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1 Introduction

• In nonparametric estimation, we seek to relax parametric functional form assumptions.

• Let m(x) denote the conditional mean of yi given xi and σ2(xi) the conditional variance.

Then

yi = m(xi) + ei, E(ei|xi) = 0, E(e2i |xi) = σ2(xi).

• In linear regression, we had m(x) = x′β. We also covered nonlinear least squares

estimation for models of the form m(x) = m(x, β) where β ∈ Rk. In nonparametric

theory, we allow for approximation error in m(x) and use tools from approximation

theory (e.g. Taylor approximations).

• These notes cover estimation of m(x0) with x0 given, using derivative smoothness

conditions based on Taylor approximations.

• First, we cover finite sample theory, following Sacks and Ylvisaker (1978). We then

consider some asymptotic results, following Fan (1993), Fan and Gijbels (1996) and

Cheng et al. (1997). This mirrors the approach we took to linear regression: finite

sample results such as Gauss-Markov, then asymptotic approximations. This differs

from some texts, which do not cover finite sample theory.
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2 Finite Sample Theory

2.1 Approximately Linear Models

• One approach to nonparametric estimation is the approximately linear model of Sacks

and Ylvisaker (1978), in which we assume

m(x) = ψ(x)′β + r(x) where |r(x)| ≤M(x)

where

– ψ(x) = (ψ1(x), . . . , ψp(x))′ is a vector of approximating functions given by the

researcher (e.g. (1, x, x2, . . . , x5)′).

– r(x) is approximation error

– M(x) is a (for now, known) bound on the approximation error.

• When M(x) = 0, this reduces to linear regression (on the ψj(xi)’s, rather than xi

itself).

2.2 Estimation of the Conditional Mean at a Given Point

• Focus on case where xi’s are scalar-valued.

• If we wish to estimate m(x0), m
′(x0), m

′′(x0), etc., a convenient setup is to base this

on the Taylor approximation at x0:

m(x) =

p∑
j=1

(x− x0)j−1βj + r(x) where |r(x)| ≤ C

p!
|x− x0|p

I.e. we take M(x) = C|x− x0|p/p! and ψ(x) = (1, x− x0, (x− x0)2, . . . , (x− x0)p−1)′.
This holds if the pth derivative of m(x) is bounded by C.

• Here βj = m(j−1)(x0)/(j−1)!. Thus, to estimate the jth derivative, we need an estimate

of βj+1 (β1 = m(x0) is the intercept).

• For simplicity, let us focus on estimating β1 = m(x0).
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• Consider a linear estimator:

m̂(x0) =
n∑
i=1

wiyi.

– wi = wi(X) can depend on X = (x1, . . . , xn)′ but not the y’s.

– For linear regression, the Gauss-Markov theorem shows that OLS (or, under het-

eroskedasticity, WLS) is minimum variance among unbiased (conditional on the

x’s) linear estimators.

– Because of the “specification error” r(x), unbiasedness is too much to ask. How-

ever, we can minimize the variance subject to a bound on the bias. By varying

the bound on the bias, we trace out a bias-variance tradeoff.

2.3 Variance and Worst-Case Bias

• thm. For a linear estimator m̂(x0) =
∑n

i=1wiyi, the bias (conditional on the x’s) can

be arbitrarily large unless

n∑
i=1

wi = 1 and
n∑
i=1

wi · (xi − x0)j−1 = 0, j = 2, . . . , p (1)

If (1) holds, the bias varies from −bias(m̂(x0)) to bias(m̂(x0)) where

bias(m̂(x0)) =
n∑
i=1

|wi|C|xi − x0|p/p!

pf.: The bias is given by

E(m̂(x0)−m(x0)|X) =
n∑
i=1

wim(xi)−m(x0)

= β1

n∑
i=1

wi +

p∑
j=2

βj

n∑
i=1

wi · (xi − x0)j−1 +
n∑
i=1

wir(xi)− β1.

