Some Research Topics in High (and Low) Dimensional Econometrics

Tim Armstrong

April 2023

Overview of talk

Overview of talk

How I got interested in this topic

Two cultures in econometrics

How I got interested in this topic

Plan for rest of talk

Single parameter

Single parameter

Example: nonparametric regression

Example: high dimensional controls

Example: low dimensional controls

Example: semiparametric regression

General theory of optimal estimators/CIs

Linear estimators

Sampling distribution of linear estimators

Bias-aware CI

Optimal weights

Example: nonparametric regression under Lipschitz constraint

Worst-case bias

Solving for the optimal weights

Unknown error distribution

Honesty property

Near optimal weights

Optimal weights in other settings

Some additional applications

Optimality and impossibility of adaptation

How to “break” impossibility of adaptation?

Asymmetric parameter space

Many parameters

Many parameters

Confidence intervals

Example: empirical Bayes

Adaptation and empirical Bayes

Average coverage intervals

Empirical Bayes interpretation

Other applications of average coverage

Software

References

Armstrong, Timothy B. 2015. “Adaptive Testing on a Regression Function at a Point.” The Annals of Statistics 43 (5): 2086–2101. https://doi.org/10.1214/15-AOS1342.
———. 2021. “Adaptation Bounds for Confidence Bands Under Self-Similarity.” Bernoulli 27 (2): 1348–70. https://doi.org/10.3150/20-BEJ1277.
———. 2022. “False Discovery Rate Adjustments for Average Significance Level Controlling Tests.” arXiv. https://doi.org/10.48550/arXiv.2209.13686.
Armstrong, Timothy B., and Michal Kolesár. 2018. “Optimal Inference in a Class of Regression Models.” Econometrica 86 (2): 655–83. https://doi.org/10.3982/ECTA14434.
———. 2020. “Simple and Honest Confidence Intervals in Nonparametric Regression.” Quantitative Economics 11 (1): 1–39. https://doi.org/10.3982/QE1199.
———. 2021a. “Finite-Sample Optimal Estimation and Inference on Average Treatment Effects Under Unconfoundedness.” Econometrica 89 (3): 1141–77. https://doi.org/10.3982/ECTA16907.
———. 2021b. “Sensitivity Analysis Using Approximate Moment Condition Models.” Quantitative Economics 12 (1): 77-108-108. https://doi.org/10.3982/TE1559.
Armstrong, Timothy B., Michal Kolesár, and Soonwoo Kwon. 2020. “Bias-Aware Inference in Regularized Regression Models.” arXiv:2012.14823 [Econ, Stat], December. http://arxiv.org/abs/2012.14823.
Armstrong, Timothy B., Michal Kolesár, and Mikkel Plagborg-Møller. 2022. “Robust Empirical Bayes Confidence Intervals.” Econometrica 90 (6): 2567–2602. https://doi.org/10.3982/ECTA18597.
Breiman, Leo. 2001. “Statistical Modeling: The Two Cultures (with Comments and a Rejoinder by the Author).” Statistical Science 16 (3): 199–231. https://doi.org/10.1214/ss/1009213726.
Cai, T. Tony, and Mark G. Low. 2004. “An Adaptation Theory for Nonparametric Confidence Intervals.” The Annals of Statistics 32 (5): 1805–40. http://www.jstor.org/stable/3448556.
Cheng, Ming-Yen, Jianqing Fan, and J. S. Marron. 1997. “On Automatic Boundary Corrections.” The Annals of Statistics 25 (4): 1691–1708. https://doi.org/10.1214/aos/1031594737.
Donoho, David L. 1994. “Statistical Estimation and Optimal Recovery.” The Annals of Statistics 22 (1): 238–70. https://doi.org/10.1214/aos/1176325367.
