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1 Overview of topics

• Consider a statistical model where we observe Y
f∼ Pf , where f is known to be in a

parameter space F .

• Use Pf , Ef to denote probability and expectations under f

• We are interested in a functional Tf .

• Examples:

– Gaussian regression model with fixed design:

yi = f(xi) + εi, εi ∼ N(0, σ2(xi)), σ2(·) known, x1, . . . , xn considered nonrandom

then

Y ≡




y1
...

yn




f∼ N







f(x1)
...

f(xn)


 ,




σ2(x1) · · · 0
. . .

0 · · · σ2(xn)





 .

∗ Examples of parameter spaces F for this model:

· Lipschitz: F = FLip(C) = {f : R → R||f(x)− f(x′)| ≤ C|x|}
· other smoothness classes: bounds on higher derivatives, other ways of

bounding the derivative

· Linearity: F = {x′θ|θ ∈ Rdx}
· Partial linear model {h(x1) + x′2θ|θ ∈ Rd1 , h ∈ F̃} for some F̃
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∗ Examples of functionals T in Gaussian regression model

· Tf = f(c) some fixed c

· Regression discontinuity (RD): Tf = limx↓c f(x)− limx↑c f(x)

· Tf = θk some fixed k in partial linear model

· ATE under unconfoundedness: Tf = 1
n

∑n
i=1[f(wi, 1) − f(wi, 0)] where

xi = (wi, di), di is indicator for “treatment”

∗ In these examples, F is convex and T is linear

– Nonparametric density estimation: xi has density f wrt Lebesgue measure, inter-

ested in Tf = f(c)

∗ Can use same choices for F

• We are interested in a CI C for a functional Tf where T : F → R is a functional:

Pf (Tf ∈ C) ≥ 1− α all f ∈ F (*)

Subject to this constraint, we consider a performance criterion Rf (C).

– note that this depends on f

– Examples

∗ Expected length: Rf (C) = Efλ(C) where λ denotes Lebesgue measure

∗ Quantiles of excess length for one-sided CI: Rf ([ĉ,∞)) = qf,β(ĉ− Tf) where

qf,β denotes the β quantile under f .

• Since Rf depends on f , we typically cannot choose C to minimize Rf simultatneously

for all f ∈ F .

• Efficiency bounds for CIs:

minimize sup
f∈G

Rf (C) s.t. (∗) (**)

– Setting G = F gives minimax CI

– Setting G ( F gives sharp bound on adaptation

• Adaptive inference

– How much does the value of (**) depend on F?
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– Can C “adapt” to reflect the “smoothness” of G while maintaining coverage over F
by making supg∈G Rg(C) close to the minimax solution simultaneously for multiple

G?
– Tells us whether and to what extent we can improve CIs through data driven

choice of bandwidth, number of regressors, etc.

• Related problems that we won’t cover or will not as spend much time on.

– Adaptive/minimax estimation

– Estimation/inference for the whole function: confidence bands for f , etc.

• Key ideas in solving our bounding (**)

– Bounds by submodels: if we restrict F and G more, the problem can only become

easier

– Bounds by Bayesian problem: if we replace a worst-case criterion with an average

(Bayesian) criterion, the problem can only become easier.

– Use relation of CIs to hypothesis tests, bounds for optimal CIs ...

∗ ... and use similar strategies to solve the optimal testing problem.

• Plan for this part of the course: start with optimal testing, then cover theory of

minimax and adaptive inference with emphasis on linear functionals in Gaussian models

2 Minimax testing

• This section draws on parts of ch. 8 in Lehmann and Romano (2005) as well as

Lehmann (1952), Section 2.4.3 of Ingster and Suslina (2003), and Emmanuel Candes’

STAT300C lecture notes at Stanford.

• Observe Y ∼ Pf , null hypothesis

H0 : f ∈ FH

vs alternative

H1 : f ∈ FK
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• Level α test ϕ(Y ) satisfies

Efϕ(Y ) ≤ α all f ∈ FH .

• The test has minimax power (at least) β if

Efϕ(Y ) ≥ β all f ∈ FK .

• Example: Suppose we want to determine whether the functional Tf is greater than

some value T0, where we know f ∈ F . We can set FH = F ∩ {Tf ≤ T0} and

FK = F ∩ {Tf ≥ T0 + b}. Then, we ask how large we need b (the “effect size”) to get

a acceptable α and β (e.g. α = .05, β = .8).

– This can be a part of experimental design, or a part of an editor’s decision of

whether to accept or reject a paper.

• Suppose that Pf has density pf (y) wrt measure ν(y).

• Recall the Neyman-Pearson Lemma, which solves this problem for the case where FH

and FK are singletons.

• Thm. (Neyman-Pearson Lemma): A most powerful test of H0 : f = f0 vs H1 : f = f1

exists and, for some c, satisfies

ϕ(y) =




1 if

pf1 (y)

pf0 (y)
> c

0 if
pf1 (y)

pf0 (y)
< c

pf.: Omitted (see Thm. 3.2.1 in LR)

• Back to composite case. For a distribution Λ on F , let

hΛ(y) =

∫

f∈F
pf (y)dΛ(f).

• Let ΛH and ΛK be distributions on FH and FK respectively. Consider

HΛH
: Y ∼ hΛH

(y) vs HΛK
: Y ∼ hΛK

(y).
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• Lemma: Any level α test of H0 vs H1 with minimax power at least β is level α for

HΛH
and has power at least β for HΛK

. In particular, no level α test of H0 vs H1 can

have strictly greater minimax power than the (optimal) NP test of HΛH
vs HΛK

.

pf.: The first statement follows since

EΛH
ϕ(Y ) =

∫

y

ϕ(y)hΛH
(y) dν(y) =

∫

y

ϕ(y)

∫

f∈ΛH

pf (y)dΛH(f) dν(y)

=

∫

f∈FH

Efϕ(y) dΛH(f) ≤
[
sup
f∈FH

Efϕ(y)

]

︸ ︷︷ ︸
≤α

∫

f∈FH

pf (y) dΛH(f)

︸ ︷︷ ︸
=1

≤ α

(using Fubini’s theorem for the third equality) and similarly for minimax power. The

last statement follows from this and optimality of the NP test for HΛH
vs HΛK

.

• Thm. (Theorem 8.1.1 in LR): Given ΛH and ΛK , let ϕΛH ,ΛK
be the NP test of hΛH

vs

hΛK
, and let βΛH ,ΛK

be its power at hΛK
. Suppose that there exist ΛH and ΛK such

that

sup
f∈FH

EfϕΛH ,ΛK
(Y ) ≤ α

inf
f∈FK

EfϕΛH ,ΛK
(Y ) = βΛH ,ΛK

(i.e. it is also level α for FH with minimax power βΛH ,ΛK
for FK). Then

(i) ϕΛH ,ΛK
maximizes inff∈FK

EfϕΛH ,ΛK
(Y ) among all level α tests of FK .

(ii) The distributions ΛH and ΛK are least favorable in the sense that, for any other

pair Λ̃H , Λ̃K , we have

βΛH ,ΛK
≤ βΛ̃H ,Λ̃K

.

pf.: Part (i) is immediate from the lemma: any level α test with strictly greater

minimax power would have power at hΛK
greater than βΛH ,ΛK

and be level α for hΛH
,

which would contradict optimality of ϕΛH ,ΛK
for hΛH

vs hΛK
.

Part (ii) follows since, under the assumptions of the theorem, ϕΛH ,ΛK
is level α with

minimax power βΛH ,ΛK
for FK and therefore (by the lemma) also level α for hΛ̃H

with

power at least βΛH ,ΛK
for hΛ̃H

. Since this power is achievable, the optimal test, which

achieves power βΛ̃H ,Λ̃K
, must have greater power.
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• Example (Lehmann, 1952): Y ∼ N(θ, Ik), FH = {0}, FK = {θ|max1≤j≤k |θj| ≥ b}.

• (draw picture)

• Consider

ΛH = unit mass at 0

ΛK(ejb) = ΛK(ej(−b)) =
1

2k
all j = 1, . . . , k

where ej = (0, . . . , 0, 1︸︷︷︸
jth position

, 0, . . . , 0) is the jth standard basis vector.

• NP test of HλH
vs HλK

rejects for large values of the LR:

∫
1

(2π)k/2
exp

(
−1

2
(y − θ)′(y − θ)

)
dΛK(θ)

1
(2π)k/2

exp
(
−1

2
y′y
)

=

∫
exp

(
y′θ − 1

2
θ′θ

)
dΛK(θ)

=
1

2k

k∑

i=1

[
exp

(
byj −

1

2
b2
)
+ exp

(
−byj −

1

2
b2
)]

.

• By the theorem, to show that this test is minimax, it suffices to show that its minimum

power over FK is equal to its average power under ΛK . For this, it suffices to show

that the power EθφΛH ,ΛK
is (i) minimized over θ ∈ FK at supp(ΛK) and (ii) constant

on supp(ΛK).