It can be seen by inspection that, if (1) does not hold, this can be made arbitrarily
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large by making the βj’s large. If (1) holds, then the bias reduces to

n∑
i=1

wir(xi),

which is maximized by taking r(xi) = sign(wi)·C|xi−x0|p/p!. This gives the maximum

bias claimed in the theorem, and the minimum bias follows by symmetry.

• The (conditional) variance is given by

var(m̂(x0)|X) =
n∑
i=1

w2
i σ

2(xi).

• Thus, the minimum variance linear estimator with bias bounded by B is characterized

by the problem

min
w1,...,wn

n∑
i=1

w2
i σ

2(xi) s.t.
n∑
i=1

wi = 1,
n∑
i=1

wi · (xi − x0)j−1 = 0, j = 2, . . . , p,

n∑
i=1

|wi| · C|xi − x0|p/p! ≤ B.

• Solution characterized by Sacks and Ylvisaker (1978) (elementary argument using La-

grangian).

• How we trade off bias and variance depends on our objectives. One possibility is to

minimize the worst-case mean squared error (MSE):

E[(m̂(x0)−m(x0))
2|X] = [E(m̂(x0)|X)−m(x0)]

2 + var(m̂(x0)|X)

≤ bias(m̂(x0))
2 + var(m̂(x0)|X).

2.4 Local Polynomial Estimators

• The resulting optimal weighting can be unintuitive and cumbersome to compute. A

popular alternative is a local polynomial estimator.

• The local polynomial estimator of m(x0) of order p−1 with kernel k(·) and bandwidth

hn is the estimate of the intercept in the WLS regression of yi on 1, xi−x0, (xi−x0)2,. . . ,
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(xi − x0)p−1 with weights k((xi − x0)/hn): letting

β̂ = argminβ

n∑
i=1

(yi − q(xi − x0)′β)2k((xi − x0)/hn) = argminβ

n∑
i=1

(yi − q′iβ)2ki

where

q(t) = (1, t, t2, . . . , tp−1)′, qi = q(xi − x0), ki = k((xi − x0)/hn),

the local polynomial estimate of m(x0) is m̂(x0) = β̂1.

– Popular choices of kernel: uniform (k(u) = I(|u| ≤ 1/2)), triangular (k(u) =

max{1− |u|, 0})

– The bandwidth h can be used to trade off bias and variance: increasing h means

using observations further away from x0, which increases bias but reduces vari-

ance.

• By the usual least squares algebra (rearrange FOCs), it follows that

m̂(x0) = e′1

(
n∑
i=1

qiq
′
iki

)−1 n∑
i=1

qikiyi

where e1 = (1, 0, . . . , 0)′. Thus, it takes the form m̂(x0) =
∑n

i=1wiyi with

wi = e′1

(
n∑
j=1

qjq
′
jkj

)−1
qiki. (2)

• Lemma: The local polynomial estimator satisfies (1).

pf.: Note that (1) can be written as

n∑
i=1

wiq
′
i =

n∑
i=1

wiq(xi − x0)′ = e′1.

For the weights wi given above for the local polynomial estimator, we have

n∑
i=1

wiq
′
i = e′1

(
n∑
j=1

qjq
′
jkj

)−1 n∑
i=1

kiqiq
′
i = e′1,
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which gives the result.

• Thus, the worst case bias of the local polynomial estimator is given by

bias(m̂(x0)) =
n∑
i=1

|wi|C|xi − x0|p/p!

=
n∑
i=1

∣∣∣∣∣∣e′1
(

n∑
j=1

qjq
′
jkj

)−1
qiki

∣∣∣∣∣∣C |xi − x0|
p

p!

• Popular special cases include p = 1 (Nadaraya-Watson) and p = 2 (local linear).

3 Confidence Intervals

• We will go over a simple form of confidence intereval called a fixed-length confidence interval

(FLCI), which goes back to Knafl et al. (1982) and has been shown by Donoho (1994)

and Armstrong and Kolesár (2018) to have certain optimality properties.

