thus,

J(θ) ≡ S(θ)−K(θ) = nĝ(θ)′Σ̂−1/2(θ)[I − PΣ̂−1/2D̂(θ)]Σ̂
−1/2(θ)′ĝ(θ)

(we follow the literature in using the notation J(θ) for this statistic; note, however,

that this “J statistic” is different from the test of overidentifying restrictions given
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by the minimum of the GMM objective function, which is also referred to as a “J

statistic”).

• Thus, K(θ) and J(θ) are quadratic forms of the asymptoticallyN(0, Idg) vector Σ̂−1/2(θ)ĝ(θ)

onto orthogonal subspaces with dimension dθ and dg−dθ. Using this and the fact that

the matrix D̂(θ) defining the subspaces is asymptotically independent of ĝ(θ), it can

be shown that (even when G(θ) is singular)

(K(θ), J(θ), vec(
√
n(D̂(θ)−D(θ))′)

d→ (χ2
dθ
, χ2

dg−dθ , vec(ZD)) where χ2
dθ
, χ2

dg−dθ and ZD are independent.

• Using this asymptotic distribution, one can form tests that are a function of both

K(θ), J(θ) and D̂(θ) (or, equivalently, of K(θ), S(θ) and D̂(θ)). For some function

b(J,K,D), we reject when b(K(θ), J(θ), D̂(θ)) is greater than cα(D̂(θ)), where cα(D)

is the 1 − α quantile of b(χ2
dθ
, χ2

dg−dθ , D) (where χ2
dθ

and χ2
dg−dθ are the independent

chi-square variables from the asymptotic distribution result above).

• Recall that we want to put more weight on J(θ) when D̂(θ) is close to not being full

rank. Let r(D,ΣD) be a scalar valued statistic that is small when D is close to reduced

rank. The GMM-M (also called a quasi-conditional likelihood ratio or quasi-CLR) test

statistic is given by

1

2

[
K(θ) + J(θ)− r(D̂(θ), Σ̂D(θ))

+

√[
K(θ) + J(θ) + r(D̂(θ), Σ̂D(θ))

]2

− 4J(θ)r(D̂(θ), Σ̂D(θ))

]

where Σ̂D(θ) is an estimate of the variance of D̂(θ).

• The GMM-M/quasi-CLR statistic was proposed by Kleibergen (2005) for nonlinear

GMM. It is an extension of the conditional likelihood ratio (CLR) test of Moreira

(2003). Other tests of this form have been proposed by Andrews (2016).
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2.5 Inference when Some Parameters are Strongly Identified

• Suppose that g(wi, θ) takes the form

g(wi, zi, θ) = (ρ(wi, β)− z′1iγ)zi where zi = (z′1i, z
′
2i),

so that z1i are included instruments (that enter linearly) and z2i are excluded instru-

ments. This holds in the linear IV model

yi = z′1iγ + x′2iβ + εi, E(εi|zi) = 0

with ρ(x2i, yi, β) = yi − x′2iβ.

• We can obtain a moment condition that does not depend on γ by projecting out z1i.

Let

γ(β) = (Ez1iz
′
1i)
−1Ez1iρ(wi, β) and B = (Ez1iz

′
1i)
−1Ez1iz

′
2i

denote the population projections of ρ(wi, β) and z2i on z1i. Then β satisfies the

moment conditions

E(ρ(wi, β)− z′1iγ(β))(z2i −B′z1i) = 0

(note that the true value of γ is given by γ0 = γ(β0) where β0 is the true value of β).

• To get a feasible version of this moment condition, we simply replace γ(β) with its

sample analogue γ̂(β) = (
∑n

i=1 z1iz
′
1i)
−1
∑n

i=1 z1iρ(wi, β) and we replace B with its

sample analogue B̂ = (
∑n

i=1 z1iz
′
1i)
−1
∑n

i=1 z1iz
′
2i:

g̃(β) =
1

n

n∑
i=1

(ρ(wi, β)− z′1iγ̂(β))(z2i − B̂′z1i) =
1

n

n∑
i=1

ρ̃(wi, β)z̃i

where ρ̃(wi, β) = ρ(wi, β)−z′1iγ̂(β) and z̃i = z2i−B̂′z1i are residuals from the projections

of ρ(wi, β) and z2i on z1i.

• With this form of the moment conditions, one can check that, under the true β, es-

timation error in γ̂(β) and B̂ does not affect the asymptotic variance, and the same

holds for the derivative estimate d
dθ′
g̃(β). So, we can just take ρ̃(wi, β)z̃i to be our
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moment function and proceed as usual.

– In the linear regression model where ρ(x2i, yi, β) = yi−x′2iβ, this just corresponds

to projecting out z1i from yi, x2i and z2i.

• This works in the linear regression model with a single endogenous variable, if we are

interested in the coefficient of the endogenous variable. However, in most other cases,

we do not get such a nice dichotomy between the parameter of interest and nuisance

parameters that can be “projected out.” In such cases, we face a problem of subvector

inference (i.e. inference on the subvector of θ that we are interested in).

2.6 Subvector Inference

• Suppose that we are interested in some function h(θ), where h : Rdθ → Rdh is a function

specified by the researcher. For example, if we are interested in the jth component of

θ, we can specify h(θ) = θj.