• (ii) follows by symmetry. To show (i), note that, by symmetry, E(θ1,...,θk)φΛH ,ΛK
=

E(|θ1|,...,|θk|)φΛH ,ΛK
, so we can restrict attention to the positive orthant. (i) will follow if

we can show that E(|θ1|,...,|θk|)φΛH ,ΛK
is increasing in each element |θj|, which will follow

if the law of the LR statistic is increasing in each |θj| in the FOSD sense. This follows

since the LR statistic is the sum of the k independent rvs,

exp

(
bYj −

1

2
b2
)
+ exp

(
−bYj −

1

2
b2
)

≡ Wj

where Yj ∼ N(θj, 1). Wj can be seen to be FOSD increasing in |θj| by noting that

Pθj(Wj ≤ t) is equal to the probability of Yj being in a symmetric set around zero that

depends only on t.

6



2.1 Bounds on Attainable Power

• How does the power of this test change with k and b?

• In general, difference between power and size of LR test of H0 : p0 vs H1 : p1 is

Ep1I

(
p1(Y )

p0(Y )
≥ cα

)
− Ep0I

(
p1(Y )

p0(Y )
≥ cα

)

= Ep0

(
p1(Y )

p0(Y )
− 1

)
I

(
p1(Y )

p0(Y )
≥ cα

)

• This is bounded by the total variation distance

TV (p0, p1) ≡ Ep0

(
p1(Y )

p0(Y )
− 1

)
I

(
p1(Y )

p0(Y )
≥ 1

)

=

∫

p1(y)≥p0(y)

(p1(y)− p0(y)) dν(y)

• Note: This definition is symmetric since

∫

p1(y)≥p0(y)

(p1(y)− p0(y)) dν(y) +

∫

p1(y)≤p0(y)

(p1(y)− p0(y)) dν(y)

=

∫
(p1(y)− p0(y)) dν(y) = 0

so that

∫

p1(y)≥p0(y)

(p1(y)− p0(y)) dν(y) =

∫

p1(y)≤p0(y)

(p0(y)− p1(y)) dν(y).

This also shows that

TV (p0, p1) =
1

2

[∫

p1(y)≥p0(y)

(p1(y)− p0(y)) dν(y) +

∫

p1(y)≤p0(y)

(p0(y)− p1(y)) dν(y)

]

=
1

2

∫
|p1(y)− p0(y)| dν(y).

• One way of bounding the total variation distance is to use its equivalence with other

distances such as the Hellinger distance (see Section 13.1 in Lehmann and Romano,

2005). We will not discuss this here.
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• Lemma: Consider a sequence of densities p
(n)
1 (Y ) and p

(n)
0 (Y ) indexed by n. If

p
(n)
1 (Y )

p
(n)
0 (Y )

converges in probability to 1 under p
(n)
0 ,

then TV (p
(n)
0 , p

(n)
1 ) → 0.

pf.: We have

TV (p
(n)
0 , p

(n)
1 ) = E

p
(n)
0

(
p
(n)
1 (Y )

p
(n)
0 (Y )

− 1

)
I

(
p
(n)
1 (Y )

p
(n)
0 (Y )

≥ 1

)

= −E
p
(n)
0

(
p
(n)
1 (Y )

p
(n)
0 (Y )

− 1

)
I

(
p
(n)
1 (Y )

p
(n)
0 (Y )

≤ 1

)

using the fact that E
p
(n)
0

(
p
(n)
1 (Y )

p
(n)
0 (Y )

− 1

)
= 0. Since

(
p
(n)
1 (Y )

p
(n)
0 (Y )

− 1

)
I

(
p
(n)
1 (Y )

p
(n)
0 (Y )

≤ 1

)
is

bounded between −1 and 0, convergence in probability is sufficient for convergence of

the expectation.

• Let us use this to see how large b = bk must be for power to go to zero.

• In the above example, LR is

hΛK
(Y )

hΛH
(Y )

=
1

2

[
1

k

k∑

i=1

exp

(
bYj −

1

2
b2
)
+

1

k

k∑

i=1

exp

(
−bYj −

1

2
b2
)]

.

• This is a sample average of k independent random variables with mean 1. We would

like to use a LLN. The variance is increasing if bk is increasing, so we need to use a

triangular array argument.

• Consider each term individually. We have

var0

(
exp

(
bYj −

1

2
b2
))

= E0

[
exp

(
bYj −

1

2
b2
)2
]
− 1 = E0 exp

(
2bYj − b2

)
− 1

= E0 exp
(
(2b)Yj − (2b)2/2 + b2

)
− 1

= exp(b2)E exp
(
(2b)Yj − (2b)2/2

)
︸ ︷︷ ︸

=1

−1
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so that

var0

(
1

k

k∑

j=1

exp

(
bYj −

1

2
b2
))

=
1

k2

k∑

j=1

[exp(b/2)− 1] =
1

k
[exp(b2)− 1].

If b = bk = C
√
log k, then this is (exp((C2) log k)−1)/k = (kC

2−1)/k, which converges

to zero for C < 1.

• We can improve this condition to C <
√
2 with a truncation argument. We will use

some properties of the tail of the normal distribution.

• Lemma: Let φ and Φ denote the normal pdf and cdf. Then, for t > 0,

1− Φ(t) ≤ φ(t)

t
.

pf.: We have

1− Φ(t) =

∫ ∞

t

1√
2π

exp(−z2/2) dz ≤
∫ ∞

t

z

t

1√
2π

exp(−z2/2) dz

=
1

t
√
2π

[
− exp(−z2/2)

]∞
z=t

=
1

t
√
2π

exp(−t2/2).

• Lemma: For Zj iid N(0, 1),

P

(
max
1≤j≤k

Zj ≥
√

2 log k

)
→ 0.

pf.: We have

P

(
max
1≤j≤k

Zj ≥
√
2 log k

)
≤

k∑

j=1

P
(
Zj ≥

√
2 log k

)

= k[1− Φ(
√
2 log k)] ≤ k

1√
2 log k

1√
2π

exp

(
−1

2
(2 log k)

)
= (2π · 2 log k)−1/2 → 0.

where the first step uses Bonferroni and the last step uses the previous lemma.

• Now we truncate the sum in the likelihood ratio.

• Let Xj = exp (bYj − b2/2) I
(
Yj ≤

√
2 log k

)
and let Wj be defined in the same way
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with −Yj in place of Yj. Then, by the above lemma,

hΛH
(Y )

hΛK
(Y )

=
1

2

[
1

k

k∑

j=1

Xj +
1

k

k∑

j=1

Wj

]
w.p.a. 1.

• Suffices to show that expectation of 1
k

∑k
j=1Xj converges to 1 and variance converges

to zero.

• We have

E0
1

k

k∑

j=1

Xj = E0Xj =

∫ √
2 log k

−∞
exp

(
by − b2/2

) 1√
2π

exp(−y2/2) dy

=

∫ √
2 log k

−∞

1√
2π

exp(−(y − b)2/2) dy

= Φ
(√

2 log k − b
)

This converges to 1 for b = C
√
log k for C <

√
2.

• For the variance,

var0

(
1

k

k∑

j=1

Xj

)
=

1

k
var0(X1) ≤

1

k
E0X

2
1

=
1

k

∫ √
2 log k

−∞
exp

(
2by − b2

) 1√
2π

exp(−y2/2) dy

=
1

k
exp(b2)

∫ √
2 log k

−∞

1√
2π

exp(−(y − 2b)2/2) dy

=
1

k
exp(b2)Φ(

√
2 log k − 2b)

• Set C = (1− ε)
√
2 so that b = (1− ε)

√
2 log k. Then the term in the Φ(·) function is√

2 log k − 2(1− ε)
√
2 log k = (−1 + 2ε)

√
2 log k, which gives

1

k
exp((1− ε)2 · 2 log k)Φ(−(1− 2ε)

√
2 log k)

≤ 1

k
exp(2(1− ε)2 log k) exp(−(1− 2ε)2 log k) = exp(−2ε2 log k)

using the bound Φ(−t) ≤ exp(−t2/2) for t > 0 (applies for ε small enough).
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• Thus, minimax power goes to zero for b = bk = C
√
log k for C <

√
2. How sharp is

this bound?

• For C >
√
2, we can achieve this bound with a simpler test.

• Consider the test φBonferroni(Y ) defined by the rule

reject if max
1≤j≤k

|Yj| > z1−α/(2k)

where zβ denotes the β quantile of the N(0, 1) distribution.

• The test controls size by Bonferroni’s inequality:

P0

(
max
1≤j≤k

|Yj| > z1−α/(2k)

)
≤

k∑

j=1

P
(
|Yj| > z1−α/(2k)

)
=

k∑

j=1

α/k = α.

• We can obtain a bound on z1−α/(2k):

1− α/(2k) = Φ(z1−α/(2k))

=⇒ α/(2k) = 1− Φ(z1−α/(2k)) ≤ exp(−z21−α/(2k)/2)

=⇒ z21−α/(2k)/2 ≤ − log(α/(2k)) = log k − log(α/2)

=⇒ z1−α/(2k) ≤
√
2 log k − 2 logα/2 =

√
2 log k + o(1).