• Local polynomial estimate takes the form

m̂(x0) =
n∑
i=1

wiyi where wi = e′1

(
n∑
j=1

qjq
′
jkj

)−1
qiki.

as defined in (2).

• Conditional on X, worst-case bias is bias(m̂(x0)) =
∑n

i=1 |wi|C|xi − x0|p/p!. Variance

is se(m̂(x0))
2 =

∑n
i=1w

2
i σ

2(xi).

• Let ŝe(m̂(x0)) be an estimate of se(m̂(x0)). For example, we can take

ŝe(m̂(x0))
2 =

n∑
i=1

w2
i û

2
i

where û1, . . . , ûn are the residuals from the local polynomial regression.

• To form a CI, note that

m̂(x0)−m(x0)

se(m̂(x0))
=
m̂(x0)− E[m̂(x0)|X] + bias(m̂(x0))

se(m̂(x0))

d
≈ Z +

bias(m̂(x0))

se(m̂(x0))
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where Z ∼ N(0, 1) and bias(m̂(x0)) = E[m̂(x0)−m(x0)|X].

• Let

cv1−α(t) = 1− α quantile of |Z + t| where Z ∼ N(0, 1).

We would like to use cv1−α(bias(m̂(x0))/se(m̂(x0))) as the critical value, but cannot

since bias(m̂(x0)) is unknown. However, we can get an upper bound on this critical

value by using cv1−α(bias(m̂(x0))/se(m̂(x0))). Plugging in the variance estimate, this

gives the approximate CI

m̂(x0)± cv1−α(bias(m̂(x0))/ŝe(m̂(x0))) · ŝe(m̂(x0)).

• To compute this CI, we need to know C (bound on pth derivative) in order to compute

bias. In practice, it is common to ignore bias (i.e. act as if bias is equal to 0) and

compute the interval as m̂(x0)±cv1−α(0) · ŝe(m̂(x0) = m̂(x0)±z1−α/2 · ŝe(m̂(x0). This is

formally justified by making an “asymptotic promise” to take hn → 0 quickly enough

so that bias(m̂(x0))/se(m̂(x0)) → 0, which is called undersmoothing. We will discuss

this in Section 5.2. Unfortunately, to know whether h is small enough that we are

“undersmoothing,” we need to know whether bias(m̂(x0))/se(m̂(x0)) is small for the

sample size at hand, which gets us back to having to know C! So, undersmoothing

isn’t really a solution to not knowing C.

– The interval m̂(x0)±cv1−α(bias(m̂(x0))/ŝe(m̂(x0)))· ŝe(m̂(x0)) is sometimes called

“bias-aware” to distinguish it from the interval m̂(x0)± z1−α/2 · ŝe(m̂(x0)). Bias-

aware CIs are particularly attractive in settings where the “asymptotic promise” of

undersmoothing seems unappealing, such as when xi has a discrete distribution

(we will see in the next section that the asymptotics used for undersmoothing

require a continuously distributed xi). See Armstrong and Kolesár (2018), Kolesár

and Rothe (2018) and Imbens and Wager (2019) and Noack and Rothe (2019) for

recent applications along these lines.

• It can be shown formally that confidence intervals must depend a priori knowledge of C

(and p) in this setting (this insight goes back to Low (1997); see Armstrong and Kolesár

(2018) for a recent discussion and results). One approach is to place some auxiliary

assumptions, such as assuming that C can be estimated using a global polynomial (see
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Armstrong and Kolesár, 2020, for discussion).

4 Asymptotics for Nadaraya-Watson and Local Linear

• To gain additional insight, let us see what happens as n→∞.

4.1 Nadaraya-Watson Estimator (p = 1)

• When p = 1, we get the Nadaraya-Watson estimator

m̂(x0) =

∑n
i=1 k((xi − x0)/h)yi∑n
i=1 k((xi − x0)/h)

.

The associated weights wi are

wi =
k((xi − x0)/h)∑n
j=1 k((xj − x0)/h)

.