• We can construct a CI for h(θ) from a confidence region C for θ: {h(θ) : θ ∈ C}.
However, this will be conservative if we base C on the statistics above, since they are

designed for inference on the whole vector, and therefore “waste power” by rejecting

values of θ that are not relevant for inference on h(θ). (Draw figure.)

• Chaudhuri and Zivot (2011) proposed a test that does not suffer from such inefficiencies.

Here, we will present a version of this test that incorporates some extensions from

Andrews (2017).

• To get some intuition for this test, note that, under strong identification, the efficient

GMM estimator satisfies

√
n(h(θ̂)− h(θ)) =

√
nH(θ)(G(θ)′Σ(θ)−1G(θ))−1G(θ)′Σ(θ)−1ĝ(θ) + oP (1)

where H(θ) = d
dθ′
h(θ) is the dh × dθ derivative matrix of h(θ).

• In other words, the efficient linear combination of moments for inference on h(θ) is

given by

H(θ)(G(θ)′Σ(θ)−1G(θ))−1G(θ)′Σ(θ)−1ĝ(θ).
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Following the ideas behind the construction of the K statistic, we can use a sample

analogue of these moments that uses D̂(θ) to estimate G(θ). Let

Mh(θ)
′ = H(θ)(D̂(θ)′Σ̂(θ)−1D̂(θ))−1D̂(θ)′Σ(θ)−1.

A version of the K statistic that is efficient for projection inference for h(θ) is then

given by a quadratic form in Mh(θ)
′ĝ(θ):

Kh(θ) = nĝ(θ)Mh(θ)(Mh(θ)
′Σ̂(θ)Mh(θ))

−1Mh(θ)
′ĝ(θ).

• Similar to the issues with the K statistic in Section 2.4, we will want to combine this

test with a test based on S(θ) to ameliorate issues with power at certain types of

alternatives. Chaudhuri and Zivot (2011) proposed the test

reject θ if Kh(θ) > cK or S(θ) > cS

for some critical values cS.

• It can be shown that

Kh(θ)
d→ χ2

dh
, S(θ)

d→ χ2
dg

where the asymptotic χ2 random variables are independent. Thus, one can take

cK = qχ2,dh,1−α+γ cS = qχ2,dg ,1−γ

where γ is some small number less than α - say, γ = .01 when α = .05.

– This is actually conservative since it doesn’t take into account the dependence

structure of Kh(θ) and S(θ). Indeed, it can be shown (Andrews, 2017) that

(Kh(θ), S(θ)−Kh(θ))
d→ (χ2

dh
, χ2

dg−dh).

One can use this to decrease cK and/or cS.

• Under the usual (strong identification) asymptotics, the Chaudhuri-Zivot CI is asymp-

totically equivalent to the efficient CI {h(θ̂)± z1−α/2seh} if γ is taken to zero with the

sample size.
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2.7 Testing Lack of Identification

• A common approach in applied work is to first test the null of lack of identification,

and then proceed using the usual asymptotic approximations so long as the test rejects.

• In the linear IV model with a single endogenous variable, the model is identified iff. at

least one excluded instrument has a nonzero coefficient in the OLS regression of the

endogenous variables on all exogenous variables (including the ones that are included

in the structural equation). See, e.g., Sections 10.4 and 10.12 in Hansen (2017). Thus,

a valid test of the null of lack of identification in this case can be formed by testing the

null that all of these coefficients are zero. This can be done using an F -test, which, in

this case, is called the first stage F test.

• In the linear IV model with multiple endogenous variables, identification holds iff. the

matrix of reduced form coefficients is full rank (see Section 10.4 in Hansen, 2017). Tests

for lack of identification in this setting were proposed by Cragg and Donald (1993).

• In the general GMM setup, Wright (2003) proposed a test for local identification.

• Staiger and Stock (1997) and Stock and Yogo (2002) consider tests for “weak identi-

fication” in the homoskedastic linear model. They model “weak identification” using

sequences of dgps that change with the sample size, and they provide two possible

definitions of “weak identification:”

– Estimation: the model is “weakly identified” if the (asymptotic) bias of 2SLS is

greater than 10% of the bias of OLS.

– Inference: the model is “weakly identified” if the coverage of a nominal 95% CI

is less than 90%.

• A popular rule of thumb is to find “weak identification” if the first stage F statistic

is below 10. This corresponds to the estimation interpretation of weak IV: Stock and

Yogo (2002) show that it corresponds to a test that the asymptotic bias of 2SLS is

greater than 10% of the bias of OLS (at level .05, in the homoskedastic case; the

critical value actually depends on the number of instruments and is slightly above 10

in most cases, but it is below 11.6 in all cases that they report).

– If one is worried about bias in estimation with a single endogenous regressor and

the sign of the first stage coefficients are known, one can use the estimator of
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Andrews and Armstrong (2017), which is asymptotically unbiased under both

weak and strong IV (using knowledge of the sign of the coefficients of the first

stage).

– For the inference interpretation, the critical value for the first stage F test depends

to a greater extent on the number of instruments, and is typically larger (e.g. with

four excluded instruments, one rejects when F > 24.6).

– With multiple endogenous variables, Stock and Yogo (2002) report critical values

for the Cragg and Donald (1993) test.

• In contrast to these tests, the confidence sets we have considered in these notes do

not attempt to distinguish between cases where the model is identified or not: if the

model is not identified, they will be large with high probability, thereby reflecting the

inherent uncertainty in such models.