Gao, Wayne Yuan. 2018. “Minimax Linear Estimation at a Boundary Point.” Journal of Multivariate Analysis 165 (May): 262–69. https://doi.org/10.1016/j.jmva.2018.01.001.
Giné, Evarist, and Richard Nickl. 2010. “Confidence Bands in Density Estimation.” The Annals of Statistics 38 (2): 1122–70. https://doi.org/10.1214/09-AOS738.
Ignatiadis, Nikolaos, and Stefan Wager. 2021. “Confidence Intervals for Nonparametric Empirical Bayes Analysis.” Journal of the American Statistical Association 0 (0): 1–18. https://doi.org/10.1080/01621459.2021.2008403.
Imbens, Guido, and Stefan Wager. 2019. “Optimized Regression Discontinuity Designs.” The Review of Economics and Statistics 101 (2): 264–78. https://doi.org/10.1162/rest_a_00793.
Ishihara, Takuya, and Toru Kitagawa. 2021. “Evidence Aggregation for Treatment Choice.”
Javanmard, Adel, and Andrea Montanari. 2014. “Confidence Intervals and Hypothesis Testing for High-Dimensional Regression.” Journal of Machine Learning Research 15 (82): 2869–909. http://jmlr.org/papers/v15/javanmard14a.html.
Kwon, Koohyun, and Soonwoo Kwon. 2020a. “Adaptive Inference in Multivariate Nonparametric Regression Models Under Monotonicity.” arXiv:2011.14219 [Econ, Math, Stat], November. http://arxiv.org/abs/2011.14219.
———. 2020b. “Inference in Regression Discontinuity Designs Under Monotonicity.” arXiv:2011.14216 [Econ, Stat], November. http://arxiv.org/abs/2011.14216.
Lepski, O. V., and A. B. Tsybakov. 2000. “Asymptotically Exact Nonparametric Hypothesis Testing in Sup-Norm and at a Fixed Point.” Probability Theory and Related Fields 117 (1): 17–48. https://doi.org/10.1007/s004400050265.
Lepskii, O. 1991. “On a Problem of Adaptive Estimation in Gaussian White Noise.” Theory of Probability & Its Applications 35 (3): 454–66. https://doi.org/10.1137/1135065.
Li, Ker-Chau. 1989. “Honest Confidence Regions for Nonparametric Regression.” The Annals of Statistics 17 (3): 1001–8. https://doi.org/10.1214/aos/1176347253.
Low, Mark G. 1997. “On Nonparametric Confidence Intervals.” The Annals of Statistics 25 (6): 2547–54. https://doi.org/10.1214/aos/1030741084.
Morris, Carl N. 1983. “Parametric Empirical Bayes Confidence Intervals.” In Scientific Inference, Data Analysis, and Robustness, edited by G. E. P. Box, Tom Leonard, and Chien-Fu Wu, 25–50. Academic Press. https://doi.org/10.1016/B978-0-12-121160-8.50008-9.
Noack, Claudia, and Christoph Rothe. 2019. “Bias-Aware Inference in Fuzzy Regression Discontinuity Designs.” arXiv:1906.04631 [Econ, Stat], June. http://arxiv.org/abs/1906.04631.
Rambachan, Ashesh, and Jonathan Roth. 2019. “An Honest Approach to Parallel Trends.”
Robinson, P. M. 1988. “Root-N-Consistent Semiparametric Regression.” Econometrica 56 (4): 931–54. https://doi.org/10.2307/1912705.
Sacks, Jerome, and Donald Ylvisaker. 1978. “Linear Estimation for Approximately Linear Models.” The Annals of Statistics 6 (5): 1122–37. https://doi.org/10.1214/aos/1176344315.
Yata, Kohei. 2021. “Optimal Decision Rules Under Partial Identification.” arXiv. https://doi.org/10.48550/arXiv.2111.04926.
Zhao, Linda H. 1997. “Minimax Linear Estimation in a White Noise Problem.” The Annals of Statistics 25 (2): 745–55. https://doi.org/10.1214/aos/1031833671.