The associated smoothness class bounds the approximation error of a 0th order (con-

stant) Taylor approximation at 0: |m(x) − m(x0)| ≤ C|x − x0|. This is called a

Lipschitz condition.

• The worst-case bias over functions m(·) satisfying this condition is

bias(m̂(x0)) =
n∑
i=1

|wi| · C|xi − x0| = C

∑n
i=1 |k((xi − x0)/h)| · |xi − x0|∑n

i=1 k((xi − x0)/h)

= hC
1
nh

∑n
i=1 |k((xi − x0)/h)| · |xi − x0|/h

1
nh

∑n
i=1 k((xi − x0)/h)

.

Suppose that xi has a continuous density f(·) and k(·) is bounded with finite support

(i.e. k(t) = 0 for |t| large enough). Then, as h = hn → 0,

E

[
1

h
|k((xi − x0)/h)| · |xi − x0|/h

]
=

1

h

∫
|k((x− x0)/h)(x− x0)/h|f(x) dx

=

∫
|k(u)u|f(x0 + uh) du→ f(x0)

∫
|k(u)u| du

where we use the substitution u = (x− x0)/h. Similarly, E
[
1
h

∑n
i=1 k((xi − x0)/h)

]
→
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f(x0)
∫
k(u) du. Thus, assuming regularity conditions hold for a SLLN for inid se-

quences, we will have

1

h
· bias(m̂(x0)) = C

1
nh

∑n
i=1 |k((xi − x0)/h)| · |xi − x0|/h

1
nh

∑n
i=1 k((xi − x0)/h)

→ C

∫
|k(u)u| du∫
k(u) du

a.s.

• The variance (conditional on the xi’s) is

n∑
i=1

w2
i σ

2(xi) =

∑n
i=1 k((xi − x0)/h)2σ2(xi)

(
∑n

i=1 k((xi − x0)/h))
2 =

1

nh

1
nh

∑n
i=1 k((xi − x0)/h)2σ2(xi)(

1
nh

∑n
i=1 k((xi − x0)/h)

)2
Assuming σ2(·) is continuous at x0, we will have

E

[
1

h
k((xi − x0)/h)2σ2(xi)

]
=

1

h

∫
k((x− x0)/h)2σ2(x)f(x) dx

=

∫
k(u)2σ2(x0 + uh)f(x0 + uh) du→ σ2(x0)f(x0)

∫
k(u)2 du.

From this and similar calculations for the denominator, it follows that, assuming reg-

ularity conditions hold for a SLLN,

nh · var(m̂(x0)|X) =
1
nh

∑n
i=1 k((xi − x0)/h)2σ2(xi)(

1
nh

∑n
i=1 k((xi − x0)/h)

)2
→

σ2(x0)
∫
k(u)2 du

f(x0)
(∫

k(u)2 du
)2 a.s.

• Thus, the bias is O(h) and standard deviation is O(1/
√
nh). If we set h so that these

two terms are of the same order of magnitude, this gives us

O(h) = O(1/
√
nh)

=⇒ O(h3/2) = O(n−1/2)

=⇒ h = O(n−1/3).

With this choice, bias and standard deviation are both of order n−1/3. Thus, we get a

n−1/3 rate of convergence (slower than the usual n−1/2).
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• Optimal h depends on C and on how we trade off bias and variance.

4.2 Local Linear Estimator

• The local linear estimator is β̂1 where

(β1, β2) = argminβ

n∑
i=1

(yi − β1 − β2(xi − x0))2k((xi − x0)/hn)

= argminβ

n∑
i=1

(yi − β1 − (hβ2)(xi − x0)/h)2k((xi − x0)/hn).

Since minimizing over (β1, β2) gives the same β1 as minimizing over (β1, hβ2), we can

use the least squares solution to the latter problem:

m̂(x0) = e′1Q̂
−1
qq Q̂qy

where

Q̂qq =
1

nh

n∑
i=1

k((xi − x0)/h)

(
1 (xi − x0)/h

(xi − x0)/h [(xi − x0)/h]2

)

and

Q̂qy =
1

nh

n∑
i=1

k((xi − x0)/h)yi

(
1

(xi − x0)/h

)
.