• If one uses that Stock and Yogo (2002) critical values based on the inference interpre-

tation, one can interpret the procedure as forming a two stage CI :

– Step 1: test the null of weak identification at level 5%.

– Step 2: if the test rejects, report the usual CI. If not, report the entire real line

as the CI.

This CI has at least 90% coverage.

• This interpretation relies on the researcher reporting the entire real line in step 2 if

the test in step 1 fails to reject. Another possibility is that, if the test in step 1

fails to reject, the paper will not be published. In this case, the coverage probability

conditional on the paper being published can be arbitrarily small. Another possibility

is that the researcher reports a weak instrument robust CI when the test in step 1 fails

to reject, which leads to coverage at least 85%. See Chioda and Jansson (2005) and

Andrews (2017) for more on these issues.

• Another concern is that the Stock and Yogo (2002) critical values only work for the

homoskedastic linear model. For the estimation interpretation of weak IV, Montiel Olea

and Pflueger (2013) consider the heteroskedastic linear model. However, a version

of the Stock and Yogo (2002) approach for the inference interpretation of weak IV

that works under heteroskedasticity does not appear to be available in the literature.
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Extensions of Stock and Yogo (2002) to nonlinear models appear to be an open question

as well.

3 Computing Projection CIs

• We have constructed confidence regions for the parameter θ. These take the form of a

set C ⊆ Rdθ .

• In practice, we often want to construct a confidence region Ch for a one dimensional

parameter h(θ) where h : Rdθ → R is a known function.

• As we discussed above, the projection confidence region

Ch = {h(θ) : θ ∈ C}

is a valid confidence region for h(θ) so long as C is a valid confidence region for θ

since, letting θ0 be the true parameter value, the event θ0 ∈ C implies h(θ0) ∈ Ch, so

P (h(θ0) ∈ Ch) ≥ P (θ0 ∈ C).

• To characerize this set, first note that the smallest interval containing this set is given

by

[h, h] where h = sup{h(θ) : θ ∈ C}, h = inf{h(θ) : θ ∈ C}. (1)

Computing h and h amounts to solving constrained optimization problems. We will

discuss this further below.

• Once h and h are computed, one can take a grid of values [h∗1, . . . , h
∗
s] where h∗1 = h

and h∗s = h and check whether h∗j ∈ Ch for each j. This can also be done by solving

the feasibility problem

inf
θ

0 s.t. h(θ) = h∗j , θ ∈ C (2)

where we take the solution to be ∞ if no value of θ satisfies the constraints. We then

include h∗j if the constraints are feasible (i.e. the value of the above problem is 0) and

we do not include h∗j if the constraints are not feasible (i.e. the value of the above

problem is ∞).
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• This gives a grid approximation to the confidence set Ch. Alternatively, one can simply

report [h, h] as a confidence set for Ch (this will be simpler to report if Ch is discon-

nected).

• In the examples we have seen, the confidence set C takes the form

C = {θ : T (θ) ≤ c(θ)}

for some test statistic T (θ) and critical value c(θ). Computing h in (1) then amounts

to solving

h = suph(θ) s.t. T (θ) ≤ c(θ)

and similarly for h. For the feasibility problem (2), we can solve this, for example, by

solving

inf T (θ)− c(θ) s.t. h(θ) = h∗j

and checking whether the value of this problem is less than or equal to zero.

• If T (θ) and c(θ) are smooth and can be computed quickly (or, more generally, if

the constraint T (θ) ≤ c(θ) can be expressed using a moderate number of smooth

constraints), then we can solve these constrained optimization problems using a solver

such as Knitro. If analytic formulas can be provided for the first and second derivatives

of T (θ) and c(θ) (or, at least, a function to compute these derivatives that can be

computed quickly), then this will further speed up optimization.

• We now discuss this optimization problem in the context of the confidence regions

introduced so far. Note that, since we are constructing projection CIs for h(θ), the

Chaudhuri-Zivot statistic discussed in Section 2.6 would be best suited to this purpose.

For the Chaudhuri-Zivot test, h can be computed as

sup
θ
h(θ) s.t. Kh(θ) ≤ cK , S(θ) ≤ cS

where cK = qχ2,dh,1−α+γ and cS = qχ2,dg ,1−γ. However, for the purpose of completeness,

we also discuss the other weak IV robust confidence regions we have considered so far.

• The Anderson-Rubin, Kleibergen, and Chaudhuri-Zivot test statistics are all smooth
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functions of ĝ(θ), Ĝ(θ), Σ̂(θ) and V̂Gg(θ). The GMM-M statistic is also a smooth

function of these quantities, so long as r(·) is smooth. Note that ĝ(θ) and Σ̂(θ) are

smooth functions of g(wi, θ), and Ĝ(θ) and Σ̂(θ) are smooth functions of g(wi, θ) and

its first derivative. Thus, all of these statistics will be smooth as a function of θ so long

as g(wi, θ) is smooth in θ.

– Ideally, one would provide the optimization routine with a function to compute

the first and second derivatives of each of these test statistics. Analytic formulas

for these derivatives can be obtained as functions of the first four derivatives of

g(wi, θ) by routine (but perhaps tedious) applications of matrix calculus.