• Thus, for θ with max1≤j≤k |θj| ≥ C
√
log k, we have

EθφBonferroni(Y ) ≥ E(C
√
log k,0,...,0)φBonferroni(Y ) ≥ P(C

√
log k,0,...,0)

(
|Y1| >

√
2 log k + o(1)

)

= PZ∼N(0,1)

(∣∣∣Z + C
√

log k
∣∣∣ ≥

√
2 log k + o(1)

)

which converges to one for C >
√
2.

• Summary:

– Minimax power goes to one or α as n→ ∞ for b = C
√
log k depending on whether

C >
√
2 or C <

√
2.

– This is true regardless of the size α.

– The Bonferroni test is “approximately minimax” as k → ∞ in the sense that it

also achieves power going to one for C >
√
2.
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• An advantage of the Bonferroni test: it tells us which of the θj’s are nonzero. See

Chapter 9 of Lehmann and Romano (2005) and Donoho and Jin (2004) for more on

these aspects of multiple testing.

2.2 Other notions of optimality

• def.: The power envelope at g ∈ F\FH is given by the power of the MP test of FH vs

{g}.

• def.: The weighted average power (WAP) of the test ϕ for the weighting Λ is
∫
Efϕ(Y ) dΛ(Y ).

• Note: By Fubini’s theorem, WAP is

∫
Efϕ(Y ) dΛ(Y ) =

∫ ∫
ϕ(y)pf (y) dν(y)dΛ(f) =

∫
ϕ(y)

[∫
pf (y) dΛ(f)

]

︸ ︷︷ ︸
hΛ(y)

dν(y).

Thus, finding WAP optimal test reduces to testing FH vs {hΛ}.

2.3 Convex Hypotheses in the Normal Model

• The testing problem above is isomorphic to testing f(xi) = 0 all i in the fixed design

regression model. In this context, it might be too “pessimistic” to consider alternatives

where f(xi) = b for just one observation i while being zero everywhere else.

• Solution: impose a priori restrictions - “smoothness.” This often leads to problems

that are related to testing convex hypotheses.

• Consider the model

Y = Kf + ε,

where f ∈ F , K is known and

– F (parameter space for f) is a convex subset of a vector space.

– ε and Y take values in a Hilbert space Y with inner product 〈·, ·〉, and ε is standard
Gaussian with respect to this inner product: for any g ∈ Y , 〈g, ε〉 ∼ N(0, ‖g‖2).
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– K : F → Y is a (known) linear operator.

• This general setup follows Donoho (1994).

• In most examples in this course, Y = Rn and 〈x, y〉 = x′y. We won’t worry about

the details of defining Gaussian variables in infinite dimensional spaces, but see, e.g.,

Section 2.1 of Ingster and Suslina (2003) or Chapter 3 of Johnstone (2015) for details.

• Example (fixed design regression): yi = f(xi) + ui, ui ∼ N(0, σ2(xi)) independent,

σ2(xi) known. We can set

Y = (y1/σ(x1), . . . , yn/σ(xn)),

Kf = (f(x1)/σ(x1), . . . , f(xn)/σ(xn)),

Y = Rn with 〈x, y〉 = x′y.

• Example (finite dimensional normal model): W ∼ N(θ,Σ) where θ ∈ Rk, Σ known.

We can set Y = W , K = I and 〈x, y〉 = x′Σ−1y (so that 〈x, ε〉 = x′Σ−1ε ∼
N(0, x′Σ−1ΣΣ−1x) = N(0, x′Σ−1x) as required), or we can set Y = Σ−1/2W ,K = Σ−1/2

and 〈x, y〉 = x′y.

• Example (linear regression): Y
n×1

= X
n×k

θ
k×1

+ ε, ε ∼ N(0, In). Here, θ plays the role of

f , and X (or the corresponding mapping from Rk to Rn) plays the role of K.

• Example (Gaussian white noise): We observe {Y (t)|0 ≤ t ≤ 1} where

dY (t) = f(t) + dW (t)

where W (t) is a Brownian motion and f ∈ L2([0, 1]). Heuristically, we can think of K

as the identity and dW (t) as the error term ε with “inner product” between g and dW

given by
∫
g(t) dW (t) ∼ N(0, ‖g‖2). Linear estimators take the form

∫
g(t) dY (t) ∼

N(〈g, f〉, ‖g‖2) for some g ∈ L2 where 〈f, g〉 =
∫
f(t)g(t) dt. Formally, we can identify

f with its coefficients in an orthonormal basis {ψj(t)} and consider the observation Y

to be {
∫
ψj(t) dY (t)}∞j=1. See p. 252 in Donoho (1994).

– The white noise model is “asymptotically equivalent” to nonparametric density

estimation and nonparametric regression under certain conditions (see Nussbaum,

1996; Brown and Low, 1996).
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• Example (nonparametric IV with known first stage): Consider yi = h(wi) + ηi with

E(ηi|zi) = 0. Then

E(yi|zi) = E(h(wi)|zi) =
∫
h(w) dFw|z(w|zi)

so we can write

yi = K̃h(zi) + εi

where K̃ takes the function h to the function z 7→
∫
h(w) dFw|z(w|z). If we condition on

the zi’s and assume the distribution of w|z is known, then this fits into our framework

with K mapping h to the coordinates of K̃h. Typically, however, K̃ is not known.

– Related inverse problems such as deconvolution have been put into this framework.

See, e.g., examples in Donoho and Low (1992).

• We will use the following fact about the Gaussian shift model, which we state as a

proposition.

• Proposition: Consider Y = θ + ε, θ ∈ Y (i.e. θ plays the role of Kf), ε standard

Gaussian. The likelihood ratio statistic for the simple testing problem H0 : θ0 vs

H1 : θ1 is given by

p1(Y )

p0(Y )
= exp

(
〈Y, θ1 − θ0〉 −

1

2
‖θ1 − θ0‖2

)
.

In particular, the Neyman-Pearson test rejects for large values of 〈Y, θ1 − θ0〉. The

power of the level α Neyman-Pearson test is

Φ(‖θ1 − θ0‖ − z1−α).

pf.: The first claim follows by simple calculations in the finite dimensional case. For

the infinite dimensional case, see, e.g. Chapter 3 of Johnstone (2015) for details (in

the sequence model). For the power of the test, note that

〈Y, θ1 − θ0〉 θ∼ N(〈θ, θ1 − θ0〉, ‖θ1 − θ0‖2)
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so the test rejects when

〈Y, θ1 − θ0〉 − 〈θ0, θ1 − θ0〉 > ‖θ1 − θ0‖z1−α

⇐⇒ 〈Y − θ0, θ1 − θ0〉
‖θ1 − θ0‖

> z1−α.

Under θ1,
〈Y−θ0,θ1−θ0〉

‖θ1−θ0‖
θ1∼ N(‖θ1 − θ0‖, 1), so the power is

Pθ1

(〈Y − θ0, θ1 − θ0〉
‖θ1 − θ0‖

> z1−α

)
= PZ∼N(0,1) (Z + ‖θ1 − θ0‖ > z1−α) = Φ (‖θ1 − θ0‖ − z1−α) .

• Consider observing Y = Kf + ε (satisfying the Gaussian model above) and testing

H0 : f ∈ FH vs H0 : f ∈ FK , where FH and FK are convex.

• Strategy for finding optimal test: conjecture that the least favorable distributions are

point masses.

• Bound on minimax power from two-point testing problem f vs g for f ∈ FH , g ∈ FK :

Φ (‖K(f − g)‖ − z1−α)

(in the notation of the general minimax testing theorem, this is βΛf ,Λg where Λf and

Λg are point masses at f and g respectively).

• By the theorem, f and g must minimize this, which is equivalent to

min
f,g

‖K(f − g)‖ s.t. f ∈ FH , g ∈ FK . (*)

• Thm. (see Section 2.4.3 in Ingster and Suslina (2003)): Let (f ∗, g∗) be a pair that

minimizes (*) (assume that the minimum is achieved).

(i) The level α NP test of f ∗ vs g∗ is the minimax optimal test for FH vs FK at level

α.

(ii) The minimax power is Φ(‖K(f ∗ − g∗)‖ − z1−α).

(iii) The rejection probability is maximized over FH at f ∗ and minimized over FK at

g∗.
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pf.: By the general minimax theorem, (i) and (ii) will follow if we can show (iii). By the

calculations above, the NP test φ of f ∗ vs g∗ rejects for large values of 〈Y,K(f ∗ − g∗)〉
with constant critical value. Since

〈Y,K(f ∗ − g∗)〉 f∼ N
(
〈Kf,K(f ∗ − g∗)〉, ‖K(f ∗ − g∗)‖2

)
,

the rejection probability Efφ is an increasing function of 〈Kf,K(f ∗ − g∗)〉. Thus, it

suffices to show that this is maximized over FH at f ∗ and minimized over FK at g∗.