• This gives the weights wi as

wi =
1

nh
e′1Q̂

−1
qq

(
1

(xi − x0)/h

)
k((xi − x0)/h) =

1

nh
k∗n((xi − x0)/h)

where

k∗n(u) = e′1Q̂
−1
qq

(
1

u

)
k(u)

is called the equivalent kernel.
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• The associated smoothness class bounds the approximation error of a 1st order (linear)

Taylor approximation at 0: |m(x)−m(x0)−m′(x0)(x− x0)| ≤ C(x− x0)2/2.

• The worst-case conditional bias over this class is

bias(m̂(x0)) = (C/2)
n∑
i=1

|wi|(xi − x0)2 = (C/2)
n∑
i=1

∣∣∣∣ 1

nh
k∗n((xi − x0)/h)

∣∣∣∣ (xi − x0)2
= h2(C/2) · 1

nh

n∑
i=1

|k∗n((xi − x0)/h)| [(xi − x0)/h]2 ≡ h2bn

• The conditional variance is

var(m̂(x0)|X) =
n∑
i=1

w2
i σ

2(xi) =
n∑
i=1

[
1

nh
k∗n((xi − x0)/h)

]2
σ2(xi)

=
1

nh
·

[
1

nh

n∑
i=1

k∗n((xi − x0)/h)2σ2(xi)

]
≡ 1

nh
vn.

• Under regularity conditions (which include x0 being on the interior of the support of

xi), we will have, assuming k(·) is symmetric around zero,

Q̂qq
a.s.→ Qqq ≡ f(x0)

∫
k(u)

(
1 u

u u2

)
du = f(x0)

( ∫
k(u) du 0

0
∫
k(u)u2 du

)
,

so that

k∗n(u)
a.s.→ e′1Q

−1
qq

(
1

u

)
k(u) =

k(u)

f(x0)
∫
k(u) du

and

bn
a.s.→ (C/2)

∫
|k(u)|u2 du∫
k(u) du

≡ b∞, vn
a.s.→

σ2(x0)
∫
k(u)2 du

f(x0)
(∫

k(u) du
)2 ≡ v∞.

• Worst-case bias is of order h2 and standard deviation is of order (nh)−1/2. To set them

equal, h must decrease like n−1/5. This gives a n2/5 rate of convergence.
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5 Other Issues

5.1 Optimal Bandwidth

• Optimal bandwidth for CIs of the form given in Section 3 minimizes CI length. For

local linear estimators (p = 2):

h∗CI = argminh 2 · se(m̂(x0)) · cv1−α

(
bias(m̂(x0))

se(m̂(x0))

)
≈ argminh 2 · 1√

nh

√
v∞ · cv1−α

(√
nh5b∞/

√
v∞

)
.

• For estimation, MSE criterion is often used. Optimal bandwidth for local linear esti-

mators is then

h∗MSE = argminh bias(m̂(x0))
2 + se(m̂(x0))

2

≈ argminh h
4 · b∞ + nh · v∞

• Both h∗CI and h∗MSE set h to be of order n−1/5, so that bias and standard deviation

are balanced. In fact, they turn out to be close to each other asymptotically in this

case: h∗CI/h
∗
MSE converges to a constant that is close to 1 (see Armstrong and Kolesár,

2020).

5.2 Undersmoothing

• Note that limt→0 cv1−α(t) = cv1−α(0) = z1−α/2. Thus, if bias(m̂(x0))
se(m̂(x0))

→ 0, the CIs

constructed in Section 3 will be asymptotically equivalent to using z1−α/2. This is

called undersmoothing.

• For local linear, bias(m̂(x0))
se(m̂(x0))

= O(h2 ·
√
nh) = O(

√
nh5), so undersmoothing corresponds

to nh5 → 0.