• The critical values for all of these test statistics except for the GMM-M statistic are con-

stant, so they can be computed once and then given to the optimization routine. How-

ever, the critical value for the GMM-M statistic depends on θ through r(D̂(θ), Σ̂D(θ)):

it is given by c̃(r(D̂(θ), Σ̂D(θ))) where c̃(r) is the 1− α quantile of

1

2

[
χ2
dθ

+

√[
χ2
dθ

+ χ2
dg−dθ + r

]2

− 4χ2
dg−dθr

]

where χ2
dθ

and χ2
dg−dθ are the independent chi-square variables.

– One can compute approximations to c̃(r) and its derivatives through simulation.

This can be done at low computational cost, since it only needs to be done once,

and since r is one-dimensional.

– In Section 2.4, we also discussed more general statistics of the form b(K, J,D),

with critical values given by the 1−α quantile of b(χ2
dθ
, χ2

dg−dθ , D̂(θ)). The GMM-

M statistic takes this form, but depends on D̂(θ) only through the scalar valued

function r(·). This allows for a routine where critical values are computed be-

forehand for each value of r, and D̂(θ) is simply plugged in to obtain the critical

value for a given θ. However, if b(K, J,D) depends on D through all dθ · dg ele-

ments without any such simplification, this will not be feasible (since computing

something on a grid over dθ · dg dimensional space is not feasible for dθ and dg

above, say, 3). For example, Andrews (2016) proposes tests of this form where

the function b(K, J,D) itself needs to be simulated for each value of D. In such

cases, c(θ) will have to be computed by simulation for each value of θ, which will

be computationally costly, and will lead to the critical value being nonsmooth as
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a function of θ; this will also lead to difficulties in incorporating the test statistic

and critical value into a constrained optimization routine.

– In general, critical values that require simulation for each value of θ lead to dif-

ficulties in the constrained optimization problems (1) and (2). We will return to

these issues after introducing confidence regions for moment inequalities.

• What do the sets C and Ch look like? Under what conditions are they connected, etc.?

In the general nonlinear case, it is difficult to provide a general characterization. In

the case where g(wi, θ) is linear, Dufour and Taamouti (2005) and Mikusheva (2010)

provide results for some of the tests we have considered here.

3.1 MPEC Approach

• In some cases the functions ĝ(θ) and Σ̂(θ) take the form g̃(ξ(θ)) and Σ̃(ξ(θ)) where

ξ(θ) is the solution to s(ξ, θ) = S for some known function s and some known S.

• Then we can state the optimization problem in the form of a mathematical program

with equilibrium constraints (MPEC):

h = sup
θ
h(θ) s.t. T̃ (ξ) ≤ c̃(ξ), s(ξ, θ) = S

where T̃ and c̃ are the statistic and critical value written as a function of ξ.

• For each of the optimization problems discussed above (and below for moment inequal-

ities), this simply amounts to replacing ĝ(θ) and Σ̂(θ) with g̃(ξ) and Σ̃(ξ) and adding

the constraint s(ξ, θ) = S.

• This approach was applied to GMM estimation by Dubé et al. (2012) and Su and Judd

(2012). I am not aware of any papers applying this approach to the settings considered

in these notes (weak IV robust confidence sets and moment inequalities).

4 Moment Inequalities

• In moment inequality models, the true parameter value θ0 satisfies

g(θ0) ≥ 0 (3)
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where g(θ) = Eg(wi, θ) is a known function of data wi and the parameter θ. As

with the GMM setting, g is a function from Rdθ to Rdg . Here, we interpret inequality

elementwise: s ≤ t for vectors s, t ∈ R` iff. si ≤ ti all i.

• Let Θ0 denote the values of θ0 such that (3) holds:

Θ0 = {θ0 : g(θ0) ≥ 0}.

If Θ0 contains more than one value, then the model is said to be set identified.

– For the GMM (moment equality) setting, we can also define the identified set Θ0

as the set of values of theta such that g(θ0) = 0. In the GMM setting, we were

worried about forming tests that are robust to lack of point identification, but we

also considered how the tests behaved under “standard conditions” where θ was

point identified.

• Often, moment inequality models are formed from conditional moment inequality mod-

els, in which the true parameter value θ0 satisfies

E(m(wi, θ0)|zi = z) ≥ 0 for all z (4)

where zi is a Rdz valued random variable and m(wi, θ) is a known function that takes

values in Rm. Let f1(z), . . . fp(z) be a set of instrument functions with fk(z) ≥ 0 for

all z for each k. Then (4) implies

E(m`(wi, θ0)fk(zi)) ≥ 0 for k = 1, . . . p, ` = 1, . . . , dm (5)

which takes the form (3) with g(wi, zi, θ) given by the (p ·dm)× 1 vector with elements

given by m`(wi, θ0)fk(zi) for k = 1, . . . p, ` = 1, . . . , dm.

– Note that, when zi is continuously distributed, the identified set for (5) will,

in general, be larger than the identified set for (3). That is, using instrument

functions can lead to a loss of information. To ameliorate this, one typically takes

the number of instrument functions p to increase as n → ∞ (or one can take an

infinite set of instrument functions).
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– For example, one can use the instrument functions

fk(z) = K((z − zk)/hk)

for some set of locations z1, . . . , zp ∈ Rdz and bandwidths h1, . . . , hp ∈ R+ where

K(·) is a nonnegative kernel. One can view this as an approximation to an infinite

set of functions where (z′k, hk)
′ varies over the entire set Rdz×R+, in which case the

identified set for (5) will not be larger than the identified set for (3). Alternatively

one can take these points to “fill in” the support of Rdz × R+ as n→∞.