To show the latter (the former is symmetric), let g ∈ FK , and let gλ = gλ+g∗(1−λ) =
g∗ + λ(g − g∗). By convexity, gλ ∈ FK for λ ∈ [0, 1], so, by optimality of g∗, we must

have ‖K(f ∗ − gλ)‖2 minimized at λ = 0 over λ ∈ [0, 1]. Thus, the derivative at zero is

nonnegative:

0 ≤ d

dλ+
‖K(f ∗ − gλ)‖2

∣∣∣∣
λ=0

=
d

dλ+
‖K(f ∗ − g∗)‖2 + 2λ〈K(g − g∗), K(f ∗ − g∗)〉+ λ2‖K(g − g∗)‖2

∣∣∣∣
λ=0

= 2〈K(g − g∗), K(f ∗ − g∗)〉

so 〈Kg,K(f ∗ − g∗)〉 is minimized over FK at g∗ as required.

• Example (one-sided testing for a linear functional): Let L : F → R, and consider the

minimax testing problem

H0 : Lf ≤ L0 and f ∈ F vs H1 : Lf ≥ L0 + b and f ∈ G

where F and G are convex sets. Since {f |Lf ≤ L0} ∩ F and {f |Lf ≥ L0 + b} ∩ G
are convex sets, the theorem applies. Setting G = F gives a minimax criterion, setting

G ( F gives exact bound on adaptation.

As a special case, consider the fixed design regression model with

Lf = f(0) and F = FLip(C) = {f : R → R||f(x)− f(x′)| ≤ C|x− x′|} .

16



For simplicity, suppose σ2(x) = 1. Then f ∗, g∗ solves

min
f,g

n∑

i=1

(f ∗(xi)− g∗(xi))
2 s.t. f(0) ≤ L0, g(0) ≥ L0 + b, f ∈ F , g ∈ G.

– For the minimax test (F = G),

f ∗(x) = L0 + b/2−max{b/2− C|x|, 0}, g∗(x) = L0 + b/2 + max{b/2− C|x|, 0}

(draw picture).

– Test statistic:

n∑

i=1

(g∗(xi)− f ∗(xi))yi =
n∑

i=1

2max{b/2− C|xi|, 0}yi = b

n∑

i=1

k(xi/h)yi

where k(x) = max{1 − |x|, 0} and h = b/(2C). Critical value is 1 − α quantile

under f ∗:

n∑

i=1

(g∗(xi)− f ∗(xi))f
∗(xi) + z1−α

√√√√
n∑

i=1

(g∗(xi)− f ∗(xi))2

= b

n∑

i=1

k(xi/h)(L0 + b/2− (b/2)k(xi/h)) + z1−αb

√√√√
n∑

i=1

k(xi/h)2

Rearranging, the rejection region is

∑n
i=1 k(xi/h)yi∑n
i=1 k(xi/h)

> L0 + (b/2)

(
1−

∑n
i=1 k(xi/h)

2

∑n
i=1 k(xi/h)

)
+ z1−α

√∑n
i=1 k(xi/h)

2

∑n
i=1 k(xi/h)

.

Inverting the tests leads to the CI [ĉ,∞) where

ĉ = L̂h − bias(L̂h)− z1−αse(L̂h)

with L̂h =
∑n

i=1 k(xi/h)yi∑n
i=1 k(xi/h)

, bias(L̂h) = (b/2)
(
1−

∑
i=1 k(xi/h)

2
∑n

i=1 k(xi/h)

)
and se(L̂h) =

√∑n
i=1 k(xi/h)2∑n
i=1 k(xi/h)

.

– Now consider directing power at constant functions: G = {f(x) : f(x) = c some c ∈
R}, and with distance to null given by b/2 instead of b. Then f ∗ is the same as
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before and g∗(x) = L0 + b/2. Test statistic

n∑

i=1

(g∗(xi)− f ∗(xi))yi =
n∑

i=1

max{b/2− C|xi|, 0}yi = (b/2)
n∑

i=1

k(xi/h)yi

proportional to minimax (for original b) test statistic and critical values based on

same f ∗, so this leads to same test as before.

– Can also calculate power of minimax test at constant functions: it is typically

close to the power envelope.

– We will develop a comprehensive theory that covers this example and other adap-

tivity bounds later in the course.

• Example (power envelope for moment inequalities, c.f. Romano, Shaikh, and Wolf

2013): Consider the fixed-design regression model. The null hypothesis

H0 : f(x) ≤ 0 all x

is a conditional moment inequality. The power envelope at g is given by the power of

the test of H0 vs H1 : {g}. Since H0 and H1 are convex, the result applies.

– Often, we are interested in the parameter θ where we use

f(x) = E(m(Wi, θ0)|Xi = x)

to test the null θ0 ∈ ΘI , where

ΘI = {θ|E(m(Wi, θ0)|Xi = x) all x}

is the identified set. Inverting these tests, we can get a CI for θ. In this setting,

we are interested in minimax relative efficiency of CIs for θ or ΘI . See Armstrong

(2014).

2.4 Unions of convex hypotheses

• Often, nonconvex hypotheses can be written as unions of convex hypotheses. Then,

one can often use ad hoc strategies for bounding the minimax power and deriving “ap-
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proximately” minimax tests based on the individual pairs of least favorable functions.

We will give some examples, which we will come back to later in the course.

• Example (minimax one-sided testing in the sup norm): Consider a version of the sup-

norm testing problem in the fixed design regression model. For concreteness, suppose

that f : [0, 1] → R (so that xi ∈ [0, 1]) and let

H0 : f = 0

H1 : max
1≤i≤n

f(xi) ≥ b and f ∈ F .

If F is unrestricted, this is equivalent to a one-sided version of the original problem.

H1 is not convex, but we can write it as

H1 : ∪n
i=1{f ∈ F|f(xi) ≥ b}

which is the union of n convex alternatives.

• Example (adaptive testing for linear functionals): consider testing

H0 : Lf ≤ L0 and f ∈ F vs H1 : there exists C ∈ I s.t. Lf ≥ L0 + b(C) and f ∈ G(C)

where b(C) is some function of C, G(C) is convex for each C and I is some index

set. For example, we can take G(C) = FLip(C) and I to be some real interval. This

is a problem of adaptive testing. Interest often focuses on asymptotic results such as

finding b̃(C, n) and K∗, K∗ such that minimax power goes to one for b(C) = K∗b̃(C, n)

and zero for b(C) = K∗b̃(C, n).

2.5 Brute force computational approach to optimal testing

• According to the optimal testing theorem, the optimal test can be found by solving

the problem

min βΛH ,ΛK
s.t. ΛH a distribution on FH , ΛK a distribution on FK .
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• Suppose that F = Rk. Then we can approximate this with the solution to

min βΛH ,ΛK
s.t. ΛH a distribution on εZk ∩ FH , ΛK a distribution on εZk ∩ FK .

For any ε, this gives an upper bound.

• Can also approximate FH in other ways (e.g. basis functions instead of grid).

• Main problem: computational curse of dimensionality - number of grid points (or basis

functions, etc.) grows exponentially with k. In the fixed design regression model,

k = n = # of observations.

• See Elliott, Müller, and Watson (2015) for recent applications (using WAP instead of

minimax) and references therein for more detail.

3 CIs and estimation for linear functionals

• This section covers parts of Donoho (1994), Cai and Low (2004) and Armstrong and

Kolesár (2015).

• Consider inference on a linear functional Lf in the general Gaussian model

y = Kf + ε.

• We expect that optimal (minimax/adaptive) CIs are related to the testing problem

H0 : Lf ≤ L0 and f ∈ F vs H0 : Lf ≥ L0 + b and g ∈ G

We showed that the minimax test was the NP test of f ∗ vs g∗ where (f ∗, g∗) minimize

‖K(g − f)‖ subject to f ∈ H0 and g ∈ H1.

• If we minimize over L0 as well, we get the problem

min ‖K(f − g)‖ s.t. Lg − Lf ≥ b, f ∈ F , g ∈ G. (*)

The dual of this problem is

maxLg − Lf s.t. ‖K(f − g)‖ ≤ δ, f ∈ F , g ∈ G. (**)
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• def.: The maximized value of (**) is called the (ordered) modulus of continuity, and

is denoted

ω(δ) = ω(δ;F ,G) = ω(δ;F ,G, K, L).

The minimized value of (*) is called the inverse (ordered) modulus of continuity, and

is denoted

ω−1(b) = ω−1(b;F ,G) = ω−1(b;F ,G, K, L).

• Note: Using the characterization of the two-point NP test, it follows that ω(δ) maxi-

mizes Lf−Lg subject to the constraint that the NP test has power less than Φ(δ−z1−α).

• Thm (properties of the modulus): Assume that F ∩ G 6= ∅. Then

1.) ω(δ) is nonnegative, nondecreasing and concave.