• Note that getting the optimal rate of convergence required h to decrease like n−1/5.

Undersmoothing means h → 0 faster than optimal rate, leading to CI shrinking at

slower than optimal rate.
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• Undersmoothing is popular in practice, since we don’t need to know C (the bound on

m′′(x)) to form the critical value. However, it has some disadvantages:

– It is not clear how small h has to be in practice to say that we are “undersmooth-

ing:” for any finite n, how can we tell if nh1/5 → 0 or not? In practice, we need
bias(m̂(x0))
se(m̂(x0))

to be small, but this gets us back to having to know C.

– It is suboptimal: the optimal bandwidth for constructing CIs of this form (the

one that minimizes CI length) is of order n−1/5.

• In practice, it is more common to form CIs based on z1−α/2 than cv1−α(bias/se). This

leads to some undercoverage. However, if h is chosen optimally for MSE, it turns out

that undercoverage is not that bad (see Armstrong and Kolesár, 2020).

5.3 Choice of C and p

• In practice, the optimal h and order of the polynomial requires knowledge of C and

p. Estimators that are “close to” optimal for any C and p without knowledge of these

constants are called “adaptive.”

• Adaptive estimators can be very different depending on the criterion one uses when

defining “optimal.”

– For MSE of m̂(x0) for a particular x0, one can use Lepski’s method. See Sun

(2005) for an application to regression discontinuity.

– For the integrated mean square error (IMSE) criterion:∫
E[(m̂(x)−m(x))2]f(x) dx,

one can choose h and the order of the polynomial adaptively using cross validation

(see Section 11.6 in Hansen’s text).

– For CI construction, adaptation is severely limited for smoothness assumptions

like those considered here (Low, 1997). To get around this, we must make stronger

assumptions.

∗ Shape restrictions: Cai and Low (2004), Armstrong (2015). Adaptivity is

limited by the nature of the shape restrictions, however.

13



∗ “Self-similarity” restrictions: Giné and Nickl (2010), Chernozhukov et al.

(2014).

5.4 Pointwise-in-m Asymptotics

• We took the approach of (1) assuming a bound on m(p)(x) (2) deriving finite sample

results (variance and bounds on bias) (3) deriving asymptotic approximations to to

the variance and bound on bias derived in (2). We might call this “uniform-in-m(·)”
asymptotics, since the asymptotic bound on bias holds uniformly over m(·) satisfying

our conditions.

• Another approach is to fix m(·) and derive the limit of the bias under some smoothness

assumptions. This usually leads to an expression similar to b∞, but with C replaced

by m(p)(x0).

• We might call this a “pointwise-in-m(·)” approach: we fixm(·) when doing asymptotics,

rather than getting approximations that work uniformly over some class of functions

m(·).

• Unfortunately, this can lead to estimators that perform poorly in practice because they

use asymptotic bounds on bias that don’t work well in finite samples.

• For example, it is often proposed to estimate the leading bias term using an estimate of

m(p)(x0) and use this, e.g., to estimate the “optimal” bandwidth (see, e.g., Imbens and

Kalyanaraman, 2012). However, as our analysis shows, the optimal bandwidth depends

on a bound for m(p)(x) over all x (or, at least, all x in some neighborhood of x0), not on

m(p)(x0). For example, if m(x) = (x− x0)3, “pointwise-in-m(·)” asymptotics suggests

that bias of local linear is 0 (since m′′(x0) = 0 in this case). This is clearly not true in

finite samples!

• Furthermore, we need p + 1 derivatives to estimate m(p)(x0), so if we really believed

this assumption, we would use a higher order local polynomial estimator in the first

place.

• Overall, “pointwise-in-m(·)” asymptotics can be nice since they give another way of

thinking about the problem and often lead to similar results. However, when they lead

us to estimators that don’t work well under “uniform-in-m(·)” asymptotics, we should

be suspicious. See Chapter 1.2.4 in Tsybakov (2009) for more on these issues.
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