– On the other hand, when zi takes on finitely many values {z̃1, . . . , z̃p}, one can

simply take fk(z) = I(z = z̃k), and the identified set for (5) will be the same as

the identified set for (3).

4.1 Example

• Interval regression The variables zi and y∗i follow the linear regression model

E(y∗i |zi) = z′iθ

We observe {(z′i, yLi , yHi )}ni=1 where y∗i ∈ [yLi , y
H
i ], but we do not observe y∗i . This leads

to the inequalities

E(yLi |zi = z) ≤ z′θ ≤ E(yHi |zi = z) all z

which takes the form (5) with

m(zi, y
L
i , y

H
i , θ) =

(
yHi − z′iθ
z′iθ − yLi

)
.

4.2 Confidence Regions for Moment Inequality Models

• As with the weak instrument setting, the moment inequalities literature has, for the

most part, focused on confidence regions of the form C = {θ : T (θ) ≤ c(θ)} for some

test statistic T (θ) and critical value c(θ).

• In practice, this means that one will need to compute the projection confidence region

Ch = {h(θ) : T (θ) ≤ c(θ)} as discussed in Section 3.
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• We will introduce some tests from the literature, with a focus on those tests that lead to

computationally tractable optimization problems (1) and (2) for computing Ch. We use

the same notation for sample moments and the sample variance matrix as for GMM:

ĝ(θ) =
1

n

n∑
i=1

g(wi, θ)

and

Σ̂(θ) =
1

n

n∑
i=1

g(wi, θ)g(wi, θ)
′ − ĝ(θ)ĝ(θ)′.

The idea behind all of these tests is to use a statistic T (θ) = S(
√
nĝ(θ), Σ̂(θ)) that is

large when one or more of the elements of ĝ(θ) is negative.

4.3 Max Statistic

• Consider the statistic

Tmax(θ) = max
j:1≤j≤dg

−
√
nĝj(θ)√

Σ̂jj(θ)
.

where Σ̂jj(θ) denotes the jjth element of Σ̂(θ).

• The max statistic is approximately distributed as maxj:1≤j≤dg Zj−gj(θ)/
√

Σjj(θ) where

Z1, . . . , Zdg are mean zero normal variables with variance one and covariance deter-

mined by Σ(θ). Since gj(θ) ≥ 0 under the null, a conservative approximation to

this distribution is to assume that gj(θ) = 0 all j, thereby using the distribution of

maxj:1≤j≤dg Zj to compute the critical value. This is sometimes called a least favorable

null distribution for this test statistic.

• Unfortunately, the distribution of maxj:1≤j≤dg Zj depends on θ through Σ(θ), which

determines the covariance of the Zjs. A conservative approximation can be obtained

using Bonferroni’s inequality :

P

(
max

j:1≤j≤dg
Zj > t

)
= P (∪dgj=1{Zj > t}) ≤

dg∑
j=1

P (Zj > t) = dg[1− Φ(t)]
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where Φ(t) is the standard normal cdf. Setting this equal to α and solving for t gives

the Bonferroni critical value

cBonf,α = z1−α/dg

where zt = Φ−1(t) is the tth quantile of the N(0, 1) distribution.

• The Bonferroni critical value is conservative, but it turns out that it is not that con-

servative when the correlation between most of the Zj’s is small.

• The Bonferroni critical value has been considered by Chernozhukov et al. (2014) in the

context of moment inequalities (along with other critical values) and Fan et al. (2007)

in the case where dg increases with the sample size. This approach has a long history

in the multiple testing literature; see Lehmann and Romano (2005), Chapter 9.

4.3.1 Multiscale Statistic for Conditional Moment Inequalities

• If the moment inequalities have more structure, one can derive an asymptotically non-

conservative critical value in certain cases. We now discuss an approach for the con-

ditional moment inequality model (5) based on Armstrong and Chan (2016). The

following discussion incorporates some suggestions for tuning parameters and imple-

mentation details.

• First, to make sure that the procedure is not affected by the scale of the elements of

zi, we can transform each element of zi by its empirical cdf. That is, for j = 1, . . . dz,

let F̂j(t) = 1
n

∑n
i=1 I(zi,j ≤ t), and redefine zi,j to be F̂j(zi,j). This gives n observations

(z′i, w
′
i) where zi is supported on [0, 1]dz .

• Let {(s′k, t′k)}
p
k=1 be elements in the set

{(s′, t′)′ : s, s+ t ∈ [0, 1]dz , t ∈ [tn, 1]dX}. (6)

where tn is a sequence of scalars, chosen by the researcher, which goes to zero slightly

more slowly than n−1/dz .

• The multiscale statistic is the max statistic for the moment inequalities using the
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functions fk(z) = I(sk ≤ z ≤ sk + tk) as instruments

Tmultiscale(θ) = max
k,`:1≤k≤p,1≤`≤dm

−
√
ng̃k`(θ)

σ̃k`(θ)

where

g̃k`(θ) =
1

n

n∑
i=1

m`(wi, θ)I(sk ≤ zi ≤ sk + tk)

σ̃k`(θ)
2 =

1

n

n∑
i=1

[m`(wi, θ)I(sk ≤ zi ≤ sk + tk)− g̃k`(θ)]2.