2.) For some δ (possibly ∞ or 0), ω(δ) is strictly increasing on [0, δ) and constant on

[δ,∞). Its inverse ω−1 : [b, b) → [0, δ) (where b = ω(0) and b = limδ→δ ω(δ)) is

given by the solution to (*).

pf.: Nonnegativity follows since f = g is feasible. The modulus is increasing since the

constraint set increases with δ. For concavity, note that, if f ∗
δ , g

∗
δ attain the modulus

at δ and f ∗
δ̃
, g∗

δ̃
attain the modulus at δ̃, then, for λ ∈ [0, 1], gλ = λg∗δ + (1− λ)g∗

δ̃
and

fλ = λf ∗
δ + (1− λ)f ∗

δ̃
satisfy ‖K(gλ − fλ)‖ ≤ λδ+ (1− λ)δ̃, so that ω(λδ+ (1− λ)δ̃) ≥

L(gλ−fλ) = λω(δ)+(1−λ)ω(δ̃) (if the moduli are not achieved, we can argue similarly

with limits).

The first part of (2) follows since a nondecreasing concave function cannot be strictly

increasing only on disjoint sets. To show that the inverse is the solution to (*), we

need to show that solving (*) with b = ω(δ) gives a minimized value of δ for δ < δ. If

this minimized value were strictly less than δ, we would have ‖K(f − g)‖ < δ for some

f, g with Lg − Lf ≥ ω(δ). Then, for some δ′ > δ with ω(δ̃) > ω(δ), we could strictly

increase Lg − Lf by taking a convex combination with a pair fδ̃, gδ̃ that is within a

small enough constant of achieving the modulus at δ̃. If, the minimized value of (*)

were strictly greater than δ, then there would exist η > 0 such that ‖K(f−g)‖ > δ+η

for all f, g with Lg − Lf ≥ ω(δ). This would imply ω(δ + η) ≤ ω(δ).
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• By concavity, ω has a nonempty superdifferential

∂ω(δ) ≡ {d|for all η > 0, ω(η) ≤ ω(δ) + d(η − δ)}

on (0,∞).

• If ω is differentiable (which is typically the case), then ∂ω(δ) is the singleton set

containing the derivative at δ.

• Lemma: Let f ∗ and g∗ achieve the modulus at δ with ‖K(f ∗ − g∗)‖ = δ. Then, for

any d ∈ ∂ω(δ) in the superdifferential, we have, for all f ∈ F and g ∈ G,

L(g − g∗) ≤ d
〈K(g∗ − f ∗), K(g − g∗)〉

‖K(g∗ − f ∗)‖ and L(f − f ∗) ≥ d
〈K(g∗ − f ∗), K(f − f ∗)〉

‖K(g∗ − f ∗)‖ .

pf.: We will prove the first inequality (the second is symmetric). Given g ∈ G, let
gλ = λg + (1− λ)g∗. By convexity, gλ ∈ G. Note that

gλ − f ∗ = λg + (1− λ)g∗ − f ∗ = λ(g − g∗) + g∗ − f ∗

so that

L(gλ − f ∗) = λL(g − g∗) + L(g∗ − f ∗) = λL(g − g∗) + ω(δ)

and

d

dλ+
‖K(gλ − f ∗)‖

∣∣∣∣
λ=0

=
1

2

d
dλ+

‖K(gλ − f ∗)‖2
∣∣∣∣
λ=0

‖K(g∗ − f ∗)‖ =
〈K(f ∗ − g∗), K(g − g∗)〉

‖K(g∗ − f ∗)‖︸ ︷︷ ︸
≡η

(last equality uses same calculations as in convex testing lemma). Thus,

λL(g − g∗) = L(gλ − f ∗)− ω(δ)

≤ ω(‖K(gλ − f ∗)‖)− ω(δ) (by def. of modulus)

≤ d [‖K(gλ − f ∗)‖ − δ] (by def. of d)

= d(λη + o(λ)) (since η is the derivative at 0).
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Dividing by both sides by λ and taking limit as λ→ 0 gives the result.

• We can use the lemma to construct an estimate based on NP test for least favorable

pair.

• Let ω′(δ) denote an arbitrary element in ∂ω(δ) (i.e. ω′(δ) = d in the notation of the

previous lemma). Let f ∗
δ , g

∗
δ denote the pair that achieves the modulus at δ (we will

sometimes drop the subscript when it is clear).

• Consider the statistic

Tδ =
ω′(δ)

δ
〈K(g∗δ − f ∗

δ ), Y 〉.

For g ∈ G,

biasg(Tδ) ≡ EgTδ − Lg =
ω′(δ)

δ
〈K(g∗δ − f ∗

δ ), Kg〉 − Lg

≥ ω′(δ)

δ
〈K(g∗δ − f ∗

δ ), Kg
∗
δ 〉 − Lg∗δ = biasg∗δ (Tδ),

where the inequality follows from the lemma. Similarly, for f ∈ F ,

biasf (Tδ) ≤ biasf∗

δ
(Tδ).

• Thus,

Tδ
f∼ N

(
Lf + biasf (Tδ), [ω

′(δ)]2
)

where,

biasf (Tδ) ≤ biasf∗

δ
(Tδ) for f ∈ F

biasg(Tδ) ≥ biasg∗δ (Tδ) for g ∈ G.
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• Lemma: Suppose that the modulus is achieved at δ with ‖K(f ∗
δ − g∗δ )‖ = δ. Let

B = biasf∗

δ
(Tδ)− biasg∗δ (Tδ)

=
ω′(δ)

δ
〈K(g∗δ − f ∗

δ ), K(f ∗
δ − g∗δ )〉︸ ︷︷ ︸

=−δ2

−L(f ∗
δ − g∗δ )︸ ︷︷ ︸

=−ω(δ)

= ω(δ)− ω′(δ)δ.

Then Tδ minimizes var(T ) among affine statistics T = a + 〈k, Y 〉 subject to the con-

straint

for all f ∈ F , g ∈ G, biasf (T )− biasg(T ) ≤ B.

Any other statistic solving this minimization problem takes the form Tδ + a for some

a.

pf.: The result follows by showing that any other statistic would lead to a test that

is more powerful than the NP test of f ∗ vs g∗, which would require that this statistic

lead to the same test as Tδ. Formally, let k∗δ =
ω(δ)
δ
K(g∗δ −f ∗

δ ) and let T = a+ 〈k, Y 〉 be
a statistic that solves this optimization problem. The lemma is equivalent to showing

k = k∗δ . By optimality of T , biasf∗(T ) − biasg∗(T ) ≤ B and var(T ) ≤ var(Tδ). This

leads to a level α test of g∗ based on T : reject when T > Lf ∗+biasf∗(T )+z1−αstd(T ),

which would have power

Φ



L(g∗ − f ∗) +

≥−B︷ ︸︸ ︷
biasg∗(T )− biasf∗(T )

std(T )
− z1−α


 (*)

since T
g∗∼ N(Lg∗ + biasg∗(T ), var(T )). The NP test of f ∗ vs g∗ rejects for large values

of Tδ and has power

Φ



L(g∗ − f ∗) +

=−B︷ ︸︸ ︷
biasg∗(Tδ)− biasf∗(Tδ)

std(Tδ)
− z1−α


 . (**)
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The Neyman-Pearson lemma implies (**) ≥ (*), which means that

var(T ) = var(Tδ) and biasf∗(T )− biasg∗(T ) = B = biasf∗(Tδ)− biasg∗(Tδ)

(note that the numerator in the display is positive, since L(g∗ − f ∗) = ω(δ) ≥ B).

These equalities can be rewritten

‖k‖2 = ‖k∗δ‖2 and 〈k, k∗δ 〉 = 〈k∗δ , k∗δ 〉

where the latter follows since biasf∗(T ) − biasg∗(T ) = biasf∗(Tδ) − biasg∗(Tδ) iff.

〈k,K(f ∗ − g∗)〉 = 〈k∗δ , K(f ∗ − g∗)〉 and K(f ∗ − g∗) is proportional to k∗δ . This im-

plies ‖k − k∗δ‖2 = ‖k∗δ‖2 + ‖k‖2 − 2〈k, k∗δ 〉 = 0, which gives the result.

• Note:

– The above lemma still holds if ε is non-normal (the proof is the same, with

statements of the form “the Neyman-Pearson test is...” changed to “the Neyman-

Pearson test with ε normal would be...”).

– The above lemma can be strengthened to show that Tδ is minimum variance

among all (not just affine) estimators satisfying the bias constraints. (This re-

quires normality. See Low 1995.)

• The lemma characterizes tradeoffs between worst-case upward bias over F , worst case

downward bias over G, and variance.

• Let biasF(T ) = supf∈F biasf (T ) and biasG(T ) = infg∈G biasg(T ). If an estimator T

satisfies biasF(T ) ≤ b and biasG(T ) ≥ b − B, then it cannot have variance below

ω′(δ)2 = var(Tδ). An estimator achieving this variance is given by a + Tδ with a

calibrated so that biasF(a+ Tδ) = b.