• Based on the asymptotic distribution in the least favorable case (where Em`(wi, θ)I(sk ≤
zi ≤ sk + tk) = 0 all `, k), Armstrong and Chan (2016) propose the critical value

cmultiscale,α =
log dm − log(− log(1− α)) + 2 log t−dzn + (2dz − 1/2) log log t−dzn − log(2

√
π)√

2 log t−dzn

for a 1− α confidence region.

• Additional implementation details:

– After transforming by the empirical cdf, the zis are distributed on [0, 1]dz with

approximate uniform marginal distributions. If the joint pdf were uniform, then

we would have approximately n · tdz elements in the smallest “box” with t = tdz .

A reasonable choice that satisfies the requirements of Armstrong and Chan (2016)

is

tn =

[
(log n)5

n
· 100

(log 1000)5

]1/dz

.

This sets the smallest box to contain approximately 100 observations when n =

1000.

– The results in Armstrong and Chan (2016) actually allow the maximum over

(s′k, t
′
k) to be replaced with a supremum over the entire set given in (6), so here

we are limited only by computational resources. One possibility is to choose

{(s′k, t′k)}
p
k=1 to be the discrete approximation to this set in which each element
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of s and t is an integer multiple of (log n)−1tn:

{(s′, t′)′ : s, s+ t ∈ [0, 1]dz , t ∈ [tn, 1]dX} ∩ [(log n)−1tnZ]2dz .

4.3.2 Computing Ch

• The upper endpoint of Ch can be found by solving the optimization problem

h = sup
θ
h(θ) s.t. ĝj(θ) ≥ −cBonf,α ·

√
Σ̂jj(θ)/

√
n j = 1, . . . , dg

for the max statistic with Bonferroni critical values or

h = sup
θ
h(θ) s.t. g̃k`(θ) ≥ −cmultiscale,α · σ̂k`(θ)/

√
n k = 1, . . . , p, ` = 1, . . . , dm

for the multiscale statistic (this is the same optimization problem with m`(wi, θ)I(sk ≤
zk ≤ sk + tk) subtituted for gj(wi, θ) and the indices k, ` used instead of j).

– If g(wi, θ) is smooth in θ (which, in the case of the multiscale statistic, amounts

to m(wi, θ) being smooth in θ), then the constraints will be smooth in θ, so this

amounts to optimizing a smooth function subject to dg (which is equal to dm · p
in the case of the multiscale statistic) smooth constraints.

4.3.3 Other Max Statistics

• Test statistics of a similar form to the multiscale statistic treated here are considered by

Chetverikov (2017) and Dumbgen and Spokoiny (2001). The multiscale statistic uses

kernel functions with multiple bandwidths as instruments (hence the name “multi-

scale”). A max statistic based on a single bandwidth was considered by Chernozhukov

et al. (2013); in one version of their test, they use an analytic critical value, which leads

to h being computable as a solution to an optimization problem that takes a similar

form to the one described above for the multiscale statistic.

4.4 Rosen’s Approach to Moment Inequalities

• Rosen (2008) considered confidence regions for the moment inequality problem (3)
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based on the quasi-likelihood ratio statistic

TQLR(θ) = nmin
t≥0

[ĝ(θ)− t]′Σ̂(θ)−1[ĝ(θ)− t].

• The conservative version of this confidence region uses the critical value c∗dg , which

solves

P (χ2
dg > c∗dg)/2 + P (χ2

dg−1 > c∗dg)/2 = α.

• The upper endpoint of the confidence region Ch = {h(θ) : TQLR(θ) ≤ c∗dg} can then be

computed as

h = sup
θ
h(θ) s.t. nmin

t≥0
[ĝ(θ)− t]′Σ̂(θ)−1[ĝ(θ)− t] ≤ c∗dg .

• Note that θ satisfies these constraints iff. there exists a t ≥ 0 such that n[ĝ(θ) −
t]′Σ̂(θ)−1[ĝ(θ)− t] ≤ c∗dg . Thus, we can phrase this as a single optimization problem in

θ, t:

h = sup
θ,t

h(θ) s.t. n[ĝ(θ)− t]′Σ̂(θ)−1[ĝ(θ)− t] ≤ c∗dg , t ≥ 0.

• Similar comments apply to the computation of h, and to checking whether h∗j ∈ Ch.

• The quasi-likelihood ratio test is based on the likelihood ratio test for moment inequal-

ities in the finite sample normal model with known covariance. See Rosen (2008) for

references.

4.5 Relative Efficiency in Moment Inequality Models

• The theory of relative efficiency is different for moment inequalities than for settings

such as GMM. For conditional moment inequalities, Armstrong (2014c) derives the rate

at which the confidence region shrinks toward Θ0 for tests proposed in the literature.

It follows from these results and results in Armstrong (2014a) that the multiscale

test described in Section 4.3.1 leads to a confidence set with a strictly better rate of

convergence than other tests proposed in the literature.
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– Unlike GMM and other “regular” settings, the rate of convergence is slower than

n1/2, and depends on the “smoothness” of certain conditional means. This leads

to relative efficiency results that are more closely related to those in the literature

on nonparametric estimation and inference, such as results on optimal kernels and

bandwidths (see, e.g., Ichimura and Todd, 2007; Tsybakov, 2009). Indeed, the

theory of relative efficiency here is closely related to the literature on nonpara-

metric testing (see Ingster and Suslina, 2003).

• See Armstrong (2014b), Chernozhukov et al. (2014), Chetverikov (2017) and references

therein for more on optimality properties of the max statistic (including in the general

unconditional case where the moments do not have the multiscale structure).

• Based on these results, and on computational feasibility, I would recommend, as a

default approach ...

– ... using the max statistic with Bonferroni critical value for (unconditional) mo-

ment inequality models of the form (3)

– ... using the multiscale statistic and critical value in Section 4.3.1 for conditional

moment inequality models of the form (4)

4.6 Moment Selection and Simulated Critical Values

• The confidence regions C given above are conservative due to (1) the critical values

being based on a “least favorable” distribution, where gj(θ) = 0 all j and (2) not

taking into account the dependence structure in the covariance matrix Σ(θ).

• A solution to (1) is to use moment selection. The idea here is to use pre-tests to

find indices j for which gj(θ) is “too far inside of the null set” to affect the sampling

distribution. Such procedures have been considered by Hansen (2005) and others.

– As an example of moment selection applied to the quasi-likelihood ratio test,

Rosen (2008) proposes a version of his test that uses b̂(θ) in place of dg to compute

the degrees of freedom, where b̂(θ) =
∑dg

j=1 I(ĝj(θ) ≤ c
√

(log n)/n) for some

constant c.

– For the max test with Bonferroni critical values, a moment selection procedure of

this form would amount to replacing the critical value z1−α/dg with z1−α/b(θ).
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– Since b̂(θ) is discontinuous as a function of θ, this will lead to a discontinuous

critical value as a function of θ in both cases. However, it may be possible to

obtain a smoothed critical value using a smoothed version of this procedure (for

example, by replacing the indicator function in the definition of b̂(θ) with a smooth

function).

– For the max statistic, the critical value z1−α/dg behaves like
√

2 log dg when dg is

large. Since this increases slowly with dg, using moment selection to replace dg

with some b(θ) < dg will not to large improvements in the critical value unless

b(θ) is much smaller than dg.

• Regarding (2) (being conservative about the dependence structure of Σ(θ)), consider

the max statistic for concreteness. A nonconservative critical value would be the 1−α
quantile of maxj:1≤j≤dg Zj where Z = (Z1, . . . , Zdg)

′ follows a normal distribution with

variance [diag(Σ(θ))]−1/2Σ(θ)[diag(Σ(θ))]−1/2. In particular, let

J(t,Σ) =

∫ t

z1=−∞
· · ·
∫ t

zdg=−∞
φ(z; [diag(Σ)]−1/2Σ[diag(Σ)]−1/2) dz1 · · · dzdg

where φ(z; Ω) denotes the pdf of a N(0,Ω) random variable and diag(Σ) is the matrix

with the same diagonal elements as Σ and zeros for all nondiagonal elements. A

nonconservative critical value is given by J−1(1−α, Σ̂(θ)) where J−1 denotes the inverse

in the first argument.

– The high dimensional integral involved in computing J(t,Σ) makes the critical

value difficult so compute. One can, however, approximate it using simulation

or resampling: let T ∗1 (θ), . . . , T ∗B(θ) denote draws of the max statistic based on

simulated or resampled data, and let c(θ) denote the 1− α empirical quantile of

these simulated test statistics. The confidence region is then given by C = {θ :

T (θ) ≤ c(θ)}. Unfortunately, c(θ) will not be smooth even if T ∗1 (θ), . . . , T ∗B(θ) are

smooth, so one does not immediately obtain a smooth optimzation problem for

computing h.

– In general, simulated critical values can be nonsmooth in θ, which can cause

problems for computing confidence sets. We saw this issue in the context of weak

IV when we discussed computation of confidence sets based on statistics of the

form b(K, J,D) that generalize the GMM-M statistic.
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– While the simulated critical value described above is not smooth as a function of

θ, the critical value that it tries to approximate, J−1(1 − α, Σ̂(θ)), is a smooth

function of θ. If one were to use an approximation to J−1(1−α,Σ) that is smooth

in Σ, then this could be used to obtain a smooth optimization problem.

• As discussed above, the Bonferroni critical values for the max statistic are actually not

that conservative unless Σ(θ) is highly dependent, and moment selection will typically

not lead to large changes in the critical value for this statistic. Because of this, and since

moment selection and simulated critical values can lead to computational difficulties,

I would recommend simply using the Bonferroni critical value (or, for the multiscale

statistic, the critical value cmultiscale,α described in Section 4.3.1) as described in Section

4.3, without moment selection.

4.7 Confidence Regions for the Identified Set

• The confidence regions we have considered so far have the property

P (θ0 ∈ C) ≥ 1− α all θ0 ∈ Θ0 (7)

(or, at least, they satisfy this property asymptotically, in the sense that it holds for

some sequence αn → α). This property is sometimes called coverage of points in the

identified set.

• One may instead ask for the stronger property

P (Θ0 ⊆ C) ≥ 1− α (8)

(or an asymptotic version of this property, in which the above display holds for some

sequence αn → α). This property was considered by Chernozhukov et al. (2007) and

Romano and Shaikh (2010), and is sometimes called coverage of the identified set.