• Let us calibrate a so that

biasf∗(a+ Tδ) = biasF(a+ Tδ) = −biasG(a+ Tδ) = −biasg∗(a+ Tδ) = B/2

Define f ∗
M,δ = (g∗δ + f ∗

δ )/2. Then the above display implies

0 = biasf∗

M
(a+ Tδ) = a+

ω′(δ)

δ
〈K(f ∗

δ − g∗δ ), Kf
∗
M,δ〉 − Lf ∗

M,δ
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which gives the estimator

L̂δ ≡ a+ Tδ = Lf ∗
M,δ +

ω′(δ)

δ
〈K(f ∗

δ − g∗δ ), Y −Kf ∗
M,δ〉.

• Summary of properties of L̂δ:

– biasf∗(L̂δ) = biasF(L̂δ) = −biasG(L̂δ) = −biasg∗(L̂δ) =
1
2
(ω(δ)− ω′(δ)δ)

– var(L̂δ) = ω′(δ)2

– L̂δ is the unique choice of T that minimizes var(T ) among affine estimates with

biasF(T ) ≤ 1
2
(ω(δ)− ω′(δ)δ) and biasG(T ) ≥ −1

2
(ω(δ)− ω′(δ)δ).

– The NP test of f ∗
δ vs g∗δ (which, by the convex testing lemma, is also the minimax

test of H0 : Lf ≤ Lf ∗
δ , f ∈ F vs H1 : Lf ≥ Lf ∗

δ + ω(δ), f ∈ G) rejects for large
values of L̂δ.

3.1 One-sided adaptation

• Consider one-sided CIs of the form C = [ĉ,∞).

• Among CIs with a given coverage level, we want smaller values of excess length Lf − ĉ

(or, perhaps, (Lf − ĉ)+).

• Let qβ,f (T ) denote the β quantile of T under f .

• Let

qβ(ĉ,G) = sup
g∈G

qβ,g(Lg − ĉ)

denote the worst-case β quantile of excess length over a set G.

• We will show that the adaptive CI problem

min
ĉ
qβ(ĉ,G) s.t. inf

f∈F
Pf (Lf ∈ [ĉ,∞)) (*)

is solved by a CI based on L̂δ for δ appropriately calibrated.

• Given α and β, let δ = zβ + z1−α so that the NP test of f ∗
δ vs g∗δ (which is is based on

L̂δ) has power β = Φ(δ − z1−α).
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• This leads to 1− α CI [ĉδ,α,∞) where

ĉδ,α = L̂δ − biasF(L̂δ)− z1−αstd(L̂δ)

= L̂δ −
1

2
(ω(δ)− ω′(δ)δ)− z1−αω

′(δ)

The worst-case β quantile excess length is

qβ(ĉδ,α,G) = sup
g∈G

qg,β(Lg − ĉα,δ) = qg∗δ ,β(Lg
∗
δ − ĉα,δ) = ω(δ)

(the last step can be verified directly or by noting that the NP test of f ∗
δ vs g∗δ has

power β and rejects when Lf ∗
δ ≤ ĉα,δ ⇐⇒ Lg∗δ − ĉα,δ ≤ ω(δ)).

• thm.: Suppose that G ⊆ F and that the modulus is achieved at δ = zβ + z1−α with

‖K(f ∗
δ − g∗δ )‖ = δ. Then ĉδ,α solves (*) and achieves qβ(ĉδ,α,G) = ω(δ). Coverage is

minimized at f ∗
δ and all quantiles of excess length are maximized at g∗δ .

pf.: The results all follow from derivations above except for the claim that ĉα,δ solves

(*). This follows by showing that, if another CI achieved strictly shorter βth quantile

excess length at g∗δ , it could be used to achieve a test of H0 : (1 − λ)f ∗
δ + λg∗δ vs

H1 : g
∗
δ with power strictly greater than the NP test for some λ ∈ (0, 1), which would

contradict the Neyman-Pearson lemma.

3.2 Centrosymmetry and translation invariance

• The modulus simplifies when F and G satisfy certain properties.

• def.: F is centrosymmetric (CS) if f ∈ F =⇒ −f ∈ F .

• def.: F is translation invariant (TI) if there exists ι such that Lι = 1 and f + cι ∈ F
for all c ∈ R, f ∈ F .

• Under translation invariance, we have ω′(δ) = δ
〈K(g∗δ−f∗

δ ),Kι〉 (see lemma below) so that

L̂δ = Lf ∗
M,δ +

〈K(g∗δ − f ∗
δ ), Y −Kf ∗

M,δ〉
〈K(g∗δ − f ∗

δ ), Kι〉
.

• Under centrosymmetry, if f ∗
δ and g∗δ solve the single class modulus (where G = F),

then (f ∗
δ − g∗δ )/2 and −(f ∗

δ − g∗δ )/2 also solve the single class modulus. Thus, we can
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restrict attention to solutions with g∗δ = −f ∗
δ , which gives

ω(δ;F ,F) = sup {2Lf |‖Kf‖ ≤ δ/2, f ∈ F}

and, using the fact that f ∗
M,δ = 0 if g∗δ = −f ∗

δ ,

L̂δ =
2ω′(δ)

δ
〈Kg∗δ , Y 〉 TI

=
〈Kg∗δ , Y 〉
〈Kg∗δ , Kι〉

.

• In the fixed design regression model, if TI holds with ι(x) = 1, the last expression

(where TI and CS both hold) is a Nadaraya-Watson estimator:
∑n

i=1 g
∗

δ (xi)Yi∑n
i=1 g

∗

δ (xi)
.

• Lemma: Suppose that ‖K(g∗δ − f ∗
δ )‖ = δ (the constraint is binding in the modulus

problem) and f ∗
δ + cι ∈ F for all c in a neighborhood of zero, where Lι = 1. Then

∂ω(δ) =
{

δ
〈K(g∗−f∗),Kι〉

}
.

pf.: Let d ∈ ∂ω(δ) and let fc = f ∗ − cι. Let η be small enough so that fc ∈ F for

|c| < η. Then, for |c| ≤ η,

L(g∗ − f ∗) + d [‖K(g∗ − fc)‖ − δ]

≥ ω(‖K(g∗ − fc)‖) (def. of superdifferential)

≥ L(g∗ − fc) def. of modulus

= L(g∗ − f ∗) + c Lι.︸︷︷︸
=1

Since the two sides of the above display are equal at c = 0 and the left hand side is

greather than or equal to the right hand side, the derivatives at 0 are equal, which

gives

1 = d · d
dc

‖K(g∗ − fc)‖
∣∣∣∣
c=0

= d ·
d
dc
‖K(g∗ − fc)‖2

∣∣∣∣
c=0

2δ
= d · 〈K(g∗ − f ∗), Kι〉

δ

so that d = δ
〈K(g∗−f∗),Kι〉 as claimed.
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3.3 Solving the modulus problem/examples

• The modulus problem is a convex optimization problem in F , which is often infinite

dimensional. However, all that really matters is Kf , which is often in a finite di-

mensional space (e.g. Rn in the fixed design regression model). If we can phrase the

constraints on F as constraints on Kf , then we can at least reduce this to an opti-

mization problem over a finite dimensional space. Depending on how we phrase the

constraints, the problem may still be convex, making it computationally feasible even

for n large.

• Often, the structure of the problem gives a simpler solution.

• The problem is also related to the problem of optimal recovery from approximation

theory/computer science, so results from that literature can be helpful (Donoho, 1994,

gives some references to this literature).

• Let us cover some examples, focusing on the minimax (G = F) (see Donoho 1994, Lep-

ski and Tsybakov 2000 and references therein for more on these and other examples).

• Smoothness classes of functions f : X → R: Let γ ∈ [0,∞), p ∈ N, X ⊆ R.

– Hölder class:

FH(γ, C) =

{
f

∣∣∣∣∣
∣∣f (ℓ)(x)− f (ℓ)(x′)

∣∣ ≤ C|x− x′|γ−ℓ all x, x′ ∈ X
}

where ℓ is the maximum integer strictly less than γ.

– Sobolev class:

FS(p, C) =

{
f

∣∣∣∣∣

∫

X
(f (p)(x))2 dx ≤ C2

}

(Note: sometimes Sobolev classes are defined in terms of
∫
(f (p))q for q possibly

not equal to 2.)

– Taylor class at x0:

FT (p, C) =

{
f

∣∣∣∣∣

∣∣∣∣∣f(x)−
p−1∑

j=0

f (j)(x0)(x− x0)
j/j!

∣∣∣∣∣ ≤ C|x− x0|p all x ∈ X
}
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• Note: can take ι to be a p − 1th (for Taylor and Sobolev) or ℓth order (for Hölder)

polynomial for translation invariance

• Transformation K: see examples from Section 2.3 (fixed design regression, Gaussian

white noise, etc.)

• Functional L: recall examples from Section 1 (all of them are linear)

– Lf = f(x0)

– Lf = f (r)(x0)

– RD: Lf = limx↓x0 f(x)− limx↑x0 f(x)

– ATE under unconfoundedness: Lf = 1
n

∑n
i=1[f(wi, 1) − f(wi, 0)] where xi =

(wi, di), di an indicator for “treatment”

3.3.1 Example: Lf = f(0), F = G = FH(γ, C), γ ≤ 1

• Consider fixed design regression (Kf = (f(x1)/σ(x1), . . . , f(xn)/σ(xn))).

• Easier to use inverse modulus (dual of this problem). Using formula under CS, this is

min 2

√√√√
n∑

i=1

f(xi)2

σ2(xi)
s.t. 2f(0) ≥ b and for all x, x′ ∈ R, |f(x)− f(x′)| ≤ C|x− x′|.

• Subject to the constraint, we can make |f(x)| as small as possible simultaneously for

all x by setting

f(x) = max{b/2− C|x|γ, 0}.

so f ∗
ω−1(b)(x) is given by the function in the above display.

• Can take ι(x) = 1, which gives

L̂ω−1(b) =

∑n
i=1 yi max{b/2− C|xi|γ , 0}/σ2(xi)∑n
i=1 max{b/2− C|xi|γ, 0}/σ2(xi)

=

∑n
i=1 yi max{1− |xi/h|γ, 0}/σ2(xi)∑n
i=1 max{1− |xi/h|γ , 0}/σ2(xi)

where h = (2C/b)1/γ .

• To get f ∗
δ , L̂δ, calibrate b so that 2

√∑n
i=1 max{b/2− C|xi|γ , 0}2/σ2(xi) = δ.
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3.3.2 Example: Other functionals with F = G = FH(1, C)

• Sometimes the solution is difficult to characterize, but can be reduced to a finite di-

mensional convex progamming problem.

• Generalize the Lipschitz class (FH(1, C)) to arbitrary metric space X (usually Rn)

with distance dX (x, x
′):

FLip(C) = {f : X → R||f(x)− f(x′)| ≤ CdX (x, x
′)} .

• Let L have the form

Lf =
m∑

j=1

w(x̃j)f(x̃j)

where w(·) is a known weighting function and {x̃j}mj=1 are known.

• Interpretation: in the case where w(x̃) = 1/m, we are estimating the average of the

expectation of the outcome y for individuals j = 1, . . . ,m described by covariates x̃j,

using data on individuals i = 1, . . . , n described by covariates xi. With other choices

of w(·), we can get differences of these averages (i.e. average treatment effects), or

weighted versions of them.

– Sample ATE: Lf = 1
n

∑n
i=1[f(vi, 1) − f(vi, 0)] where xi = (vi, di), we can set

w(v, d) = (2d− 1)/n, m = 2n and x̃j = (vj, 1), x̃n+j = (vj, 0) for j = 1, . . . , n.

• Modulus problem (using centrosymmetry):

max
f :X→R

2
m∑

j=1

w(x̃j)f(x̃j) s.t.
n∑

i=1

f(xi)
2

σ2(xi)
≤ δ2

4
, and

for all x, x′ ∈ X , |f(x)− f(x′)| ≤ CdX (x, x
′).

• Let X̃ = X̃n,m = {x1, . . . , xn} ∪ {x̃1, . . . , x̃m} and let f ∗ : X̃n,m → R solve the same
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problem with X replaced by X̃n,m:

max
f :X̃n,m→R

2
m∑

j=1

w(x̃j)f(x̃j) s.t.
n∑

i=1

f(xi)
2

σ2(xi)
≤ δ2

4
, and

for all x, x′ ∈ X̃n,m, |f(x)− f(x′)| ≤ CdX (x, x
′).

• By Theorem 4 of Beliakov (2006), it is possible to extend f ∗ to a function on X that

satisfies the Lipschitz constraint for all x, x′ ∈ X (not just X̃n,m). Since this function

achieves the modulus with the relaxed constraints (Lipschitz only on X̃n,m) and satisfies

the full constraints (Lipschitz on X ), it must solve the modulus problem.

• Note that we do not have to find this function explicitly, since ω(δ) and L̂δ depend

only on f ∗
δ (x) for x ∈ X̃n,m.

• This reduces the modulus problem to maximizing a linear function in #X̃n,m ≤ n+m

dimensional space subject to a convex quadradic constraint and #X̃n,m·
(
#X̃n,m − 1

)
/2

linear inequality constraints. It can be solved using convex optimization packages such

as CVX for Matlab.

3.3.3 Example: approximately linear models (Sacks and Ylvisaker, 1978)

• Observe {(xi, yi)}ni=1 where

yi = x′iγ + ci + ui

where u = (u1, . . . , un)
′ ∼ N(0,Σ), γ ∈ Rk and |ci| ≤ ri. Parameter space F is

given by {(γ′, c′)′|γ ∈ Rk, c ∈ [−r1, r1] × · · · × [−rn, rn]}. Let Y = Σ−1/2(y1, . . . , yn)
′,

K(γ′, c′)′ = Σ−1/2(Xγ + c) where X
n×k

= (x1, . . . , xn)
′, and let L(γ′, c′)′ = ℓ′γ for some

ℓ ∈ Rk.

• One-class modulus (using centrosymmetry)

max
γ,c

2ℓ′γ s.t. (Xγ + c)′Σ−1(Xγ + c) ≤ δ2/4, and |ci| ≤ ri all i = 1, . . . , n.

This is a finite dimensional convex programming problem. The class is translation
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invariant with ι = (ℓ′/‖ℓ‖2, 0)′ (i.e. c = 0), which gives

L̂δ =
(Xγ∗δ + c∗δ)

′Σ−1(y1, . . . , yn)
′

(Xγ∗δ + c∗δ)
′Σ−1Xℓ/‖ℓ‖2

• When Σ = diag(σ2(x1), . . . , σ
2(xn)) (independent observations) we get

max
γ,c

2ℓ′γ s.t.
n∑

i=1

(x′iγ + ci)
2/σ2(xi) ≤ δ2/4, and |ci| ≤ ri all i = 1, . . . , n.

• We can minimize each |x′iγ+ ci| individually by setting ci = −x′iγ if x′iγ ∈ [−ri, ri] and
setting ci = −ri · sign(x′iγ) if x′iγ /∈ [−ri, ri]. Then x′iγ + ci = (x′iγ − ri)+ − (x′iγ + ri)−

where (t)+ = max{t, 0} and (t)− = max{−t, 0}. Thus, we can optimize over γ only.

Estimator is

L̂δ =

∑n
i=1[(x

′
iγ

∗
δ − ri)+ − (x′iγ

∗
δ + ri)−]yi/σ

2(xi)∑n
i=1[(x

′
iγ

∗
δ − ri)+ − (x′iγ

∗
δ + ri)−]x′iℓ/(‖ℓ‖2σ2(xi))

• The Taylor class FT (p, C) falls into this framework. Let x0 = 0 for simplicity. Then

f(xi) =
∑p

j=0 f
(j)(0)xji/j! + ci where |ci| ≤ C|xi|p. Thus, we get the approximately

linear model with ri = C|xi|p, (1, xi, x2i , . . . , x(p−1)
i )′ playing the role of xi and with

(f(0), f ′(0), f ′′(0)/2, . . . , f (p−1)(0)/(p− 1)!)′ playing the role of γ.

• Historical note: Estimation of a conditional mean at the boundary was one of the

original motivations in Sacks and Ylvisaker (1978), who obtain finite sample results in

the fixed design regression model. Cheng, Fan, and Marron (1997) use their results

to characterize asymptotic relative efficiencies of local linear estimators for boundary

estimation. While the latter paper is often cited in the RD literature to justify the

use of local linear estimators for this problem, the finite sample approach of Sacks and

Ylvisaker (1978) has, to my knowledge, only been applied to this problem recently by

Armstrong and Kolesár (2015). Although they do not mention it in their paper, Sacks

and Ylvisaker were motivated by RD as well and wrote their paper after discussing the

problem with Donald Campbell, one of the coauthors of the seminal paper (Thistleth-

waite and Campbell, 1960) that introduced the method. See historical accounts in

Cook (2008) and Sacks and Ylvisaker (2012).
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3.4 Limits to adaptation under centrosymmetry

• Let ĉα,δ,F ,G denote the solution to

min
ĉ
qβ(ĉ,G) s.t. inf

f∈F
Pf (Lf ∈ [ĉ,∞)) ≥ 1− α

derived in Section 3.1 (denoted ĉα,δ in that section), and let f ∗
δ,F ,G and g∗δ,F ,G denote

least favorable functions.

• Suppose that F is centrosymmetric. For the modulus problem for ω(2δ,F ,F), we can

take g∗2δ,F ,F = −f ∗
2δ,F ,F where f ∗

2δ,F ,F solves

ω(2δ;F ,F) = sup{−2Lf |‖Kf‖ ≤ δ, f ∈ F}.

Consider adapting to the class {0} (the zero function). The least favorable function

f ∗
δ,F ,{0} (with δ instead of 2δ) solves

ω(δ;F , {0}) = sup{−Lf |‖Kf‖ ≤ δ, f ∈ F}.