• The literature seems to have converged on the criterion (7). A rationale for this is

that it is the same requirement used in other settings: if there is some “true” θ0 that

generated the data, we want a CI that contains it with probability at least 1 − α,

whether or not the confidence region contains other points in the identified set. See

Imbens and Manski (2004) for further discussion.
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• Nevertheless, let us briefly discuss some methods for attaining the criterion (8) for

covering the identified set. As before, we will focus on computing the confidence set

Ch = {h(θ) : θ ∈ C} for h(θ) based on a confidence set C for θ.

• Romano and Shaikh (2010) noted that, whereas inverting a family of level α tests of

H0,θ0 : θ0 ∈ Θ0 gives a CI that satisfies (7), one can obtain a CI that satisfies (8) by

inverting a family of tests that controls the familywise error rate (FWER). If the test

rejects when T (θ) > c, this means that

P (there exists θ0 ∈ Θ0 with T (θ) > c) ≤ α. (9)

The confidence region C = {θ : T (θ) ≤ c} then satisfies (8).

• To satisfy this criterion, we need c to approximate the 1− α quantile of supθ∈Θ0
T (θ).

Romano and Shaikh (2010) use a step-down procedure, adapted from the multiple

testing literature.

• Let us describe a version of this procedure based on subsampling, proposed in Romano

and Shaikh (2010). Let T (θ) = S(
√
nĝ(θ), Σ̂(θ)) denote a test statistic such as the

max statistic or quasi-likelihood ratio statistic. To compute the critical value, we draw

B = Bn random subsets I1, . . . , IB of the indices {1, . . . , n} (without replacement),

with each of the subsets having b = bn elements, where bn →∞ and bn/n→ 0. Let

ĝ∗j (θ) =
1

b

∑
i∈Ij

g(wi, θ)

denote the sample moments computed with the jth subsample, and similarly for Σ∗j(θ).

Let

T ∗j (θ) = S(
√
bĝ∗j (θ), Σ̂

∗
j(θ))

denote the test statistic computed with the jth subsample (note that we scale by b,

the subsample size, rather than n, the sample size).

The step-down procedure is as follows. Let Θ be the parameter space for θ (we can

take it to be some large set known to contain θ0).
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– Step 0: For each j = 1, . . . , B, solve

sup
θ
T ∗j (θ) s.t. θ ∈ Θ.

Let c0 be the 1− α empirical quantile of supθ∈Θ T
∗
j (θ) over j = 1, . . . B.

– Step k: For each j = 1, . . . , B, solve

sup
θ
T ∗j (θ) s.t. T (θ) ≤ ck−1

Let ck be the 1− α empirical quantile of supθ:T (θ)≤ck−1
T ∗j (θ) over j = 1, . . . B.

– Final step: Choose a stopping rule and let ckfinal
be the critical value after iterating

this procedure until stopping. To compute the projection CI for h(θ), solve

sup
θ
h(θ) s.t. T (θ) ≤ ckfinal

.

Report [h, h] where h is the value of the above maximization problem and h is

the value of the analogous minimization problem.

• The step-down procedure involves B · (kfinal + 1) + 1 optimization problems.

• The confidence set for Θ0 is given by C = {θ : T (θ) ≤ ckfinal
}. The last step given

above describes the procedure for getting the smallest interval [h, h] that contains the

projection confidence set Ch = {h(θ) : θ ∈ C} for h(θ).

5 Issues with Interpretation of Confidence Sets

• In the settings we have considered here, one must be careful about interpreting the

confidence set C or Ch as “summarizing uncertainty about the true value of θ.”

• To understand these issues, let us contrast the confidence sets considered here with

those that arise in “regular” settings. Consider the confidence set

θ̂ ± z1−α/2se(θ̂). (10)

Suppose that θ̂ has an exact normal distribution, and se(θ̂) is the exact (known) stan-

dard deviation of θ̂.
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– Let χ = z1−α/2se(θ̂). Then the fact that (10) constitutes a 1 − α confidence set

and the fact that χ is fixed means that θ̂ has risk bounded by α when we use the

zero-one loss function L(θ̂, θ) = I(|θ̂ − θ| > χ):

EI(|θ̂ − θ| > χ) ≤ α.

– Thus, the length of the confidence interval (10) gives us a bound on the worst-case

(i.e. minimax) risk of the estimator θ̂ (or, more precisely, it tells us a loss function

for which we can bound the risk). In this sense, we get a statement that does tell

us something about our uncertainty about the true parameter value: it gives us

an upper bound on risk of a particular estimator.

• This nice relationship between estimation risk and CI length happens because the

length of the CI (10) is fixed. In contrast to this fixed length CI, the CIs we have

considered here for weak IV and moment inequality settings are random length CIs.

– While weak IV and moment inequality settings do not lead to fixed length CIs,

fixed length CIs turn out to be close to optimal in some other “irregular” settings.

See Armstrong and Kolesár (2016).

• In general, the ex-post length of a random length CI does not necessarily tell us any-

thing useful about the risk of any estimator or procedure. However, a CI inverts tests

that control type I error, so this tells us something about the risk of these tests (namely,

that type I risk is less than α). One approach to summarizing uncertainty would be

to try to summarize power function of these tests (i.e. the type II risk). This is the

subject of a statistical power analysis : one tries to determine whether the power of a

test is likely to be good based on a priori considerations, before computing the test.

• Another approach, based on asking whether one could profit by betting that the pa-

rameter is not in the CI after observing the CI, has been applied recently by Müller and

Norets (2012) to weak IV, moment inequalities and other problems in econometrics.
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