Thus,

ω(δ;F , {0}) = 1

2
ω(2δ;F ,F) and f ∗

δ,F ,{0} = f ∗
2δ,F ,F =

f ∗
2δ,F ,F − g∗2δ,F ,F

2
.

The latter result means that ĉα,δ,F ,{0} = ĉ2δ,F ,F (assuming the same element in ∂ω(δ)

is used) since f ∗ is the same for both modulus problems and g∗ − f ∗ is the same up to

scale.

• Thus, minimax CI for β = Φ(2δ − z1−α) is identical to CI “directed at 0” for β =

Φ(δ − z1−α).

• Consider performance of ĉα,δ,F ,F (minimax CI for quantile β = Φ(δ − z1−α)) at f = 0.

Note that

ĉα,δ,F ,F = L̂δ,F ,F − 1

2
(ω(δ;F ,F)− ω′(δ;F ,F)δ)− z1−αω

′(δ,F ,F).
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Since f ∗
M,δ,F ,F = 0, the bias at f = 0 is 0, so that

Lf − ĉα,δ,F ,F
f=0∼ N

(
1

2
(ω(δ;F ,F)− ω′(δ;F ,F)δ) + z1−αω

′(δ;F ,F), [ω′(δ;F ,F)]2
)

which gives, for β = Φ(δ − z1−α),

qβ(ĉα,δ,F ,F , {0}) = (zβ + z1−α)︸ ︷︷ ︸
=δ

ω′(δ;F ,F) +
1

2
(ω(δ;F ,F)− ω′(δ;F ,F)δ)

=
1

2
(ω(δ;F ,F) + ω′(δ;F ,F)δ) .

The CI [ĉα,δ,F ,{0}) optimizes qβ(ĉ, {0}) and achieves qβ(ĉα,δ,F ,{0}, {0}) = ω(δ;F , {0}) =
1
2
ω(2δ;F ,F). Thus, “directed at {0}” CI improves upon minimax CI by a factor of

ω(2δ;F ,F)

ω(δ;F ,F) + ω′(δ;F ,F)δ

under f = 0.

• Graphical interpretation: denominator is the Taylor approximation to ω(2δ) (the nu-

merator) expanding at δ.

• Note that the bound is ≥ 1/2 by concavity and nonnegativity of ω.

• Now consider any class G such that

f − g∗δ,F ,G ∈ F all f ∈ F . (*)

Then ω(δ;F ,G) = ω(δ;F , {g∗δ,F ,G}) = ω(δ;F , {0}) and the pair f ∗
δ,F ,G − g∗δ,F ,G , 0 solve

ω(δ;F , {0}) (the last step follows since, under (*), f − g∗δ,F ,G ∈ F iff. f ∈ F). Thus,

ĉα,δ,F ,G = ĉα,δ,F ,{0}, and the arguments apply to CIs that are “directed” at G as well.

This gives ...

• thm.: Let δ = zβ+z1−α. Suppose that F and G satisfy (*) and G ⊆ F and ‖K(f ∗
δ,F ,G−

g∗δ,F ,G)‖ = δ. Then, setting β̃ = Φ((zβ−z1−α)/2) (so that δ/2 = zβ̃+z1−α), the minimax

β quantile CI ĉα,δ,F ,F optimizes qβ̃(ĉ,G). The efficiency of the minimax β quantile CI
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ĉα,δ,F ,F for worst case β quantile over G is

qβ(ĉα,δ,F ,G ,G)
qβ(ĉα,δ,F ,F ,G)

=
ω(2δ;F ,F)

ω(δ;F ,F) + δω′(δ;F ,F)
.

• Summary of lack-of-adaptation for centrosymmetric F

– Minimax CI at quantile β = Φ(δ − z1−α) has worst-case β quantile excess length

ω(δ;F ,G).
– The same CI optimizes worst-case β̃ = Φ((zβ − z1−α)/2) quantile excess length

over G satisfying (*).

– For βth quantile excess length over G, ĉα,δ,F ,F optimizes the “wrong quantile,”

which gives the worst-case excess length over G as 1
2
(ω(δ;F ,F) + ω′(δ;F ,F)δ)

– If we optimize βth quantile excess length instead, we use ĉα,δ,F ,G = ĉα,2δ,F ,F , which

gives worst-case β quantile excess length over G as ω(2δ;F ,G) = 1
2
ω(2δ;F ,F).

• Graphically, we can draw the tangent line to ω(·;F ,F) at δ. Then, take the point on

this line where the x-axis is 2δ and draw a line from there to the origin. The point

on this line where the x-axis is δ gives 1
2
(ω(δ;F ,F) + ω′(δ;F ,F)δ). Now, draw a line

from the origin to (2δ, ω(2δ;F ,F)) and take the point on this line where the x-axis is

δ. This gives 1
2
ω(2δ;F ,F).

3.4.1 Example: monotonicity restrictions

• The class F = FH(γ, C) is centrosymmetric, so the lack of adaptivity results apply. In

particular, if we optimize the worst-case β = Φ(δ − z1−α) quantile over G = FH(γ2, C)

subject to coverage over F = FH(γ1, C), we get a CI with worst-case β quantile

ω(δ;FH(γ1, C),FH(γ2, C)) ≥ ω(δ;FH(γ1, C), {0}) =
1

2
ω(2δ;FH(γ1, C),FH(γ1, C)).

• However, the class F = FH(γ, C) ∩ {f nonincreasing} is not centrosymmetric.

• Consider fixed design regression with Lf = f(0), F = FH(γ1, C) ∩ {f nonincreasing}
and G = FH(γ2, C) ∩ {f nonincreasing} with γℓ ≤ γu ≤ 1.

36



• Inverse modulus problem

min
n∑

i=1

(g(xi)− f(xi))
2/σ2(xi) s.t. g(0)− f(0) ≥ b, f ∈ FH(γ1, C), g ∈ FH(γ2, C),

f and g nonincreasing.

• By translation invariance, we can fix f(0) at an arbitrary point (say f(0) = 0). Least

favorable functions are

f ∗(x) =





b x < 0 and C|x|γ1 ≥ b

C|x|γ1 x < 0 and C|x|γ1 ≤ b

0 x ≥ 0

and

g∗(x) =





b x ≤ 0

b− C|x|γ2 x > 0 and C|x|γ2 ≤ b

0 x ≥ 0 and C|x|γ2 > b

• Using formula under TI, we get

L̂ω−1(b),F ,G =

∑n
i=1 yik(xi)/σ

2(xi)∑n
i=1 k(xi)/σ

2(xi)
where k(x) =




max{b− C|x|γ1 , 0} x ≤ 0

max{b− C|x|γ2 , 0} x ≥ 0

• Note that the number of observations to the left of zero depends only on on γ1 (null

smoothness), and the number of observations to the right depends only on γ2 (alter-

native smoothness). As b = bn → 0, we use O(b1/γ1) observations with x < 0 and

O(b1/γ2) ≫ O(b1/γ1) observations with x > 0 (assuming xi’s behave as if sampled from

positive, bounded density).

• In particular, if all xi are positive, then L̂ω−1(b),F ,G = Lω−1(2b),F ,F . If all xi are negative,

then L̂ω−1(b),F ,G = Lω−1(2b),G,G.

• Thus, there are potential gains from adaptation when 0 is a left boundary of supp(x),

but not when it is a right boundary. There is an intuitive reason for this: if we

know that f is nonincreasing, then we can get a lower-biased estimate of f(0) using
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observations with xi > 0, which gives a lower CI. However, we cannot do this with

observations where xi < 0.

3.4.2 Comparison with other “nontestability” results

• Consider {Xi}ni=1 iid with Xi ∼ F where F is known to be in the parameter space

F(C) = {distributions on R with absolute 3rd moment bounded by C},

and let the parameter of interest be the mean

LF = EFX =

∫
x dF (x).

• It follows from Bahadur and Savage (1956) that any 1−α CI [ĉ,∞) for LF that is valid

over F = ∪∞
C=0F(C) (i.e. the set of distributions for which the 3rd moment exists)

must be trivial in the sense that it satisfies qβ,F (LF − ĉ) = ∞ for all F ∈ F and β > α.

• However, if we pick C and only require coverage over F(C), we can get a CI (using, e.g.

Berry-Esseen) that is “adaptive” to the variance of F in the sense that
√
nqβ,F (LF −

ĉ) → (zβ+z1−α)σ(F ) for all F with σ2(F ) > σ2 > 0 (which achieves the semiparametric

efficiency bound).

• The CI takes the form X̄ − z1−α(σ̂/
√
n) · (1 + ηn(C)) where ηn(C) → 0. Thus, while

the CI does need to depend explicitly on C for finite sample validity, the dependence

is second-order.

• In contrast, the lack-of-adaptation results for adapting to C or γ in, say, a Hölder class,

show that the optimal qβ,f (Lf − ĉ) depends explicitly on C even asymptotically.
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